The invention relates to an independent suspension for a steerable wheel of a mining vehicle, comprising: at least one hub to which at least one wheel is attachable; means for mounting the hub to a frame of the mining vehicle such that the hub is movable in vertical direction and, further, turnable according to steering operations; at least one steering arm for transferring steering force to the hub; and a longitudinal and substantially vertically arranged suspension unit including an inner tube and an outer tube, the inner tube being at the wheel-end of the suspension unit and arranged partly inside the outer tube at the opposite end of the suspension unit for longitudinal movement therein; the suspension unit comprising at least one hydropneumatic suspension and dampening member for receiving and dampening vertical movement of the wheel and the suspension unit including at least two hydraulic pressure fluid chambers separated from one another by a hydraulic piston; and the independent suspension further comprising at least one pressure accumulator; and in which independent suspension the outer tube is attached to the frame so that it is immovable in its longitudinal direction; the inner tube is attached to a steering arm, the inner tube thus being rotatable in relation to the outer tube by a steering force subjected to the steering arm; the hub is attached to the lower end portion of the inner tube; and the hub is mounted to the frame via the suspension unit alone.
The invention further relates to a suspension unit for a mining vehicle wheel, the suspension unit comprising an inner tube and an outer tube, the inner tube being arranged partly inside the outer tube at the opposite end of the suspension unit; the inner tube being movable in a longitudinal direction in relation to the outer tube; the suspension unit comprising at least one hydropneumatic suspension and dampening member for receiving and dampening vertical movement of the wheel, the suspension unit therefore including at least two hydraulic pressure fluid chambers separated from one another by a hydraulic piston, and at least one gas space; and in which suspension unit the lower part of the inner tube is provided with at least one attaching member for attaching the hub of the wheel, the wheel being mountable to the frame of the mining vehicle through the suspension unit alone; and the inner tube is rotatable about its longitudinal axis in relation to the outer tube, whereby the wheel is turnable according to a desired steering operation by subjecting steering force to the inner tube.
The invention further relates to a suspension unit for a mining vehicle wheel, the suspension unit comprising an inner tube and an outer tube, the inner tube being arranged partly inside the outer tube at the opposite end of the suspension unit; the outer tube being movable in a longitudinal direction in relation to the inner tube; the suspension unit comprising at least one hydropneumatic suspension and dampening member for receiving and dampening vertical movement of the wheel, the suspension unit therefore including at least two hydraulic pressure fluid chambers separated from one another by a hydraulic piston, and at least one gas space; and in which suspension unit the lower portion of the outer tube is provided with at least one attaching member for attaching the hub of the wheel, the wheel being mountable to the frame of the mining vehicle via the suspension unit alone; and the outer tube is rotatable about its longitudinal axis in relation to the inner tube, whereby the wheel is turnable according to a desired steering operation by subjecting steering force to the outer tube.
Extremely heavy-duty vehicles are typically used for carrying rock material in mines and excavation sites. For ride comfort and structural stability the wheels of these vehicles are usually provided with suspensions. Such heavy-duty mining vehicles are usually provided with rigid axles. In connection with steerable wheels, a rigid axle must be steerably mounted in relation to the frame. A problem in this arrangement arises from the large space required. Moreover, it is more difficult have an impact on the suspension of an individual wheel mounted to a rigid axle. Vehicle technology also knows independent suspension, which means that each wheel is provided with a suspension of its own attaching it to the frame and thereby allowing it to produce a suspension movement substantially independently of those of the other wheels. In prior art independent suspension arrangements the wheel is mounted to the frame by means of different longitudinal and transverse support arms, wishbone arms, and other support elements. Moreover, such an independent suspension may be provided with a hydropneumatic suspension unit that may comprise a spring providing the wheel with the necessary suspension movement, and also a damper for controlling vertical movements of the wheel. A problem with the prior art independent suspensions is that different support arms and the like require a lot of space.
It is an object of the invention to provide a novel and improved independent suspension and a suspension unit for a steerable wheel of a mining vehicle.
The independent suspension of the invention is characterized in that the upper end portion of the inner tube is provided with a hydraulic piston arranged to move together with the inner tube and sealed against an inner surface of the outer tube; on the upper surface side of the hydraulic piston there is provided a first hydraulic pressure fluid chamber; on the bottom surface side of the hydraulic piston there is provided a second hydraulic pressure fluid chamber; the hydraulic piston is provided with a plural number of openings for leading pressure fluid between the hydraulic pressure fluid chambers; the pressure accumulator comprises a gas space and a gas piston; and the pressure accumulator is arranged inside the inner tube.
The suspension unit of the invention is characterized in that the hydraulic piston is arranged to the upper part of the inner tube; above the hydraulic piston there is provided a first hydraulic pressure fluid chamber; below the hydraulic piston there is provided a second hydraulic pressure fluid chamber; the hydraulic piston is provided with a plural number of openings for leading pressure fluid between the hydraulic pressure fluid chambers; inside the inner tube there is provided a pressure accumulator arranged thereto and battery comprising at least a gas piston and a gas space; the gas piston is arranged to separate the second hydraulic pressure fluid chamber and the gas space from one another; and that the gas piston is arranged to move in the longitudinal direction of the inner tube according to pressures acting on the second hydraulic pressure fluid chamber and the gas space.
The second suspension unit of the invention is characterized in that the hydraulic piston is arranged to the lower part of the inner tube; below the hydraulic piston there is provided a first hydraulic pressure fluid chamber; above the hydraulic piston there is provided a second hydraulic pressure fluid chamber; the hydraulic piston is provided with a plural number of openings for leading pressure fluid between the hydraulic pressure fluid chambers; inside the inner tube there is provided a pressure accumulator arranged thereto and comprising at least a gas piston and a gas space; the gas piston is arranged to separate the second hydraulic pressure fluid chamber and the gas space from one another; and that the gas piston is arranged to move in the longitudinal direction of the inner tube according to pressures acting on the hydraulic pressure fluid chamber and the gas space.
A basic idea of the invention is that a steerable wheel of a mining vehicle is mounted to the frame via a suspension unit alone. The steerable wheel is provided with independent suspensions implemented by means of a hydropneumatic suspension unit comprising spring means to enable the necessary vertical suspension movements and, further, damping means for damping vertical movements. The suspension unit comprises an outer tube immovably attached to the frame. Further, the suspension unit comprises an inner tube the upper part of which is arranged inside the outer tube and which is arranged to move in a longitudinal direction in relation to the outer tube as required by the suspension movements of the wheel. On the lower part of the inner tube there are provided attaching means for attaching the wheel hub to the suspension unit. Further, the inner tube is substantially freely rotatable about its longitudinal axis. Further still, the inner tube is provided with a steering arm attached thereto to allow steering force to be subjected to the inner tube by means of the steering arm, thereby making the inner tube turn in relation to the outer tube. The inner tube and the outer tube may also be arranged contrary to the above, i.e. the inner tube may be attached to the frame, whereas the outer tube together with the wheel hub attached to its lower part are arranged to move in relation to the inner tube during suspension movements and steering operations.
An advantage of the invention is that it provides a simple wheel support implemented by means of a suspension unit alone, without the need for any separate longitudinal or transverse support arms or other similar support structures. Consequently, the suspension unit of the invention requires very little space, whereby it is much easier to arrange to the vehicle chassis structure. Since it fits into a small space, the independent suspension of the invention is most suitable for mining vehicles to be used in underground mines, in which there is limited space available for different components, suspension in particular. Since the wheels are mounted without any separate support members other than the suspensions strut, the wheel mounts is simple in view of both manufacture and servicing. In addition, it is possible to provide the wheel with a relatively large range of suspension movements, because there are no separate support members to restrict its movement.
According to an embodiment of the invention the inner tube comprises a pressure accumulator for storing gas. The pressure accumulator comprises a gas space formed inside the inner tube and a gas piston arranged into the inner space of the inner tube. The gas piston separates the gas space from the hydraulic pressure fluid chamber provided in the hydraulic part of the suspension unit. The upper surface of the gas piston is therefore subjected to a hydraulic pressure, whereas its bottom surface is subjected to a pneumatic pressure. The gas piston inside the inner tube tends to set to a position where the forces caused by the hydraulic pressure and the pneumatic pressure are equal. One of the advantages of the application is that the pressure accumulator is positioned as close as possible to other components associated with the suspension and damping of the suspension unit, and therefore long and complex pressure channels are not required, nor are significant pressure losses created. Further, the pressure accumulator does not increase the outer dimensions of the suspension unit and the inner tube protects it well against shocks and impurities. Further still, it is possible to create a gas space of a sufficiently large volume inside the inner tube.
According to an essential idea of an embodiment of the invention the upper end part of the inner tube is provided with a hydraulic piston attached thereto and arranged to move together with the inner tube. Above the hydraulic piston there is provided a first hydraulic pressure fluid chamber and below the hydraulic piston there is provided a second hydraulic pressure fluid chamber. The hydraulic piston is provided with a plural number of openings through which pressure fluid is arranged to flow from the first hydraulic pressure fluid chamber to the second hydraulic pressure fluid chamber and back, depending on whether the inner tube is moving upwards or downwards. An impact on the volume of the second hydraulic pressure fluid chamber is also exercised by means of the pressure accumulator, which is thus arranged to form a yielding element. The openings in the hydraulic piston throttle the flow of the pressure fluid at least in one direction, thereby dampening the suspension movement.
According to an essential ideal of an embodiment of the invention the hydraulic piston is provided with one or more openings provided with a non-return valve that allows pressure fluid to flow through substantially without flow resistance in a first direction, but blocks flow-through substantially entirely in a second direction. The non-return valve is arranged to allow pressure fluid to flow from the first hydraulic pressure fluid chamber to the second hydraulic pressure fluid chamber, whereby dampers provided in the hydraulic piston are not active when the inner tube moves upwards.
According to an essential idea of an embodiment of the invention both the upward and downward movements of the hydraulic piston are damped by end-cushioning at the extreme positions of the hydraulic piston. End-cushioning allows to avoid oversized loads acting on the suspension unit and other structures of the mining vehicle from being created at the end of an upward or downward suspension movement.
According to an essential idea of an embodiment of the invention the suspension unit is attached to the mining vehicle frame by means of one or more attaching members, such as attaching flanges, provided on the side of the outer tube.
According to an essential idea of the invention the inner tube is provided with at least one connecting element for supplying gas into and releasing it from the inner space of the inner tube. In this case a desired pressure may be set into the pressure accumulator enabling the suspension movements of the suspension unit to be influenced.
According to an essential idea of invention the outer tube is provided with at least one connecting element for supplying pressure fluid into and releasing it from the first hydraulic pressure fluid chamber. By changing the amount of pressure fluid in the suspension unit it is possible to influence the height of the suspension unit, because the supply and removal of the pressure fluid influence the extent to which the inner tube and the outer tube are inside one another.
According to an essential idea of an embodiment of the invention the suspension arrangement is provided with at least one sensor for measuring the height of each suspension unit. Further, the suspension arrangement is provided with at least one control unit configured to receive measurement data from the sensor and to adjust the height of the suspension unit accordingly.
According to an essential idea of an embodiment of the invention a first suspension unit provided on a first side of the mining vehicle and a second suspension unit provided on a second side of the mining vehicle are hydraulically connected to each other. In this case pressure fluid is allowed to flow from the first hydraulic pressure fluid chamber of the first suspension unit to the first hydraulic pressure fluid chamber of the second suspension unit, and vice versa. The pressure spaces are interconnected by a pressure channel provided with means for guiding the pressure fluid flow. This application allows suspensions struts provided on opposite sides of the vehicle to oscillate, whereby the wheels stay in contact with the terrain also on a sloping surface.
Some embodiments of the invention will be described in greater detail with reference to the accompanying drawings, in which
For the sake of clarity some embodiments of the invention illustrated in the Figures have been simplified. Like parts are indicated with like reference numerals.
It should be noted that in this application the suspension unit 7 is examined in its normal operating position, i.e. the upper end of the suspension unit 7 and its components refers to the end facing the frame 2 of the mining vehicle 1 and, correspondingly, the lower end refer to the end facing the wheel 6.
Nevertheless, the operating principle of the suspension units 7a, 7b can be described with reference to
Further, both the front wheels 6a and the rear wheels 6b may be equipped with brakes. In this case the suspension and the wheel supports of the mining vehicle 1 must be designed taking into account braking forces created during braking. The suspension units 7 of the front wheels 6a in particular must be dimensioned to sustain braking forces. The inner tube 14, outer tube 15 and the joint between them must therefore be designed and dimensioned so that they are strong. In addition, all wheels of the vehicle, or some of them, may be drive wheels. The suspension unit of the invention can thus be applied also to the suspension of wheels provided with brakes and traction.
The hydraulic part 31 may comprise a hydraulic piston 36 that may be immovably attached to the upper part of the inner tube 14. The hydraulic piston 36 may provide the upper end of the inner tube with a kind of an end piece that moves inside the outer tube 15 along with the upper end of the inner tube 14. The hydraulic piston 36 may be sealed against the inner surface of the outer tube 15 by means of suitable seals. Above the hydraulic piston 36 there may be a first hydraulic pressure fluid chamber 37 that may be subject to the pressure of the pressure fluid. The upper part of the outer tube 15 may be provided with a cover 38 bounding the first hydraulic pressure fluid chamber 37, and the cover may be further provided with one or more connecting elements 39 for conveying pressure fluid into and out of the pressure space 37 during the above-described oscillation and height adjustment, for example. Further, the cover 38 may be provided with a groove 40 which together with a protruding portion 41 provided on the upper surface of the hydraulic piston 36 may form an end-cushioning for inward suspension movement. The suspension unit 7 may also be provided with an end-cushioning for an outward suspension movement. For this purpose the hydraulic part 31 may be provided with an end-cushioning space 42 that may be bounded by a recess made to the inner surface of the outer tube 15 and located at the hydraulic part 31, the outer surface of the inner tube 14, and the hydraulic piston 36. The end-cushioning of the outward suspension movement and the operation of the hydraulic part will be described in greater detail in connection with
When the inner tube 14 penetrates outward after the suspension movement, pressure fluid flows from the second hydraulic pressure fluid chamber 50 through the second openings 48 in the hydraulic piston into the first hydraulic pressure fluid chamber 37. The second openings 48 are dimensioned to throttle the flow. Alternatively, the second openings 48 are provided with suitable throttles. Since the first openings 47 are provided with non-return valves 49, the pressure fluid cannot flow through the valves in this direction. As a result, the behaviour of the wheel 6 is controlled and it stays in firm contact with the surface 8. If the wheel 6 is driven into a deep hole in the ground, the second end-cushioning element of the suspension unit 7 may receive the movement of the inner tube 14 in a controlled manner to prevent unnecessarily strong loads acting on the construction of the suspension unit 7. The end-cushioning may operate such that an outward movement of the inner tube 14 frees volume in the first hydraulic pressure fluid chamber 37 above the piston 36, thereby allowing pressure fluid to flow from the end-cushioning space 42 and the second hydraulic pressure fluid chamber 50 into the first hydraulic pressure fluid chamber 37. In this case the pressure acting in the gas space 33 may push the gas piston 34 upward. The inner tube 14 may protrude to the extent that a shoulder 54 provided in the hydraulic piston 36 is able to close the channels 51 between the end-cushioning space 42 and the second hydraulic pressure fluid chamber 50. As a result, pressure fluid can no longer flow away from the end-cushioning space 42 through the channels 51, whereby a closed pressure space is created that may stop the outward movement of the inner tube 14 in a controlled manner. Further, the top surface of the gas piston 34 may be provided with a recess 52 and the bottom surface of the hydraulic piston 36 with a protrusion 53. As the gas piston 34 moves upward, the protrusion 53 goes into the recess 52 and together they dampen the movement of the gas piston 34 at its extreme position. This allows also the upward movement of the gas piston 34 to be restricted, whereby contact between the sealing elements of the gas piston 34 and the channels 51 can be avoided.
Generally, it can be stated that the mining vehicle of the invention has at least one wheel the suspension of which is accomplished by means of a hydropneumatic suspension unit alone. The suspension unit is a longitudinal piece and comprises a first tube and a second tube arranged partly one inside the other. In that case one of the said tubes may be moved in a vertical direction relative to the other tube, the other tube being substantially immovably attached to the mining vehicle frame. The wheel and the wheel hub are connected to the movable tube. In addition, the movable tube may be rotated about its longitudinal axis as required by steering operations.
In some cases the characteristics disclosed in this application may be applied independently, irrespective of other features. On the other hand, if necessary, the characteristics disclosed here may used in varying combinations.
The drawings and the related specification are only meant to illustrate the inventive idea. The details of the invention may vary within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
20045493 | Dec 2004 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI05/50465 | 12/19/2005 | WO | 9/12/2007 |