Independent suture tensioning and snaring apparatus

Abstract
In repairing soft tissue with a bone anchoring instrument (such as reattaching a tendon of a torn rotator cuff), the bone anchoring instrument may be used to anchor the soft tissue to a region of bone. The anchors inserted into the underlying bone may have one or more lengths of suture or wire attached thereto which may be tensioned independently of one another to affix the soft tissue to the bone by having a selector mechanism selectively engage and disengage ratcheted tensioning wheels from one another. Suture loading mechanisms may be employed for passing suture lengths into and/or through the anchors prior to deployment into the bone where such mechanisms may employ suture snares which are configured to reconfigure from an expanded shape through which suture lengths may be easily passed to a low-profile shape which secures the suture lengths within the snare.
Description
FIELD OF THE INVENTION

The present invention relates to apparatus and methods for anchoring soft tissue to bone. More particularly, the present invention relates to apparatus and methods for anchoring soft tissue to bone and selectively snaring, threading, and tensioning varying suture lengths from one or more bone anchors independently of one another through a single instrument.


BACKGROUND OF THE INVENTION

Prior to the development of knotless designs, bone anchor deployment instruments typically utilized anchors which had suture material either preloaded or incorporated eyelets through which a length of suture may be loaded prior to anchor introduction into the bone. The sequence of operation for deploying the anchors generally entailed passing one or more suture lengths through the soft tissue to be secured and then approximating the soft tissue to the underlying bone by tying one or more knots.


Even with the advent of knotless bone anchor designs, the ability to accurately and reliably apply tension to the sutures to approximate soft tissues to bone created additional problems. Because of the nature of knotless anchor designs, sutures are typically placed through the soft tissue to be secured before coupling them with the anchor. This required the inclusion of additional mechanisms for threading the anchors and tensioning the sutures.


Developments in constructs for approximating and securing soft tissue to bone, notably in the area of rotator cuff repair, have created the need to be able to independently secure, thread, and tension one or more of the suture strands passing through one or more bone anchors. This is typically apparent in the formation of crossed suture configurations, e.g., criss-cross type constructs, where suture limbs from two different medially placed anchors are loaded into a laterally placed anchor. Because the suture limbs may originate from different orientations or bone anchors, they may not have the same lengths and may thus need to be tensioned independently of one another.


Additionally, in certain of the bone anchor insertion instrument configurations described above, there exists a need to secure suture limbs after they have been loaded into a threading or snaring device to prevent the separate suture limbs from dropping out of the insertion device. As the sutures are withdrawn over a distance through the anchor and into the inserter, the potential for the sutures pulling out of the snare and the insertion device is significant.


Accordingly, devices and methods which allow for the tensioning of separate suture lengths independently of one another are desired. In particular, mechanisms to individually capture suture lengths and convey them to tensioning mechanisms, e.g., ratchet wheels, which are controllable to enable a user to selectively tension either or both individual suture lengths are desired. Further, a suture threading and snaring device that allows for single step loading and securing of independent suture limbs into knotless bone anchors is also desired. In particular, mechanisms that allow for the individual snaring and securing of suture limbs in conjunction with the use of a bone anchor insertion device with independent tensioning mechanisms, and that convey the independent suture limbs to the separate tensioning mechanisms, e.g., ratchet wheels, are also needed


SUMMARY OF THE INVENTION

In repairing soft tissue with a bone anchoring instrument (such as reattaching a tendon of a torn rotator cuff), the bone anchoring instrument may be used to anchor the soft tissue to a region of bone. This may be accomplished generally by inserting at least one anchor into underlying bone, locking the anchor into the bone, and subsequently tensioning one or more lengths of suture or wire between the anchor to affix the soft tissue. The lengths of suture or wire may be tensioned independently of one another and subsequently immobilized or secured and the anchoring instrument may be disassociated from the anchors leaving them behind in the bone.


The suture tensioning mechanism may incorporate one or more rotatable wheels which are ratcheted to turn in a stepped or controlled manner in a first direction unless released by a ratchet release mechanism to allow for the ratcheted wheels to turn in a second opposite direction. One or more knobs may be rotatably attached to the one or more ratcheted wheels to provide a control handle for the user. Once the bone anchor has been deployed, the user may turn the one or more knobs in the first direction to tension the suture about the ratcheted wheel and thus approximate the soft tissue to the underlying bone.


Respective first and second knobs may extend from the instrument housing while coupled to respective first and second ratchet wheels which are rotatably positioned within the housing. First and second ratchet wheels may include respective ratcheting teeth such that rotation of the first and second knobs by the user may in turn rotate ratchet wheels in a first direction while rotation in a second opposite direction is inhibited. One or both respective ratchet releases may be depressed or actuated by the user to release the ratcheting mechanism and thus allow for free rotation of the ratchet wheels in either the first or second direction. In this manner, one or both ratchet wheels may be released independently of one another to facilitate individual tensioning of one or both suture lengths via the ratchet wheels. Alternatively, both ratchet wheels may be simultaneously released by the simultaneous actuation of both ratchet releases.


In an exemplary use, when a first and second length of suture extending from their respective bone anchors deployed within the underlying bone are initially tensioned, the selector may be placed in a neutral position such that both first and second ratchet wheels are engaged by the selector and both wheels are simultaneously rotatable. Rotation of both first and second ratchet wheels may accordingly tension both lengths of suture simultaneously about their respective suture tracks for initially eliminating any slack from the suture lengths.


To disengage the first and second ratchet wheels from one another, the selector may be actuated, e.g., by depressing the selector in a first direction, to slide into a first position. In this first position, the second ratchet wheel may be disengaged and the first ratchet wheel may be engaged such that rotation of the knobs may in turn rotate only the first ratchet wheel to tension the first length of suture thereabout. With the second ratchet wheel disengaged from the knobs, the second ratchet wheel may remain stationary to maintain a constant tension level upon its suture length while the first ratchet wheel may be rotated to further tension or loosen its first length of suture as appropriate. Similarly, the selector may be actuated to be re-positioned into a second position where the first ratchet wheel is disengaged from the knobs and the second ratchet wheel is then engaged by the knobs to rotate for tensioning or loosening its respective suture length. Such individual tensioning of the sutures may provide for fine tuning and optimization of the soft tissue securement to the underlying bone.


As the selector is moved between positions during a procedure, a retaining member located along the selector shaft may slide over an interface between the ratchet wheels to an provide an indication, such as slight resistance or an audible click, to the user as to the relative movement and positioning of the selector relative to the ratchet wheels.


Prior to tensioning the lengths of suture, a suture loader comprising a snaring and securing mechanism is provided to assist in conveying the separate suture limbs to a respective independent tensioning ratchet wheel. The snaring mechanism includes at least two snares preloaded into the suture loader. The securing mechanism includes a suture guide disposed on the inserter. The suture guide manages and effectively routes each snare and corresponding length of suture limbs from an initial snaring position to a subsequent pre-tensioning position where each length of suture limb is drawn through the bone anchor prior to the tensioning process. The securing mechanism further includes at least two traps and related shutters that may be movable either pivotably or slidably and operable to capture suture limbs disposed in a corresponding snare in the initial snaring position within the traps and prior to the suture limbs being withdrawn through a bone anchor by the tensioning mechanism. The suture limbs are engaged by at least two snare end portions that each comprise a plurality of teeth for engaging, compressing into, or biting into the end portions of the respective suture limbs.


Thus, the disclosed embodiments comprise a combination of features and characteristics which are directed to allow it to overcome various shortcomings of prior devices. The various characteristics described above, as well as other features, will be readily apparent to those skilled in the art upon reading the following detailed description of the preferred embodiments of the invention, and by referring to the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a perspective view of a representative bone anchoring instrument.



FIG. 2 illustrates another perspective view of an a representative bone anchoring assembly which shows the deployable bone anchors which may be loaded within the instrument.



FIG. 3 illustrates a perspective view of an additional bone anchoring instrument.



FIG. 4 illustrates a perspective view of one example of a suture tensioning assembly configured to simultaneously tension two separate suture lengths.



FIGS. 5A and 5B illustrate perspective views of the suture tension assembly alternately configured to selectively tension a first or a second suture length.



FIG. 6 illustrates a perspective view of an exploded tensioning assembly showing the separate tensioning mechanisms and a selector assembly for selectively engaging one or both tensioning mechanisms.



FIG. 7A illustrates a cross-sectional end view of the selector assembly in a first position to engage both a first and a second tensioning mechanism to simultaneously tension a first and a second suture length, respectively.



FIG. 7B illustrates the cross-sectional end view of FIG. 6A where the selector assembly is repositioned in a second position to engage a single tensioning mechanism for tensioning a single suture length.



FIGS. 8A and 8B illustrate cross-sectional end views of another variation of a selector assembly which is configured to selectively engage one or both the tensioning mechanisms in preset positions.



FIGS. 9A and 9B illustrate perspective and detail perspective views, respectively, of an exemplary bone anchor insertion device positioned within a suture loader mechanism.



FIGS. 10A, 10B, and 10C illustrate perspective views of an embodiment of the removable suture loader disposed at a distal end of a bone anchoring instrument.



FIGS. 11A and 11B illustrate side views of a suture loader mechanism.



FIGS. 11C and 11D illustrate perspective views of an embodiment of a suture loader mechanism.



FIGS. 12A and 12B illustrate a perspective view of an embodiment of the suture snaring end portion.



FIGS. 13 and 14 illustrate a perspective view of an additional embodiment of the suture snaring end portion.





DETAILED DESCRIPTION OF THE INVENTION

The independent suture tensioning mechanisms described herein may be utilized with any number of bone anchors as well as related insertion and deployment instruments. In repairing soft tissue with a bone anchoring instrument (such as reattaching a tendon of a torn rotator cuff), the bone anchoring instrument may be used to anchor the soft tissue to a region of bone. This may be accomplished generally by inserting at least one anchor into the underlying bone, locking the anchor into the bone, and subsequently tensioning one or more lengths of suture or wire stitched in the soft tissue between the anchor to affix the soft tissue. The lengths of suture or wire may be tensioned independently of one another and subsequently immobilized or secured and the anchoring instrument may be disassociated from the anchor leaving it behind in the bone. Such an anchoring instrument may eliminate the need to separately pass suture or wire or tying knots thus allowing the procedure to be performed without the need to move an arthroscope from an articular side to a bursal side of the cuff. Moreover, the relatively small diameter of the bone anchor allows for a reduced entry hole through the cuff during delivery and deployment.


Some examples of illustrative bone anchoring devices which may incorporate such suture tensioning mechanisms are shown and described in detail in U.S. Pat. No. 6,780,198 and U.S. Pat. App. 2005/033364 A1, each of which is incorporated herein by reference. Generally, such bone anchor deployment instruments may incorporate one or more ratcheted tensioning mechanisms, such as a rotatable wheel, around which a length of suture to be deployed and tensioned is at least partially wrapped or retained. Once the anchor has been deployed into the bone and the suture extending from the anchor is to be tensioned, the tensioning mechanism may be rotated in a first direction (as in the wheel configuration) to wind the slack suture about the mechanism and thereby apply tension to the suture ends, e.g., to approximate and/or secure soft tissue to the bone.


One embodiment of a bone anchoring insertion instrument having a ratcheted tensioning mechanism configured as a rotatable wheel is shown in the perspective view of FIG. 1. As previously mentioned, further details are disclosed in U.S. Pat. No. 6,780,198 and U.S. Pat. App. 2005/033364 A1 incorporated hereinabove. A bone anchoring insertion instrument 10 may incorporate an inserter handle 11 and an outer tube 12 extending distally from handle portion 11. The handle portion 11 may comprise a housing 13 which is shaped and configured to accommodate components for effecting the insertion of one or more bone anchors for any number of orthopedic procedures such as repair of a rotator cuff where a portion of soft tissue is reattached to an adjacent bone. A hand lever 16 may be pivotally attached to housing 13.


The suture tensioning mechanism may incorporate a rotatable wheel 15 which is ratcheted to turn in a stepped or controlled manner in a first direction unless released by a ratchet release mechanism to allow for the ratcheted wheel 15 to turn in a second opposite direction. One or more knobs 14 may be rotatably attached to the one or more ratcheted wheels 15 to provide a control handle for the user. The bone anchor may be deployed by actuating the pivotable hand lever 16 downwardly. Once the bone anchor has been deployed, the user may turn the one or more knobs 14 in the first direction to tension the suture about the ratcheted wheel 15 and thus approximate the soft tissue to the underlying bone.


The outer tube 12 projecting distally from handle 11 may define a longitudinal slot or opening 19 as well as a suture opening 17 formed in its distal end. A separate inner slotted tube 18 may also be disposed coaxially within the outer tube 12 such that inner tube 18 is fixed relative to the outer tube 12 to prevent relative sliding or rotational movement between the two. In this manner, inner tube 18 may function as a mandrel or stop for the bone anchors during an insertion procedure.


As illustrated in the perspective view of FIG. 2, a separate pull tube 20 may also be inserted in a coaxial relationship into the distal end of the inner slotted tube 18. A portion of the distal end of the pull tube 20 may be constructed such that part of the cylindrical sidewall is cut away to form a semi-cylindrical shape which forms a suture opening 22. In this manner, one or more bone anchors 24 to which a length of suture is attached may be affixed to the distal end of pull tube 20 for delivery and deployment into the bone.


Referring now to FIG. 3, another embodiment of a bone anchoring insertion instrument is shown. Bone anchor insertion device 30 is comprised of handle 32, outer tube 34, and trigger 36. Suture knob 38 is disposed on handle 32, and is rotatably attached to a ratcheted wheel (not shown). Bone anchor 31 is disposed at a distal end of outer tube 34 and is threaded with a length of suture (not shown) which is also retained on the ratcheted wheel. The bone anchor 31 is inserted into a bone hole and the length of suture is tensioned by rotating suture knob 38. After the length of suture is tensioned to a desired degree, trigger 36 is actuated in order to deploy and lock the bone anchor 31 within the bone hole.


The bone anchoring insertion instruments shown above are described as exemplary devices which may incorporate a suture tensioning mechanism configured to tension different suture lengths simultaneously or independently of one another and are not intended to be limiting. Now turning to an example of such a suture tensioning mechanism, FIG. 4 illustrates a perspective view of a suture tensioning mechanism 40 housed within handle housing 41. In this variation, respective first and second knobs 42a, 42b may extend from housing 41 while coupled to respective first and second ratchet wheels 44a, 44b which are rotatably positioned within housing 41. First and second ratchet wheels 44a, 44b may include respective ratcheting teeth 50a, 50b such that rotation of the first and second knobs 42a, 42b by the user may in turn rotate ratchet wheels 44a, 44b in a first direction while rotation in a second opposite direction is inhibited.


One or both respective ratchet releases 46a, 46b may be depressed or actuated by the user to release the ratcheting mechanism and thus allow for free rotation of ratchet wheels 44a, 44b in either the first or second direction. For instance, actuation of first ratchet release 46a may release the ratcheting mechanism from ratcheting teeth 50a and actuation of second ratchet release 46b may release the ratcheting mechanism from ratcheting teeth 50b. In this manner, one or both ratchet wheels 44a, 44b may be released independently of one another to facilitate individual tensioning of one or both suture lengths via ratchet wheels 44a, 44b, as further described below. Alternatively, both ratchet wheels 44a, 44b may be simultaneously released by the simultaneous actuation of both ratchet releases 46a, 46b. Furthermore as shown, first and second ratchet wheels 44a, 44b may each define a groove or track 52a, 52b about its circumference within which respective lengths of suture to be tensioned may be at least partially wrapped about.


In an exemplary use, when a first and second length of suture extending from their respective bone anchors deployed within the underlying bone are initially tensioned, selector 48 may be placed in a neutral position, as shown in FIG. 4, such that both first and second ratchet wheels 44a, 44b are engaged by selector 48 and both wheels are simultaneously rotatable by first and second knobs 42a, 42b. Rotation of both first and second ratchet wheels 44a, 44b may accordingly tension both lengths of suture simultaneously about their respective suture tracks 52a, 52b for initially eliminating any slack from the suture lengths.


To disengage first and second ratchet wheels 44a, 44b from one another, selector 48 may be actuated, e.g., by depressing selector 48 in a first direction, to slide into a first position 48′, as illustrated in the perspective view of FIG. 5A. In this first position 48′, second ratchet wheel 44b may be disengaged and first ratchet wheel 44a may be engaged such that rotation of knobs 42a, 42b may in turn rotate only first ratchet wheel 44a to tension the first length of suture thereabout. With second ratchet wheel 44b disengaged from knobs 42a, 42b, second ratchet wheel 44b may remain stationary to maintain a constant tension level upon its suture length while first ratchet wheel 44a may be rotated to further tension or loosen its first length of suture as appropriate.


Similarly, selector 48 may be actuated to be re-positioned into a second position 48″, as illustrated in the perspective view of FIG. 5B, where first ratchet wheel 44a is disengaged from knobs 42a, 42b and second ratchet wheel 44b is then engaged by the knobs to rotate for tensioning or loosening its respective suture length. Alternatively, engagement of selector 48 into its first position 48′ may allow for rotation of first ratchet wheel 44a by only first knob 42a and likewise engagement of selector 48 into its second position 48″ may allow for rotation of second ratchet wheel 44b by only second knob 42b. Selector 48 may be repositioned in its neutral position or its first or second position at any time during a procedure thus allowing for simultaneous tensioning or selective tensioning of its first or second suture lengths as necessary. Such individual tensioning of the sutures may provide for fine tuning and optimization of the soft tissue securement to the underlying bone.


As illustrated in the perspective view of the exploded tensioning mechanism assembly in FIG. 6, selector 48 may comprise in one variation a shaft 54 translatable along its axial length and positioned through ratchet wheels 44a, 44b. An engagement member having first and second engaging portions 60a, 60b may be positioned along the shaft 54, e.g., along a central portion of shaft 54. The engaging portions 60a, 60b may comprise a separate or integrated portion of shaft 54 which has a second diameter larger than a first diameter of the shaft 54 with one or more teeth or projections defined along the engaging portions 60a, 60b and extending in a longitudinal direction. The engaging portions 60a, 60b may further include a receiving groove 62 circumferentially defined between engaging portions 60a, 60b such that receiving groove 62 is sized to receive a retaining member 64, e.g., C-clip or O-ring, which may be secured within receiving groove 62. Once retaining member 64 is secured within receiving groove 62, an outer diameter of the member 64 may extend just beyond the second diameter of engaging portions 60a, 60b.


First and second ratchet wheels 44a, 44b may each define a respective receiving recess 66a, 66b molded or otherwise formed annularly about the opening through which selector shaft 54 passes such that the annular cavities are in apposition to one another. Receiving recess 66a, 66b may each form an opening along the surfaces of ratchet wheels 44a, 44b such that when the wheels are positioned adjacent to one another when assembled, receiving recess 66a, 66b forms an enclosed cavity within which first and second engaging portions 60a, 60b are translatably slidable.


As illustrated in the cross-sectional end view of FIG. 7A, the assembled ratchet wheels 44a, 44b are shown positioned adjacent to one another such that the receiving recess 66a, 66b forms the enclosed cavity. The interior surface of receiving recess 66a, 66b may each define one or more engaging teeth or projections 70a, 70b which extend longitudinally therethrough such that the engaging teeth or projections defined along engaging portions 60a, 60b are received in a complementary manner where the engaging portions 60a, 60b becomes rotationally coupled to one or both ratchet wheels 44a, 44b via engagement with the interior of receiving recess 66a, 66b. Because of the longitudinal direction which the engaging teeth along engaging portions 60a, 60b and the engaging teeth 70a, 70b along the interior surface of receiving recess 66a, 66b are positioned, selector 48 may remain slidingly translatable along its longitudinal axis, as indicated by the arrow, to translate freely within receiving recess 66a, 66b while remaining in rotational engagement with one or both ratchet wheels 44a, 44b.


When selector 48 is positioned in its neutral position as described above, first and second engaging portions 60a, 60b may be engaged to both first and second ratchet wheels 44a, 44b, as shown, to allow for simultaneous rotation of the wheels and tensioning of their respective suture lengths. However, upon actuation of selector 48 to its first position, as shown in the cross-sectional end view of FIG. 7B, selector 48 and engaging portions 60a, 60b may slide within receiving recess 66a, 66b such that second engaging portion 60b becomes disengaged from the teeth or projections along second receiving recess 66b and becomes engaged solely with first ratchet wheel 44a. In this manner, first ratchet wheel 44a may be actuated to selectively tension just the first length of suture. Actuating selector 48 to slide into its second position may likewise disengage first and second engaging portions 60a, 60b from first ratchet wheel 44a such that second ratchet wheel 44b becomes solely engaged for tensioning just the second length of suture. Selector 48 may be accordingly engaged and disengaged freely from either ratchet wheel to selectively tension one or both lengths of sutures during a procedure.


To facilitate the selective engagement of one or both ratchet wheels 44a, 44b, the exterior circumferential surface of retaining member 64 may remain in sliding contact 72 with the interior surface of receiving recess 66a, 66b to provide tactile feedback to the user. As selector 48 is moved between positions during a procedure, the retaining member 64 may slide over the interface between the ratchet wheels 44a, 44b and provide an indication, such as slight resistance or an audible click, to the user as to the relative movement and positioning of selector 48 relative to the ratchet wheels 44a, 44b.


In yet another variation, FIGS. 8A and 8B illustrate cross-sectional end views of a selector 80 mechanism which is configured to toggle between one of two positions. In the end view of FIG. 8A, selector 80 may be toggled in a first position where engaging portion 82 located along the selector shaft is engaged to both first and second ratchet wheels 44a, 44b such that both wheels are coupled and actuation of knobs 42a, 42b simultaneously tensions (or loosens) each respective suture length. When selector 80 is toggled into its second position, as illustrated in FIG. 8B, ratchet wheels 44a, 44b may be uncoupled from one another to allow for individual suture tensioning as described above. In this example, a portion of selector 80 may define a keyed length 84 such that selector 80 is capable of being toggled in only one or two positions. Other variations for limiting selector position may, of course, be utilized with the tensioning mechanisms described above.


Aside from independently tensioning suture lengths after one or more bone anchors have been deployed in the bone, additional mechanisms may be optionally utilized to facilitate the passage and loading of multiple suture lengths into or through the one or more bone anchors prior to anchor deployment. One embodiment is illustrated in the perspective assembly view of FIG. 9A which shows an exemplary bone anchor insertion device 30, as previously described, having a suture loader mechanism 90 (described in further detail below) into which outer tube 91 having bone anchor 31 may be introduced. Additionally, in certain embodiments bone anchor insertion device 30 may comprise a suture tensioning mechanism 40 according to the embodiments described herein. FIG. 9B shows a detail perspective view of suture loader 90 and outer tube 91 with bone anchor 31 inserted within loader 90.


Generally, suture loader 90 may define a tube receiving channel 89 into which outer tube 91 may be slidably and removably positioned. With bone anchor 31 positioned distally of outer tube 91, one or more suture snares 96a, 96b (also described in further detail below) may be passed through the anchor 31 and through suture traps 93a, 93b having apertures 88a, 88b. Appropriate suture lengths may be passed through the one or more suture snares 96a, 96b which may be positioned within corresponding apertures 88a, 88b of traps 93a, 93b defined through loader 90. With the suture lengths positioned through apertures 98a, 98b of snares 96a, 96b, they may be secured by snares 96a, 96b and passed through anchor 31 via loader 90.


Now referring to FIGS. 10A to 10C, detail side views of suture loader 90 are illustrated showing examples of snaring mechanism and securing mechanism. As aforementioned, the suture loader 90 mechanism may be utilized with any of the bone anchoring instruments described herein for facilitating the loading of suture lengths through the one or more bone anchors and is not intended to be limiting. Suture loader 90 may be removably disposed at a distal end of outer tube 91 of a bone anchoring insertion instrument. Suture loader 90 may include suture guide 92 disposed at a distal end of loader 90 and in proximity to a bone anchor 31 disposed at the distal end of outer tube 91. Suture loader 90 may also include suture traps 93a, 93b and suture retaining members (or shutters) 94a, 94b. Traps 93a, 93b include apertures 88a, 88b (see FIG. 9B) and are located proximally from guide 92 and radially spaced from outer tube 91 in proximity to suture trap shutters 94a, 94b. Shutters 94a, 94b are pivotable in a generally radial direction with respect to outer tube 91 and may be configured to enclose traps 93a, 93b or to provide for a radial opening for traps 93a, 93b. Shutters 94a, 94b may be characterized by grooves 95a, 95b to help guide movement of the shutters.


Suture snares 96a, 96b may be provided and are preloaded within outer tube 91 and routed through the bone anchor 31 such that a free portion of snares 96a, 96b is exposed. A proximal portion of snares 96a, 96b may be retained on the tensioning mechanism of the bone anchor insertion device 30. Snares 96a, 96b may include snare ends 97a, 97b. Snare ends 97a, 97b may be characterized by apertures 98a, 98b and a plurality of teeth 99 located within apertures 98a, 98b. In a pre-snaring configuration, snares 96a, 96b are directed out from the bone anchor 31 and inserted into guide 92. Snare ends 97a, 97b are positioned within apertures 88a, 88b of traps 93a, 93b, respectively, and shutters 94a, 94b are positioned in an open configuration. Once a surgeon has placed a stitched loop of suture into a portion of soft tissue desired to be affixed near a bone surface, the separate free ends of suture, or suture limbs, may be respectively threaded into snare ends 97a, 97b and the shutters 94a, 94b may be pivoted to a closed configuration, thereby securing suture within snares 96a, 96b. In this configuration, the separate free ends of suture and the corresponding snare ends 97a, 97b are also secured with traps 93a, 93b such that the free ends do not drop out of position both within apertures 98a, 98b of snare ends 97a, 97b and with respect to the insertion instrument itself.


With the free ends of the suture and snare ends 97a, 97b secured in traps 93a, 93b, snares 96a, 96b may be withdrawn through the bone anchor 31 and into outer tube 91 by actuating the tensioning mechanism. As snare ends 97a, 97b and the free ends of the suture are drawn through traps 93a, 93b and shutters 94a, 94b, apertures 98a, 98b are compressed between the outer walls of traps 93a, 93b such that the plurality of teeth 99 on both snare ends 97a, 97b are compressed or bite into the corresponding free ends of suture. With the free ends of suture retained within snare ends 97a, 97b, snares 96a, 96b are drawn through suture loader 90 and into the bone anchor 31 and outer tube 91. Specifically, as the tensioning mechanism is actuated, snares 96a, 96b are routed through suture guide 92 and through the bone anchor and then into outer tube 91. Once snares 96a, 96b and the free ends of suture have been substantially withdrawn through the bone anchor 31 and into outer tube 91 to create a pre-tensioning configuration, suture loader 90 may be removed from outer tube 91. The separate free ends of suture are thereby engaged by the tensioning mechanism of the bone anchoring insertion instrument and may be independently tensioned as desired and described above.



FIGS. 11A and 11B show respective side views of suture loader 90 illustrating details such as the suture guide 92 passage disposed distally from channel 89, as well as respective apertures 88a, 88b and corresponding shutters 94a, 94b spaced radially from channel 89. Referring now to FIGS. 11C and 11D, in certain embodiments the suture loader mechanism may be disposed at a more proximal location with respect to outer tube 291 of a bone anchoring insertion instrument 200. In these embodiments, suture loader 290 may include suture guide 292, suture traps 293a, 293b and suture retaining members 294a, 294b. Traps 293a, 293b include apertures 288a, 288b and are located adjacent to handle 210 in proximity to retaining members 294a, 294b. Retaining members 294a, 294b are slidable in a generally axially direction with respect to outer tube 291 and may be configured to enclose traps 293a, 293b or alternatively to provide for an opening through traps 293a, 293b and access to apertures 298a, 298b. Suture snares 296a, 296b may be provided and are preloaded within bone anchoring instrument 200 and routed through outer tube 291 and bone anchor 231 such that snare ends 297a, 297b are housed within suture traps 293a, 293b, respectively. Snare ends 297a, 297b may be characterized by snare apertures 298a, 298b and a plurality of teeth 299 located within apertures 298a, 298b.


The separate free ends from a stitched loop of suture may be respectively threaded into snare ends 297a, 297b and suture retaining members 294a, 294b may be slid to a closed configuration, thereby securing the suture free ends within snares 296a, 296b. Snares 296a, 296b may then be withdrawn into outer tube 291 through guide 292 such that apertures 298a, 298b are compressed, thereby resulting in the plurality of teeth on snare ends 297a, 297b compressing or biting into the corresponding free end of suture. With the free ends of suture secured within snare ends 297a, 297b, snare ends 297a, 297b are pulled in a generally distal direction through outer tube 291 and through bone anchor 231 by actuation of the tensioning mechanism, where snare ends 297a, 297b and the corresponding free ends of suture are routed through bone anchor 231 and then turned to be pulled back through outer tube 291 in a generally proximal direction toward handle 210. The free ends of suture ultimately engage the tensioning mechanism of the bone anchoring instrument and may then be independently tensioned as desired and as described above.


Referring now to FIGS. 12A and 12B, one embodiment of a snare end is shown. In certain embodiments, snare end 100 may include body 102 which defines a proximal loop 104 and which form arms 108a, 108b which extend distally to form aperture 109 as a closed loop. One or both arms 108a, 108b may further define suture securement members or projections, e.g., a plurality of teeth 106, which extend towards one another in apposition along opposing arms 108a, 108b and which are configured to interdigitate or close upon one another when snare end 100 is collapsed or urged into its low profile or closed configuration for snaring or securing a suture length. In certain embodiments, a length of material such as a polyester strand may be threaded through loop 104 and drawn through the bone anchor and attached to the tensioning mechanism.


Now referring to FIG. 12B, after a strand of suture 101 is threaded through aperture 109, which is positioned within aperture 98a and/or 98b of suture loader 90 as described above, snare end 100 is compressed such that arms 108a, 108b are pushed toward one another, thereby closing aperture 109 and causing the plurality of teeth 106 to engage the strand of suture 101. In certain embodiments, the compression of snare end 100 takes place as snare end 100 is withdrawn through a suture loader 90, as described above. The plurality of teeth 106 of suture end 100 compress or bite into the strand of suture 101, resulting in a resistance to the strand of suture 101 pulling out of aperture 109 when placed under tensile load.


Referring now to FIGS. 13 and 14, an additional embodiment of a snare end is shown. Snare end 110 may include body 112, slit 114, and plurality of teeth 116. Arms 118a, 118b are formed on either side of slit 114. In certain embodiments, body 112 is also part of a length of material included with the larger snare which is routed through the bone anchor and attached to the tensioning mechanism. Snare end 110 is preferably fabricated from stainless steel by laser cutting, but may be fabricated from many different materials (e.g., carbon steel or beryllium copper) and by various methods (e.g., photochemical etching, stamping or wire EDM). Referring now to FIG. 14, snare end 110 has been configured to accept a strand of suture where arms 118a, 118b have been deflected to create aperture 120, which is capable of receiving a strand of suture. In this variation, arms 118a, 118b may be urged or formed to configure into an expanded profile by bending or curving out-of-plane in opposing directions relative to a proximal end of body 112. After a strand of suture is threaded through aperture 120, snare end 110 is reformed to the configuration shown in FIG. 13 such that the strand of suture is captured by plurality of teeth 116 in a shearing type action. In certain embodiments, the reformation of snare end 110 takes place as snare end 110 is withdrawn through a suture loader, as described above. The plurality of teeth 116 of suture end 110 compress or bite into the strand of suture, resulting in a resistance to the strand of suture pulling out of aperture 120 when placed under tensile load.


Generally, the suture snares described herein may be utilized in conjunction with any of the suture loader embodiments described above. Alternatively, in certain embodiments the suture snares 100 or 110 described above may be used independently of a suture loader. In these embodiments, the suture snare is preferably drawn through the bone anchor disposed at the distal end of the bone anchoring instrument, such that the bone anchor compresses the suture snare with a free end of suture disposed therein thereby closing the aperture of the suture snare and causing the plurality of teeth to engage or bite into the free end of suture.


While preferred embodiments of this invention have been shown and described, modifications thereof can be made by one skilled in the art without departing from the scope or teaching herein. The embodiments described herein are exemplary only and are not limiting. Because many varying and different embodiments may be made within the scope of the present teachings, including equivalent structures or materials hereafter thought of, and because many modifications may be made in the embodiments herein detailed in accordance with the descriptive requirements of the law, it is to be understood that the details herein are to be interpreted as illustrative and not in a limiting sense.

Claims
  • 1. A bone anchor insertion system, comprising: a handle;a tube member connected to the handle;at least one bone anchor removably connected to the tube member;a suture tensioning mechanism comprising: a first and second tensioning actuator; anda selector for selectively coupling or decouple the first and second tensioning actuators;a suture loader disposed in proximity to the tube member, the suture loader having a guide section, at least one suture loader aperture, and at least one loader retaining member; anda first suture snare coupled to the suture tensioning mechanism, the first suture snare having a first snare aperture for receiving a first suture free end, wherein at least a portion of the first suture snare aperture is disposed in the suture loader aperture;wherein the suture loader comprises a housing that defines a sequential pathway through which the first suture snare may draw the first suture free end from the suture loader aperture, the sequential pathway routing first to the guide section and then through the bone anchor before entering the tube member.
  • 2. The system of claim 1 further comprising a second suture snare, the second suture snare having a second snare aperture for receiving a second suture free end and wherein the second suture snare is coupled to the suture tensioning mechanism.
  • 3. The system of claim 2 wherein the first suture snare is coupled to the first tensioning actuator and the second suture snare is coupled to the second tensioning actuator.
  • 4. The system of claim 1 further comprising a second bone anchor removably connected to the tube member and in proximity to the at least one bone anchor.
  • 5. The system of claim 1 wherein the suture retaining member has a closed configuration that secures the suture free end within the first snare aperture.
  • 6. The system of claim 5 further comprising a channel defined in the housing through which the tube member is positionable.
  • 7. The system of claim 1 wherein the suture guide section defines a curved pathway through the suture loader.
  • 8. The system of claim 1 wherein the at least one suture retaining member is reconfigurable between an open configuration where the loader aperture is exposed and a closed configuration where the loader aperture is covered.
  • 9. The system of claim 8 wherein the at least one suture retaining member is pivotable between its open and closed configurations.
  • 10. The system of claim 1 wherein the first suture snare comprises a closed loop which is configurable between an open configuration and a closed configuration, wherein the first snare aperture is defined by the closed loop in its open configuration.
  • 11. The system of claim 1 wherein the first suture snare is configurable into its closed configuration when proximally withdrawn through the suture guide.
  • 12. The system of claim 1 wherein the suture loader is detachably disposed on a distal end of the tube member.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 12/487,389 filed Jun. 18, 2009 now U.S. Pat. No. 8,105,343, which claims the benefit of U.S. Provisional Application No. 61/076,795 filed Jun. 30, 2008, and entitled “Independent Suture Tensioning and Snaring Apparatus”, the entirety of both which are incorporated herein by reference in their entirety.

US Referenced Citations (356)
Number Name Date Kind
918570 Mather Apr 1909 A
919138 Drake et al. Apr 1909 A
1153053 Forster Sep 1915 A
1565041 Arneu Dec 1925 A
2269963 Wrapler Jan 1942 A
2286578 Sauter Jun 1942 A
2600395 Domoj et al. Jun 1952 A
3143916 Rice Aug 1964 A
3946740 Bassett Mar 1976 A
3994521 Van Gompel Nov 1976 A
4047533 Perciaccante et al. Sep 1977 A
4109658 Hughes Aug 1978 A
4164225 Johnson et al. Aug 1979 A
4186921 Fox Feb 1980 A
4301551 Dore et al. Nov 1981 A
4319428 Fox Mar 1982 A
4345601 Fukuda Aug 1982 A
4373530 Kilejian Feb 1983 A
4384389 Sato May 1983 A
4409974 Freedland Oct 1983 A
4456270 Zettl et al. Jun 1984 A
4467478 Jurgutis Aug 1984 A
4483023 Hoffman, Jr. et al. Nov 1984 A
4493323 Albright et al. Jan 1985 A
4590928 Hunt et al. May 1986 A
4597776 Ullman et al. Jul 1986 A
4605414 Czajka Aug 1986 A
4621640 Mulhollan et al. Nov 1986 A
4635637 Schreiber Jan 1987 A
4657461 Smith Apr 1987 A
4672957 Hourahane Jun 1987 A
4712542 Daniel et al. Dec 1987 A
4721103 Freedland Jan 1988 A
4731084 Dunn et al. Mar 1988 A
4738255 Goble et al. Apr 1988 A
4741330 Hayhurst May 1988 A
4772286 Goble et al. Sep 1988 A
4779616 Johnson Oct 1988 A
4781182 Purnell et al. Nov 1988 A
4792336 Hlavacek et al. Dec 1988 A
4809408 Abrahamson Mar 1989 A
4823780 Odensten et al. Apr 1989 A
4828439 Giannuzzi May 1989 A
4834755 Silvestrini et al. May 1989 A
4836205 Barrett Jun 1989 A
4917700 Aikins Apr 1990 A
4923461 Caspari May 1990 A
4926860 Stice et al. May 1990 A
4935027 Yoon Jun 1990 A
4946377 Kovach Aug 1990 A
4946467 Ohi et al. Aug 1990 A
4946468 Li Aug 1990 A
4957498 Caspari Sep 1990 A
4962929 Melton, Jr. Oct 1990 A
4981149 Yoon et al. Jan 1991 A
4987665 Dumican et al. Jan 1991 A
5002550 Li Mar 1991 A
5019093 Kaplan et al. May 1991 A
5037422 Hayhurst Aug 1991 A
5046513 Gatturna Sep 1991 A
5059201 Asnis Oct 1991 A
5062344 Gerker Nov 1991 A
5085661 Moss Feb 1992 A
5147166 Harker Sep 1992 A
5195542 Gazielly et al. Mar 1993 A
5203787 Noblitt et al. Apr 1993 A
RE34293 Goble et al. Jun 1993 E
5217495 Kaplan et al. Jun 1993 A
5222977 Esser Jun 1993 A
5224946 Hayhurst Jul 1993 A
5259846 Granger et al. Nov 1993 A
5263984 Li Nov 1993 A
5275176 Chandler Jan 1994 A
5304184 Hathaway et al. Apr 1994 A
5312422 Trott May 1994 A
5318575 Chesterfield et al. Jun 1994 A
5324308 Pierce Jun 1994 A
5326205 Anspach, Jr. et al. Jul 1994 A
5330442 Green Jul 1994 A
5330468 Burkhart Jul 1994 A
5330488 Goldrath Jul 1994 A
5336240 Metzler Aug 1994 A
5354298 Lee et al. Oct 1994 A
5364407 Poll Nov 1994 A
5376118 Kaplan et al. Dec 1994 A
5383905 Golds et al. Jan 1995 A
5397325 Della Badia et al. Mar 1995 A
5405352 Weston Apr 1995 A
5405359 Pierce Apr 1995 A
5409494 Morgan Apr 1995 A
5417691 Hayhurst May 1995 A
5417699 Klein et al. May 1995 A
5417712 Whitaker et al. May 1995 A
5431666 Sauer et al. Jul 1995 A
5441508 Gazielly et al. Aug 1995 A
5445167 Yoon et al. Aug 1995 A
5450860 O'Connor Sep 1995 A
5454823 Richardson et al. Oct 1995 A
5464427 Curtis et al. Nov 1995 A
5470335 DuToit Nov 1995 A
5472452 Trott Dec 1995 A
5474565 Trott Dec 1995 A
5480403 Lee et al. Jan 1996 A
5486197 Le et al. Jan 1996 A
5499991 Garman et al. Mar 1996 A
5501683 Trott Mar 1996 A
5501695 Anspach, Jr. et al. Mar 1996 A
5505735 Li Apr 1996 A
5514159 Matula et al. May 1996 A
5520700 Beyar et al. May 1996 A
5522820 Caspari et al. Jun 1996 A
5527322 Klein et al. Jun 1996 A
5527343 Bonutti Jun 1996 A
5531792 Huene Jul 1996 A
5534012 Bonutti Jul 1996 A
5540703 Barker, Jr. et al. Jul 1996 A
5545180 Le et al. Aug 1996 A
5549617 Green et al. Aug 1996 A
5549630 Bonutti Aug 1996 A
5553360 Lucas et al. Sep 1996 A
5562689 Green et al. Oct 1996 A
5569305 Bonutti Oct 1996 A
5569306 Thal Oct 1996 A
5571104 Li Nov 1996 A
5571120 Yoon Nov 1996 A
5573540 Yoon Nov 1996 A
5573542 Stevens Nov 1996 A
5573548 Nazre et al. Nov 1996 A
5575801 Habermeyer et al. Nov 1996 A
5584835 Greenfield Dec 1996 A
5584839 Gieringer Dec 1996 A
5584862 Bonutti Dec 1996 A
5591207 Coleman Jan 1997 A
5593189 Little Jan 1997 A
5601558 Torrie et al. Feb 1997 A
5609597 Lehrer Mar 1997 A
5611801 Songer Mar 1997 A
5613974 Andreas et al. Mar 1997 A
5618290 Toy et al. Apr 1997 A
5618314 Harwin et al. Apr 1997 A
5626614 Hart May 1997 A
5630824 Hart May 1997 A
5632748 Beck, Jr. et al. May 1997 A
5645552 Sherts Jul 1997 A
5645589 Li Jul 1997 A
5647874 Hayhurst Jul 1997 A
5649940 Hart et al. Jul 1997 A
5658313 Thal Aug 1997 A
5665108 Galindo Sep 1997 A
5665110 Chervitz et al. Sep 1997 A
5665112 Thal Sep 1997 A
5667528 Colligan Sep 1997 A
D385352 Bales et al. Oct 1997 S
5681333 Burkhart et al. Oct 1997 A
5681351 Jamiolkowski et al. Oct 1997 A
5683417 Cooper Nov 1997 A
5683418 Luscombe et al. Nov 1997 A
5683419 Thal Nov 1997 A
5690649 Li Nov 1997 A
5693060 Martin Dec 1997 A
5697950 Fucci et al. Dec 1997 A
5702397 Goble et al. Dec 1997 A
5702398 Tarabishy Dec 1997 A
5707362 Yoon Jan 1998 A
5707394 Miller et al. Jan 1998 A
5709708 Thal Jan 1998 A
5720765 Thal Feb 1998 A
5725541 Anspach, III et al. Mar 1998 A
5728136 Thal Mar 1998 A
5733307 Dinsdale Mar 1998 A
5741281 Martin Apr 1998 A
5741282 Anspach, III et al. Apr 1998 A
5766250 Chervitz et al. Jun 1998 A
5776150 Nolan et al. Jul 1998 A
5779719 Klein et al. Jul 1998 A
5782863 Bartlett Jul 1998 A
5782864 Lizardi Jul 1998 A
5782865 Grotz Jul 1998 A
5791899 Sachdeva Aug 1998 A
5792152 Klein et al. Aug 1998 A
5792153 Swain et al. Aug 1998 A
5797927 Yoon Aug 1998 A
5797963 McDevitt Aug 1998 A
5810848 Hayhurst Sep 1998 A
5810854 Beach Sep 1998 A
5814052 Nakao et al. Sep 1998 A
5814056 Prosst et al. Sep 1998 A
5814071 McDevitt et al. Sep 1998 A
5814072 Bonutti Sep 1998 A
5843111 Vijfvinkel Dec 1998 A
5849004 Bramlet Dec 1998 A
5860978 McDevitt Jan 1999 A
5860991 Klein et al. Jan 1999 A
5860992 Daniel et al. Jan 1999 A
5868789 Heubner Feb 1999 A
5879372 Bartlett Mar 1999 A
5882340 Yoon Mar 1999 A
5885294 Pedlick et al. Mar 1999 A
5891168 Thal Apr 1999 A
5893850 Cachia Apr 1999 A
5902311 Andreas et al. May 1999 A
5904692 Steckel et al. May 1999 A
5911721 Nicholson et al. Jun 1999 A
5921994 Andreas et al. Jul 1999 A
5935129 McDevitt et al. Aug 1999 A
5941900 Bonutti Aug 1999 A
5941901 Egan Aug 1999 A
5944724 Lizardi Aug 1999 A
5947982 Duran Sep 1999 A
5948000 Larsen et al. Sep 1999 A
5948001 Larsen Sep 1999 A
5948002 Bonutti Sep 1999 A
5957953 DiPoto et al. Sep 1999 A
5957968 Belden et al. Sep 1999 A
5961530 Moore et al. Oct 1999 A
5961538 Pedlick et al. Oct 1999 A
5968044 Nicholson et al. Oct 1999 A
5980558 Wiley Nov 1999 A
5980559 Bonutti Nov 1999 A
5984933 Yoon Nov 1999 A
5993459 Larsen Nov 1999 A
6001104 Benderev et al. Dec 1999 A
6001109 Kontos Dec 1999 A
6007566 Wenstrom Dec 1999 A
6007567 Bonutti Dec 1999 A
6010525 Bonutti et al. Jan 2000 A
6013083 Bennett Jan 2000 A
6017346 Grotz Jan 2000 A
6022360 Reimels et al. Feb 2000 A
6022373 Li Feb 2000 A
6024758 Thal Feb 2000 A
6033430 Bonutti Mar 2000 A
6036699 Andreas et al. Mar 2000 A
6045571 Hill et al. Apr 2000 A
6045572 Johnson et al. Apr 2000 A
6045574 Thal Apr 2000 A
6048351 Gordon et al. Apr 2000 A
6051006 Shluzas et al. Apr 2000 A
6053935 Brenneman et al. Apr 2000 A
6056773 Bonutti May 2000 A
6066146 Carroll et al. May 2000 A
6068648 Cole et al. May 2000 A
6083243 Pokropinski et al. Jul 2000 A
6086608 Ek et al. Jul 2000 A
6096051 Kortenbach et al. Aug 2000 A
6102934 Li Aug 2000 A
6117160 Bonutti Sep 2000 A
6117161 Li et al. Sep 2000 A
6143004 Davis et al. Nov 2000 A
6146386 Blackman Nov 2000 A
6146406 Shluzas et al. Nov 2000 A
6149669 Li Nov 2000 A
6156039 Thal Dec 2000 A
6156056 Kearns et al. Dec 2000 A
6159235 Kim Dec 2000 A
6162537 Martin et al. Dec 2000 A
6165204 Levinson et al. Dec 2000 A
6171317 Jackson et al. Jan 2001 B1
6174324 Egan et al. Jan 2001 B1
6200329 Fung et al. Mar 2001 B1
6206895 Levinson Mar 2001 B1
6214028 Yoon et al. Apr 2001 B1
6217592 Freda et al. Apr 2001 B1
6228096 Marchand May 2001 B1
6241736 Sater Jun 2001 B1
6267766 Burkhart Jul 2001 B1
6280474 Cassidy et al. Aug 2001 B1
6293961 Schwartz Sep 2001 B2
6315781 Reinhardt Nov 2001 B1
6319252 McDevitt et al. Nov 2001 B1
6319269 Li Nov 2001 B1
6319271 Schwartz Nov 2001 B1
6328758 Tornier et al. Dec 2001 B1
6355053 Li Mar 2002 B1
6409743 Fenton Jun 2002 B1
6436109 Kontes Aug 2002 B1
6451030 Li et al. Sep 2002 B2
6464713 Bonutti Oct 2002 B2
6471715 Weiss Oct 2002 B1
6475230 Bonutti et al. Nov 2002 B1
6517542 Papay et al. Feb 2003 B1
6520980 Foerster Feb 2003 B1
6524317 Ritchart et al. Feb 2003 B1
6527794 McDevitt et al. Mar 2003 B1
6533796 Sauer et al. Mar 2003 B1
6540770 Tornier et al. Apr 2003 B1
6551330 Bain et al. Apr 2003 B1
6569187 Bonutti et al. May 2003 B1
6575987 Gellman et al. Jun 2003 B2
6582453 Tran et al. Jun 2003 B1
6585730 Foerster Jul 2003 B1
6635073 Bonutti Oct 2003 B2
6638279 Bonutti Oct 2003 B2
6645227 Fallin et al. Nov 2003 B2
6652561 Tran Nov 2003 B1
6656183 Colleran et al. Dec 2003 B2
6660008 Foerster et al. Dec 2003 B1
6660023 McDevitt et al. Dec 2003 B2
6679896 Gellman et al. Jan 2004 B2
6682549 Bartlett Jan 2004 B2
6689154 Bartlett Feb 2004 B2
6692516 West et al. Feb 2004 B2
6712830 Esplin Mar 2004 B2
6716234 Grafton et al. Apr 2004 B2
6736829 Li et al. May 2004 B1
6770076 Foerster Aug 2004 B2
6780198 Gregoire et al. Aug 2004 B1
6855157 Foerster et al. Feb 2005 B2
6860887 Frankie Mar 2005 B1
6972027 Fallin et al. Dec 2005 B2
7029482 Vargas et al. Apr 2006 B1
7029490 Grafton Apr 2006 B2
7083638 Foerster Aug 2006 B2
7087064 Hyde Aug 2006 B1
7090690 Foerster et al. Aug 2006 B2
7144415 Del Rio et al. Dec 2006 B2
7150750 Damarati Dec 2006 B2
7153312 Torrie et al. Dec 2006 B1
7320701 Haut et al. Jan 2008 B2
7329272 Burkhart et al. Feb 2008 B2
7410489 Dakin et al. Aug 2008 B2
7527590 Suzuki et al. May 2009 B2
7588587 Barbieri et al. Sep 2009 B2
7615061 White et al. Nov 2009 B2
7806909 Fallin et al. Oct 2010 B2
7867251 Colleran et al. Jan 2011 B2
7963972 Foerster et al. Jun 2011 B2
7981140 Burkhart Jul 2011 B2
8105355 Page et al. Jan 2012 B2
8133258 Foerster et al. Mar 2012 B2
8317829 Foerster et al. Nov 2012 B2
20030167062 Gambale Sep 2003 A1
20040138683 Shelton et al. Jul 2004 A1
20040153074 Bojarski et al. Aug 2004 A1
20050033364 Gregoire et al. Feb 2005 A1
20050090827 Gedebou Apr 2005 A1
20050131430 Ravikumar Jun 2005 A1
20050277986 Foerster et al. Dec 2005 A1
20050288710 Fallin et al. Dec 2005 A1
20060079904 Thal Apr 2006 A1
20060161159 Dreyfuss et al. Jul 2006 A1
20060161183 Sauer Jul 2006 A1
20060271060 Gordon Nov 2006 A1
20060271105 Foerster Nov 2006 A1
20060293710 Foerster Dec 2006 A1
20070055379 Stone et al. Mar 2007 A1
20070142838 Jordan Jun 2007 A1
20070203508 White et al. Aug 2007 A1
20080051836 Foerster et al. Feb 2008 A1
20080154286 Abbott et al. Jun 2008 A1
20090048613 Surti Feb 2009 A1
20090069823 Foerster et al. Mar 2009 A1
20090326562 White et al. Dec 2009 A1
20090326563 White et al. Dec 2009 A1
20090326564 White et al. Dec 2009 A1
20110028997 Gregoire et al. Feb 2011 A1
Foreign Referenced Citations (25)
Number Date Country
025 32 242 Feb 1977 DE
042 35 602 Apr 1994 DE
196 28 909 Jan 1998 DE
0 535 906 Apr 1993 EP
0 571 686 Dec 1993 EP
1 072 234 Jan 2001 EP
1 072 237 Jan 2001 EP
1987779 Nov 2008 EP
2452825 Mar 2009 GB
2286468 Nov 1990 JP
9106247 May 1991 WO
9506439 Mar 1995 WO
9525469 Sep 1995 WO
9617544 Jun 1996 WO
9807374 Feb 1998 WO
9922648 May 1999 WO
9953844 Oct 1999 WO
0221997 Mar 2002 WO
03020137 Mar 2003 WO
03049620 Jun 2003 WO
03090627 Nov 2003 WO
2004082724 Sep 2004 WO
2008022250 Feb 2008 WO
2009032695 Mar 2009 WO
2009114811 Sep 2009 WO
Non-Patent Literature Citations (9)
Entry
PCT International Search Report for PCT/US02/38632 2pgs, Mailed May 16, 2003.
PCT International Preliminary Examination Report for PCT/US02/38632 3pgs, Jul. 23, 2004.
PCT Search Report and Written Opinion for PCT/US06/20657 7pgs, Mailed Oct. 2, 2007.
European Search Report for EP02791363 4pgs, Mailed Mar. 5, 2007.
UK Search Report for GB 0816111.9 3pgs, Dec. 16, 2008.
UK Search Report for GB 0911011.5 4pgs, Oct. 27, 2009.
UK Search Report for GB 0911013.1 4pgs, Oct. 27, 2009.
UK Search and Examination Report for GB 0911011.5 2pgs, May 28, 2012.
DE Examination Report for DE 102008046561.5 11 pgs, Nov. 16, 2012.
Related Publications (1)
Number Date Country
20120095507 A1 Apr 2012 US
Provisional Applications (1)
Number Date Country
61076795 Jun 2008 US
Divisions (1)
Number Date Country
Parent 12487389 Jun 2009 US
Child 13334649 US