Various knitting machines have been proposed that can automate one or more steps in knitting a fabric or other knitted component. For instance, flat knitting machines can include a bed of knitting needles, a carriage, and a feeder. The carriage can move the feeder relative to the needles as the feeder feeds yarn or other strands toward the needles. The needles can, in turn, knit or otherwise form the knitted component from the strands. These actions can repeat until the knitted component is fully formed.
Various components can be produced from such knitted components. For instance, an upper for an article of footwear can be made from the knitted component.
A knitting machine configured for knitting a knit component having a first portion and a second portion is disclosed. The knitting machine includes a knitting bed with a plurality of knitting needles that are arranged along a longitudinal direction. The knitting bed defines a first knitting area and a second knitting area that are spaced apart in the longitudinal direction. The first knitting area is configured to form the first portion of the knit component, and the second knitting area is configured to form the second portion of the knit component. The knitting machine also includes a feeder assembly that feeds a strand toward the knitting bed to be incorporated into the knit component. Moreover, the knitting machine includes a take-down assembly that includes a first take-down roller and a second take-down roller. The first take-down roller is configured to rotatably contact and apply tension to the first portion of the knit component. The second take-down roller is configured to rotatably contact and apply tension to the second portion of the knit component. The knitting machine further includes a first actuator that is operably coupled to the first take-down roller, and the first actuator is operable to actuate to selectively adjust tension applied by the first take-down roller on the first portion of the knit component. Furthermore, the knitting machine includes a second actuator that is operably coupled to the second take-down roller. The second actuator is operable to actuate to selectively adjust tension applied by the second take-down roller on the second portion of the knit component. Additionally, the knitting machine includes a controller that is operably coupled to the first actuator and the second actuator to selectively and independently control actuation of the first actuator and the second actuator.
Moreover, a method of manufacturing a knit component with a knitting machine is disclosed. The knitting machine defines a first knitting area and a second knitting area that are spaced apart in a longitudinal direction. The first knitting area is configured to form a first portion of the knit component, and the second knitting area is configured to form a second portion of the knit component. The method includes feeding at least one strand toward a knitting bed of the knitting machine to be incorporated into the knit component. The method includes rotating a first take-down roller configured to contact the first portion of the knit component to apply tension to the first portion. The method also includes actuating a first actuator that is operably coupled to the first take-down roller to selectively adjust tension applied by the first take-down roller on the first portion of the knit component. Additionally, the method includes rotating a second take-down roller configured to contact the second portion of the knit component to apply tension to the second portion. Furthermore, the method includes actuating a second actuator that is operably coupled to the second take-down roller to selectively adjust tension applied by the second take-down roller on the second portion of the knit component. Moreover, the method includes controlling actuation of the first actuator and the second actuator independently to independently vary tension applied by the first take-down roller on the first portion and applied by the second take-down roller on the second portion
Still further, a knitting machine that is configured to knit a knit component having a first portion and a second portion is disclosed. The knitting machine includes a knitting bed with a plurality of knitting needles that are arranged along a longitudinal direction. The knitting bed defines a first knitting area and a second knitting area that are spaced apart in the longitudinal direction. The first knitting area is configured to form the first portion of the knit component, and the second knitting area is configured to form the second portion of the knit component. Additionally, the knitting machine includes a feeder assembly that feeds a strand toward the knitting bed to be incorporated into the knit component. Furthermore, the knitting machine includes a take-down assembly. The take down assembly includes a first pair of rollers that are configured to receive the first portion therebetween, to rotatably contact the first portion, and to apply tension to the first portion. The take down assembly also includes a first biasing member that biases the first pair of rollers toward each other. Furthermore, the take down assembly includes a first actuator that is operably coupled to the first biasing member. The first actuator is operable to actuate to adjust a biasing load of the first biasing member to adjust tension applied by the first pair of rollers onto the first portion of the knit component. Moreover, the take down assembly includes a second pair of rollers that are configured to receive the second portion therebetween, to rotatably contact the second portion, and to apply tension to the second portion. Still further, the take down assembly includes a second biasing member that biases the second pair of rollers toward each other. A second actuator is also included that is operably coupled to the second biasing member, and the second actuator is operable to actuate to adjust a biasing load of the second biasing member to adjust tension applied by the second pair of rollers onto the second portion of the knit component. Moreover, the take down assembly includes a controller that is operably coupled to the first actuator and the second actuator to selectively and independently control actuation of the first actuator and the second actuator.
The advantages and features of novelty characterizing aspects of the present disclosure are pointed out with particularity in the appended claims. To gain an improved understanding of the advantages and features of novelty, however, reference may be made to the following descriptive matter and accompanying figures that describe and illustrate various configurations and concepts related to the present disclosure.
The foregoing Summary and the following Detailed Description will be better understood when read in conjunction with the accompanying figures.
The following discussion and accompanying figures disclose a variety of concepts relating to knitting machines, knitted components, and the manufacture of knitted components. Although the knitted components may be utilized in a variety of products, an article of footwear that incorporates one of the knitted components is disclosed below as an example. In addition to footwear, the knitted components may be utilized in other types of apparel (e.g., shirts, pants, socks, jackets, undergarments), athletic equipment (e.g., golf bags, baseball and football gloves, soccer ball restriction structures), containers (e.g., backpacks, bags), and upholstery for furniture (e.g., chairs, couches, car seats). The knitted components may also be utilized in bed coverings (e.g., sheets, blankets), table coverings, towels, flags, tents, sails, and parachutes. The knitted components may be utilized as technical textiles for industrial purposes, including structures for automotive and aerospace applications, filter materials, medical textiles (e.g. bandages, swabs, implants), geotextiles for reinforcing embankments, agrotextiles for crop protection, and industrial apparel that protects or insulates against heat and radiation. Accordingly, the knitted components and other concepts disclosed herein may be incorporated into a variety of products for both personal and industrial purposes.
Footwear Configuration
An article of footwear 100 is depicted in
For reference purposes, footwear 100 may be divided into three general regions: a forefoot region 101, a midfoot region 102, and a heel region 103. Forefoot region 101 generally includes portions of footwear 100 corresponding with the toes and the joints connecting the metatarsals with the phalanges. Midfoot region 102 generally includes portions of footwear 100 corresponding with an arch area of the foot. Heel region 103 generally corresponds with rear portions of the foot, including the calcaneus bone. Footwear 100 also includes a lateral side 104 and a medial side 105, which extend through each of regions 101-103 and correspond with opposite sides of footwear 100. More particularly, lateral side 104 corresponds with an outside area of the foot (i.e. the surface that faces away from the other foot), and medial side 105 corresponds with an inside area of the foot (i.e., the surface that faces toward the other foot). Regions 101-103 and sides 104-105 are not intended to demarcate precise areas of footwear 100. Rather, regions 101-103 and sides 104-105 are intended to represent general areas of footwear 100 to aid in the following discussion. In addition to footwear 100, regions 101-103 and sides 104-105 may also be applied to sole structure 110, upper 120, and individual elements thereof.
Sole structure 110 is secured to upper 120 and extends between the foot and the ground when footwear 100 is worn. The primary elements of sole structure 110 are a midsole 111, an outsole 112, and a sockliner 113. Midsole 111 is secured to a lower surface of upper 120 and may be formed from a compressible polymer foam element (e.g., a polyurethane or ethylvinylacetate foam) that attenuates ground reaction forces (i.e., provides cushioning) when compressed between the foot and the ground during walking, running, or other ambulatory activities. In further configurations, midsole 111 may incorporate plates, moderators, fluid-filled chambers, lasting elements, or motion control members that further attenuate forces, enhance stability, or influence the motions of the foot, or midsole 21 may be primarily formed from a fluid-filled chamber. Outsole 112 is secured to a lower surface of midsole 111 and may be formed from a wear-resistant rubber material that is textured to impart traction. Sockliner 113 is located within upper 120 and is positioned to extend under a lower surface of the foot to enhance the comfort of footwear 100. Although this configuration for sole structure 110 provides an example of a sole structure that may be used in connection with upper 120, a variety of other conventional or nonconventional configurations for sole structure 110 may also be utilized. Accordingly, the features of sole structure 110 or any sole structure utilized with upper 120 may vary considerably.
Upper 120 defines a void within footwear 100 for receiving and securing a foot relative to sole structure 110. The void is shaped to accommodate the foot and extends along a lateral side of the foot, along a medial side of the foot, over the foot, around the heel, and under the foot. Access to the void is provided by an ankle opening 121 located in at least heel region 103. A lace 122 extends through various lace apertures 123 in upper 120 and permits the wearer to modify dimensions of upper 120 to accommodate proportions of the foot. More particularly, lace 122 permits the wearer to tighten upper 120 around the foot, and lace 122 permits the wearer to loosen upper 120 to facilitate entry and removal of the foot from the void (i.e., through ankle opening 121). In addition, upper 120 includes a tongue 124 that extends under lace 122 and lace apertures 123 to enhance the comfort of footwear 100. In further configurations, upper 120 may include additional elements, such as (a) a heel counter in heel region 103 that enhances stability, (b) a toe guard in forefoot region 101 that is formed of a wear-resistant material, and (c) logos, trademarks, and placards with care instructions and material information.
Many conventional footwear uppers are formed from multiple material elements (e.g., textiles, polymer foam, polymer sheets, leather, synthetic leather) that are joined through stitching or bonding, for example. In contrast, a majority of upper 120 is formed from a knitted component 130, which extends through each of regions 101-103, along both lateral side 104 and medial side 105, over forefoot region 101, and around heel region 103. In addition, knitted component 130 forms portions of both an exterior surface and an opposite interior surface of upper 120. As such, knitted component 130 defines at least a portion of the void within upper 120. In some configurations, knitted component 130 may also extend under the foot. Referring to
Knitted Component Configuration
Knitted component 130 is depicted separate from a remainder of footwear 100 in
The primary elements of knitted component 130 are a knit element 131 and an inlaid strand 132. Knit element 131 is formed from at least one yarn that is manipulated (e.g., with a knitting machine) to form a plurality of intermeshed loops that define a variety of courses and wales. That is, knit element 131 has the structure of a knit textile. Inlaid strand 132 extends through knit element 131 and passes between the various loops within knit element 131. Although inlaid strand 132 generally extends along courses within knit element 131, inlaid strand 132 may also extend along wales within knit element 131. Advantages of inlaid strand 132 include providing support, stability, and structure. For example, inlaid strand 132 assists with securing upper 120 around the foot, limits deformation in areas of upper 120 (e.g., imparts stretch-resistance) and operates in connection with lace 122 to enhance the fit of footwear 100.
Knit element 131 has a generally U-shaped configuration that is outlined by a perimeter edge 133, a pair of heel edges 134, and an inner edge 135. When incorporated into footwear 100, perimeter edge 133 lays against the upper surface of midsole 111 and is joined to strobel sock 125. Heel edges 134 are joined to each other and extend vertically in heel region 103. In some configurations of footwear 100, a material element may cover a seam between heel edges 134 to reinforce the seam and enhance the aesthetic appeal of footwear 100. Inner edge 135 forms ankle opening 121 and extends forward to an area where lace 122, lace apertures 123, and tongue 124 are located. In addition, knit element 131 has a first surface 136 and an opposite second surface 137. First surface 136 forms a portion of the exterior surface of upper 120, whereas second surface 137 forms a portion of the interior surface of upper 120, thereby defining at least a portion of the void within upper 120.
Inlaid strand 132, as noted above, extends through knit element 131 and passes between the various loops within knit element 131. More particularly, inlaid strand 132 is located within the knit structure of knit element 131, which may have the configuration of a single textile layer in the area of inlaid strand 132, and between surfaces 136 and 137, as depicted in
Referring to
Although knit element 131 may be formed in a variety of ways, courses of the knit structure generally extend in the same direction as inlaid strands 132. That is, courses may extend in the direction extending between the throat area and the lower area. As such, a majority of inlaid strand 132 extends along the courses within knit element 131. In areas adjacent to lace apertures 123, however, inlaid strand 132 may also extend along wales within knit element 131. More particularly, sections of inlaid strand 132 that are parallel to inner edge 135 may extend along the wales.
As discussed above, inlaid strand 132 passes back and forth through knit element 131. Referring to
In comparison with knit element 131, inlaid strand 132 may exhibit greater stretch-resistance. That is, inlaid strand 132 may stretch less than knit element 131. Given that numerous sections of inlaid strand 132 extend from the throat area of upper 120 to the lower area of upper 120, inlaid strand 132 imparts stretch-resistance to the portion of upper 120 between the throat area and the lower area. Moreover, placing tension upon lace 122 may impart tension to inlaid strand 132, thereby inducing the portion of upper 120 between the throat area and the lower area to lay against the foot. As such, inlaid strand 132 operates in connection with lace 122 to enhance the fit of footwear 100.
Knit element 131 may incorporate various types of yarn that impart different properties to separate areas of upper 120. That is, one area of knit element 131 may be formed from a first type of yarn that imparts a first set of properties, and another area of knit element 131 may be formed from a second type of yarn that imparts a second set of properties. In this configuration, properties may vary throughout upper 120 by selecting specific yarns for different areas of knit element 131. The properties that a particular type of yarn will impart to an area of knit element 131 partially depend upon the materials that form the various filaments and fibers within the yarn. Cotton, for example, provides a soft hand, natural aesthetics, and biodegradability. Elastane and stretch polyester each provide substantial stretch and recovery, with stretch polyester also providing recyclability. Rayon provides high luster and moisture absorption. Wool also provides high moisture absorption, in addition to insulating properties and biodegradability. Nylon is a durable and abrasion-resistant material with relatively high strength. Polyester is a hydrophobic material that also provides relatively high durability. In addition to materials, other aspects of the yarns selected for knit element 131 may affect the properties of upper 120. For example, a yarn forming knit element 131 may be a monofilament yarn or a multifilament yarn. The yarn may also include separate filaments that are each formed of different materials. In addition, the yarn may include filaments that are each formed of two or more different materials, such as a bicomponent yarn with filaments having a sheath-core configuration or two halves formed of different materials. Different degrees of twist and crimping, as well as different deniers, may also affect the properties of upper 120. Accordingly, both the materials forming the yarn and other aspects of the yarn may be selected to impart a variety of properties to separate areas of upper 120.
As with the yarns forming knit element 131, the configuration of inlaid strand 132 may also vary significantly. In addition to yarn, inlaid strand 132 may have the configurations of a filament (e.g., a monofilament), thread, rope, webbing, cable, or chain, for example. In comparison with the yarns forming knit element 131, the thickness of inlaid strand 132 may be greater. In some configurations, inlaid strand 132 may have a significantly greater thickness than the yarns of knit element 131. Although the cross-sectional shape of inlaid strand 132 may be round, triangular, square, rectangular, elliptical, or irregular shapes may also be utilized. Moreover, the materials forming inlaid strand 132 may include any of the materials for the yarn within knit element 131, such as cotton, elastane, polyester, rayon, wool, and nylon. As noted above, inlaid strand 132 may exhibit greater stretch-resistance than knit element 131. As such, suitable materials for inlaid strands 132 may include a variety of engineering filaments that are utilized for high tensile strength applications, including glass, aramids (e.g., para-aramid and meta-aramid), ultra-high molecular weight polyethylene, and liquid crystal polymer. As another example, a braided polyester thread may also be utilized as inlaid strand 132.
An example of a suitable configuration for a portion of knitted component 130 is depicted in
Another example of a suitable configuration for a portion of knitted component 130 is depicted in
Continuing with the configuration of
The use of plated yarns may impart advantages to knitted component 130. When yarn 139 is heated and fused to yarn 138 and inlaid strand 132, this process may have the effect of stiffening or rigidifying the structure of knitted component 130. Moreover, joining (a) one portion of yarn 138 to another portion of yarn 138 or (b) yarn 138 and inlaid strand 132 to each other has the effect of securing or locking the relative positions of yarn 138 and inlaid strand 132, thereby imparting stretch-resistance and stiffness. That is, portions of yarn 138 may not slide relative to each other when fused with yarn 139, thereby preventing warping or permanent stretching of knit element 131 due to relative movement of the knit structure. Another benefit relates to limiting unraveling if a portion of knitted component 130 becomes damaged or one of yarns 138 is severed. Also, inlaid strand 132 may not slide relative to knit element 131, thereby preventing portions of inlaid strand 132 from pulling outward from knit element 131. Accordingly, areas of knitted component 130 may benefit from the use of both fusible and non-fusible yarns within knit element 131.
Another aspect of knitted component 130 relates to a padded area adjacent to ankle opening 121 and extending at least partially around ankle opening 121. Referring to
The presence of floating yarns 141 imparts a compressible aspect to the padded area adjacent to ankle opening 121, thereby enhancing the comfort of footwear 100 in the area of ankle opening 121. Many conventional articles of footwear incorporate polymer foam elements or other compressible materials into areas adjacent to an ankle opening. In contrast with the conventional articles of footwear, portions of knitted component 130 formed of unitary knit construction with a remainder of knitted component 130 may form the padded area adjacent to ankle opening 121. In further configurations of footwear 100, similar padded areas may be located in other areas of knitted component 130. For example, similar padded areas may be located as an area corresponding with joints between the metatarsals and proximal phalanges to impart padding to the joints. As an alternative, a terry loop structure may also be utilized to impart some degree of padding to areas of upper 120.
Based upon the above discussion, knitted component 130 imparts a variety of features to upper 120. Moreover, knitted component 130 provides a variety of advantages over some conventional upper configurations. As noted above, conventional footwear uppers are formed from multiple material elements (e.g., textiles, polymer foam, polymer sheets, leather, synthetic leather) that are joined through stitching or bonding, for example. As the number and type of material elements incorporated into an upper increases, the time and expense associated with transporting, stocking, cutting, and joining the material elements may also increase. Waste material from cutting and stitching processes also accumulates to a greater degree as the number and type of material elements incorporated into the upper increases. Moreover, uppers with a greater number of material elements may be more difficult to recycle than uppers formed from fewer types and numbers of material elements. By decreasing the number of material elements utilized in the upper, therefore, waste may be decreased while increasing the manufacturing efficiency and recyclability of the upper. To this end, knitted component 130 forms a substantial portion of upper 120, while increasing manufacturing efficiency, decreasing waste, and simplifying recyclability.
Knitting Machine And Feeder Configurations
Although knitting may be performed by hand, the commercial manufacture of knitted components is often performed by knitting machines. An example of a knitting machine 200 that is suitable for producing knitted component 130 is depicted in
Knitting machine 200 includes two needle beds 201 that are angled with respect to each other, thereby forming a V-bed. Each of needle beds 201 include a plurality of individual needles 202 that lay on a common plane. That is, needles 202 from one needle bed 201 lay on a first plane, and needles 202 from the other needle bed 201 lay on a second plane. The first plane and the second plane (i.e., the two needle beds 201) are angled relative to each other and meet to form an intersection that extends along a majority of a width of knitting machine 200. As described in greater detail below and shown in
A pair of rails 203 extend above and parallel to the intersection of needle beds 201 and provide attachment points for multiple first feeders 204 and combination feeders 220. Each rail 203 has two sides, each of which accommodates either one first feeder 204 or one combination feeder 220. As such, knitting machine 200 may include a total of four feeders 204 and 220. As depicted, the forward-most rail 203 includes one combination feeder 220 and one first feeder 204 on opposite sides, and the rearward-most rail 203 includes two first feeders 204 on opposite sides. Although two rails 203 are depicted, further configurations of knitting machine 200 may incorporate additional rails 203 to provide attachment points for more feeders 204 and 220.
The knitting machine 200 also includes carriage 205, which can move substantially parallel to the longitudinal axis of the rails 203, above the needle beds 201. The carriage 205 can include one or more drive bolts 219 (
The carriage 205 can include any number of drive bolts 219, and each drive bolt 219 can be positioned so as to selectively engage different ones of the feeders 204, 220. For instance,
Also, in relation to the combination feeder 220, the drive bolt 219 can supply a force, which causes the combination feeder 220 to move (e.g., downward) toward the needle bed 201. These operations will be discussed in more detail below.
As the feeders 204, 220 move along the rails 203, the feeders 204, 220 can supply yarns to needles 202. In
Moreover, the first feeders 204 can also supply a yarn to needle bed 201 that needles 202 manipulate to knit, tuck, and float. As a comparison, combination feeder 220 has the ability to supply a yarn (e.g., yarn 206) that needles 202 knit, tuck, and float, and combination feeder 220 has the ability to inlay the yarn. Moreover, combination feeder 220 has the ability to inlay a variety of different strands (e.g., filament, thread, rope, webbing, cable, chain, or yarn). The feeders 204, 220 can also incorporate one or more features of the feeders disclosed in U.S. patent application Ser. No. 13/048,527, entitled “Combination Feeder for a Knitting Machine,” which was filed on Mar. 15, 2011 and published as U.S. Patent Publication No. 2012-0234051 on Sep. 20, 2012, and which is incorporated by reference in its entirety.
The combination feeder 220 will now be discussed in greater detail. As shown in
Carrier 230 has a generally rectangular configuration and includes a first cover member 231 and a second cover member 232 that are joined by four bolts 233. Cover members 231 and 232 define an interior cavity in which portions of feeder arm 240 and actuation members 250 are located. Carrier 230 also includes an attachment element 234 that extends outward from first cover member 231 for securing feeder 220 to one of rails 203. Although the configuration of attachment element 234 may vary, attachment element 234 is depicted as including two spaced protruding areas that form a dovetail shape, as depicted in
Feeder arm 240 has a generally elongate configuration that extends through carrier 230 (i.e., the cavity between cover members 231, 232) and outward from a lower side of carrier 230.
As shown in
Moreover, in some embodiments, the feeder 220 can be provided with one or more features that are configured to assist with inlaying a yarn or other strand within a knitted component. These features can also assist in otherwise incorporating strands within a knitted component during knitting processes. For instance, as shown in
In the embodiments illustrated, the pushing member 215 includes a first projection 216 and a second projection 217, which project from opposite sides of the dispensing tip 246. Stated differently, the dispensing tip 246 can be disposed and defined between the first and second projections 216, 217. Also, an open-ended groove 223 (
As will be discussed, the feeder 220 can be supported on the rail 203 of the knitting machine 200 (
In some embodiments, projections 216, 217 can have a shape that is configured to further assist in pushing the knitted component for inlaying yarns or other strands and/or for otherwise facilitating the incorporation of strands within the knitted component. For instance, the projections 216, 217 may be tapered. The projections 216, 217 can taper so as to substantially match the profile of the dispensing area 245 (see
As shown in
The projections 216, 217 can be made from any suitable material. For instance, in some embodiments, the projections 216, 217 can be made from and/or include a metallic material, such as steel, titanium, aluminum, and the like. Also, in some embodiments, the projections 216, 217 can be made from a polymeric material. Moreover in some embodiments, the projections 216, 217 can be at least partially made from a ceramic material, such that the projections 216, 217 can have high strength and can have a low surface roughness. As such, the projections 216, 217 are unlikely to damage the yarn 206 and/or the knitted component 130 during use of the feeder 220.
In some embodiments, the projections 216, 217 can be integrally connected to the dispensing area 245 so as to be monolithic. For instance, the dispensing area 246 and projections 216, 217 can be formed together in a common mold or machined from a block of material. In additional embodiments, the projections 216, 217 can be removably attached to the dispensing area 245 of the feeder 220 via fasteners, adhesives, or other suitable ways.
Referring back to
In some configurations of actuation members 250, each arm 251 is formed as a one-piece (monolithic) element with one of the plates 252. The arms 251 and/or plates 252 can be made from a metal, nylon or from another suitable material.
The arms 251 can be located outside of carrier 230 and at an upper side of carrier 230, and the plates 252 can be located within carrier 250. Arms 251 are positioned to define a space 255 between both of inside ends 254. That is, arms 251 are spaced from each other longitudinally. Also, as shown in
The arms 251 can additionally include one or more features that assist in engaging and/or disengaging the drive bolts 219. The arms 251 can be shaped so as to facilitate engagement and/or disengagement of the drive bolts 219. Also, the arms 251 can include other features that reduce friction during disengagement. This can reduce the likelihood of the feeder 220 missing stitches or otherwise causing errors during the knitting process.
For instance, in the embodiments illustrated in
Referring to
The configuration of combination feeder 220 discussed above provides a structure that facilitates a translating movement of feeder arm 240. As discussed in greater detail below, the translating movement of feeder arm 240 selectively positions dispensing tip 246 at a location that is above or below the intersection of needle beds 201 (compare
In reciprocating through the intersection of needle beds 201, feeder arm 240 translates from a retracted position to an extended position. When in the retracted position, dispensing tip 246 is positioned above the intersection of needle beds 201 (
For purposes of reference in
The spring 242 can bias the feeder arm 240 toward the retracted position (i.e., the neutral state of the feeder arm 240) as shown in
Movement of Feeders Relative to Needle Bed
As mentioned above, feeders 204 and 220 move along rails 203 and over the needle beds 201 due to the action of carriage 205 and drive bolt(s) 219. More particularly, respective drive bolts 219 extended from carriage 205 can contact feeders 204 and 220 to push feeders 204 and 220 along the rails 203 to move over the needle beds 201. More specifically, as shown in
With respect to combination feeder 220, the drive bolt 219 can also cause the feeder arm 240 to move from the retracted position toward the extended position. As shown in
The drive bolt 219 can then move from the extended position (
It will be appreciated that frictional forces can inhibit disengagement of the drive bolt 219 from the end 253 of the feeder 220. Also, in the case of the combination feeder 220, the return force of the spring 242 and/or tension in the yarn 206 can cause the end 253 to be pressed into the bolt 219 with significant force, thereby increasing frictional engagement with the bolt 219. If the bolt 219 fails to disengage, the feeder 220 can erroneously remain in the extended position, the bolt 219 could move the feeder 220 too far in the longitudinal direction, and the like, and the knitted component may be formed erroneously. However, the convexly rounded shape of the end 253 can facilitate disengagement of the bolt 219 from the end 253. This is because the convex and round surface of the end 253 can reduce the area of contact between the drive bolt 219 and the end 253. Polishing and/or lubricating the end 253 can also reduce friction. Therefore, the drive bolt 219 is better able to disengage from the end 253, the feeder 220 can operate more accurately and efficiently, and speed of the knitting process can be improved. Furthermore, the drive bolt 219 and/or end 253 is less prone to wear over time after repeatedly disengaging from each other.
It will also be appreciated that the inside ends 254 can be curved and convex, can be polished, treated with lubricant, or otherwise similar to the ends 253 described in detail herein. As such, the drive bolts 219 can similarly disengage the ends 254 more efficiently. Moreover, the first feeders 204 can include actuation members with rounded, convex ends that are similar to the ends 253 described in detail herein. Embodiments of the first feeders 204 with rounded ends 253 are shown, for instance, in
Knitting Process
The manner in which knitting machine 200 operates to manufacture a knitted component 130 will now be discussed in detail. Moreover, the following discussion will demonstrate the operation of first feeders 204 and combination feeder 220 during a knitting process. Referring to
The knitting process discussed herein relates to the formation of knitted component 260, which may be any knitted component, including knitted components that are similar to knitted component 130 discussed above in relation to
First feeder 204 includes a feeder arm 212 with a dispensing tip 213. Feeder arm 212 is angled to position dispensing tip 213 in a location that is (a) centered between needles 202 and (b) above an intersection of needle beds 201.
Combination feeder 220 is in the retracted position, as evidenced by the orientation of arrow 221 in
Referring now to
Continuing with the knitting process, feeder arm 240 now translates from the retracted position to the extended position, as depicted in
Referring now to
Also, it is noted that the projections 216, 217 of the feeder 220 can push aside the yarn 211 within the previously-formed course of the knitted component 260 as the feeder 220 moves across the knitted component 260. Specifically, as shown in
In order to complete inlaying yarn 206 into knitted component 260, first feeder 204 moves along rail 203 to form a new course from yarn 211, as depicted in
The general knitting process outlined in the above discussion provides an example of the manner in which inlaid strand 132 may be located in knit element 131. More particularly, knitted component 130 may be formed by utilizing combination feeder 220 to effectively insert inlaid strands 132 and 152 into knit elements 131. Given the reciprocating action of feeder arm 240, inlaid strands may be located within a previously formed course prior to the formation of a new course.
Continuing with the knitting process, feeder arm 240 now translates from the retracted position to the extended position, as depicted in
Referring to
As discussed above, first feeder 204 has the ability to supply a strand (e.g., yarn 211) that needles 202 manipulate to knit, tuck, and float. Combination feeder 220, however, has the ability to supply a yarn (e.g., yarn 206) that needles 202 knit, tuck, or float, as well as inlaying the yarn. The above discussion of the knitting process describes the manner in which combination feeder 220 inlays a yarn while in the extended position. Combination feeder 220 may also supply the yarn for knitting, tucking, and floating while in the retracted position. Referring to
Following the knitting processes described above, various operations may be performed to enhance the properties of knitted component 130. For example, a water-repellant coating or other water-resisting treatment may be applied to limit the ability of the knit structures to absorb and retain water. As another example, knitted component 130 may be steamed to improve loft and induce fusing of the yarns.
Although procedures associated with the steaming process may vary greatly, one method involves pinning knitted component 130 to a jig during steaming. An advantage of pinning knitted component 130 to a jig is that the resulting dimensions of specific areas of knitted component 130 may be controlled. For example, pins on the jig may be located to hold areas corresponding to perimeter edge 133 of knitted component 130. By retaining specific dimensions for perimeter edge 133, perimeter edge 133 will have the correct length for a portion of the lasting process that joins upper 120 to sole structure 110. Accordingly, pinning areas of knitted component 130 may be utilized to control the resulting dimensions of knitted component 130 following the steaming process.
The knitting process described above for forming knitted component 260 may be applied to the manufacture of knitted component 130 for footwear 100. The knitting process may also be applied to the manufacture of a variety of other knitted components. That is, knitting processes utilizing one or more combination feeders or other reciprocating feeders may be utilized to form a variety of knitted components. As such, knitted components formed through the knitting process described above, or a similar process, may also be utilized in other types of apparel (e.g., shirts, pants, socks, jackets, undergarments), athletic equipment (e.g., golf bags, baseball and football gloves, soccer ball restriction structures), containers (e.g., backpacks, bags), and upholstery for furniture (e.g., chairs, couches, car seats). The knitted components may also be utilized in bed coverings (e.g., sheets, blankets), table coverings, towels, flags, tents, sails, and parachutes. The knitted components may be utilized as technical textiles for industrial purposes, including structures for automotive and aerospace applications, filter materials, medical textiles (e.g. bandages, swabs, implants), geotextiles for reinforcing embankments, agrotextiles for crop protection, and industrial apparel that protects or insulates against heat and radiation. Accordingly, knitted components formed through the knitting process described above, or a similar process, may be incorporated into a variety of products for both personal and industrial purposes.
Additional Features for Feeder and Knitting Operations
Referring now to
As will be discussed, the feeder 3220 of
The feeder 3220 can include a feeder arm 3240 having a first portion 3241 and a second portion 3249. The first portion 3241 can be attached to and can extend downward from the carrier 3230. The first portion 3241 can also include the pulley 3243. Additionally, the second portion 3249 can be moveably attached to the first portion 3241. For instance, the first and second portions 3241, 3249 can be pivotally attached via a hinge 3247, a flexible joint, or other suitable coupling. Moreover, the dispensing area 3245 can be attached to the second portion 3249.
The feeder 3220 can also include an enlarged end 3261. In some embodiments, the end 3261 can be bulbous. The end 3261 can be hollow and received over the tapered dispensing area 3245 of the feeder 3220. In additional embodiments, the end 3261 can be integrally attached to the dispensing area 3245. The end 3261 can include one or more projections 3262, 3264 that are rounded and convex. The projections 3262, 3264 can be separated by a gap, and the dispensing tip 3246 can be disposed between the projections 3262, 3264 as shown in
Because the first and second portions 3241, 3249 are moveably attached, the feeder 3220 can have a first position (
For instance, when the feeder 3220 moves in the feeding direction 3270 (
On the other hand, if the feeder 3220 is moving in the opposite feeding direction as indicated by arrow 3271 in
Thus, the projections 3262, 3264 can push stitching that lies ahead of the dispensing tip 3246 as the feeder 3220 moves for more accurate knitting. Also, it will be appreciated that the knitting machine can include so-called “sinkers” or “knock-overs” that are disposed adjacent the needles in the needle bed. The sinkers can sequentially open as the feeder 3220 moves across the needle bed and these sinkers can sequentially close after the feeder 3220 has passed to push down on the knitted stitches. Because the dispensing tip 3246 is angled away from the direction of movement 3270 of the feeder 3220, the dispensing tip 3246 can be moved closer to the sinkers that are closing behind the feeder 3220. As such, the strand 3206 can be quickly grasped by the closing sinkers and pushed into the knit component 3260. Thus, the strand 3206 is more likely to be inlaid properly into the knit component 3260.
It will be appreciated that movement of the feeder 3220 between its first position
(
Take-Down Assembly
Referring now to
As will be discussed, the take-down assembly 300 can include one or more features that increases the user's control over the tension applied to different portions of the knit component 260 as the knit component 260 is formed at and grows from the needle beds 201. Specifically, the take-down assembly 300 can include a variety of independently controlled and independently actuated members for applying different levels of tension to the knit component 260 along the longitudinal direction along the needle beds 201.
For instance, the take-down assembly 300 can include a plurality of rollers 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, as shown schematically in
In the embodiments illustrated in
As shown in the embodiments of
Moreover, the take-down assembly 300 can include a plurality of actuators 326-331. The actuator 312 can include an electric motor, a hydraulic or pneumatic actuator, or any other suitable type of automated actuating mechanism. The actuators 326-331 can also include a servomotor in some embodiments. As shown in
The actuators 326-331 can be operably coupled to a controller 332. The controller 332 can be included in a personal computer and can include programmed logic, a processor, a display, input devices (e.g., a keyboard, a mouse, a touch-sensitive screen, etc.), and other related components. The controller 332 can send electric control signals to the actuators 326-331 to control actuations of the actuators 326-331. It will be appreciated that the controller 332 can control the actuators 326-331 independently. Accordingly, the biasing force, spring stiffness, etc. can vary among the biasing members 320-325. Thus, as will be described, the tension across the knit component 260 can be varied as will be discussed, allowing different stitch types to be incorporated across the knit component 260, allowing some stitched areas to be pulled tighter than others, and the like.
Operation of the take-down assembly 300 will now be discussed. As shown generally in
Also, because the pairs of opposing rollers 303-314 are spaced along the longitudinal direction of the needle beds 201, different pairs of rollers 303-314 contact and advance different portions of the knit component 260. Biasing loads of the biasing members 320-325 can be independently controlled such that tension is applied in a desired manner to each portion of the knit component 260.
As shown in
Subsequently, as shown in
Then, as shown in
These manufacturing techniques can be employed, for instance, when forming an upper of an article of footwear, such as the knit components described above. For instance, the first portion 340 shown in
It will be understood that when the rollers 303-314 increase tension on the respective portions 340, 344 of the knit component 260, stitching in those portions 340, 344 can be tighter and “cleaner.” On the other hand, decreasing tension on the respective portions 340, 344 can allow the stitches to be looser. As such, adjusting tension applied by the rollers 303-314 of the take-down assembly 300 can affect the look, feel, and/or other features of the knit component 260. Also, tension applied by the rollers 303-314 can be varied to allow different types of yarns (e.g., yarns of different diameter) to be incorporated into the knit component 260.
Furthermore, it will be appreciated that the circumferential surfaces of the rollers 303-314 can roll evenly and continuously over the sides of the knit component 260 to advance the knit component 260. As such, compressive and tangential loading from the rollers 303-314 can be distributed evenly over the surface of the knit component 260. As a result, knitting can be completed in a highly controlled manner.
Additional embodiments of the take-down assembly are shown in
Also, for purposes of simplicity,
Then, once the portion 2320 of the knit component 260 has reached a predetermined length (i.e., sufficient courses of the yarn 211 have been added to the portion 320), the rollers 2307, 2304 can discontinue rotating. As shown in
Once the portion 2322 is long enough to reach the rollers 2306, 2303, the roller 2306 can be driven in rotation by the respective actuator 2326. This rotation is represented by the two curved arrows 2360 in
Once the portion 2322 has reached a predetermined length, the pairs of rollers 2303, 2306, 2304, 2307 can rotate together. This can occur while the yarn 2211 is incorporated into both the portions 2320, 2322. Stated differently, the yarn 2211 can be knit into one or more continuous courses that connect the portions 2320, 2322 as shown in
It will also be appreciated that one opposing pair of the rollers 2303, 2306 can be drivingly rotated faster than another opposing pair of rollers 2304, 2307 such that the portion 2322 is pulled at a higher tension than the portion 2320. Accordingly, the stitches in the portion 2322 can be more tightly formed than those of the portion 2320.
Accordingly, the take-down assemblies disclosed herein can allow the knit component to be formed in a highly controlled manner. This can facilitate manufacture of a high quality, highly durable, and aesthetically pleasing knit component.
The present disclosure is discussed in detail above and in the accompanying figures with reference to a variety of configurations. The purpose served by the discussion, however, is to provide an example of the various features and concepts related to the disclosure, not to limit the scope of the same. One skilled in the relevant art will recognize that numerous variations and modifications may be made to the configurations described above without departing from the scope of the present disclosure, as defined by the appended claims.