Index of suspicion determination for communications request

Information

  • Patent Grant
  • 8983047
  • Patent Number
    8,983,047
  • Date Filed
    Thursday, March 20, 2014
    10 years ago
  • Date Issued
    Tuesday, March 17, 2015
    9 years ago
Abstract
The risk that an incoming emergency call is a prank call is presented in real-time to the called party, in the form of, e.g., an index of suspicion. An index of suspicion aggregation server quantifies, qualifies, and aggregates risks, suspicions, and/or threats relevant to a call center to formulate a scale of suspicion. Metrics are acquired (e.g., calling device location information, device configuration information, caller information, etc.) relevant to each communications request made to a call center and uses acquired metrics to rate communications requests based on a known scale of suspicion. Once a suspicion rating is determined for a communications request, the communications request is routed to a relevant call-taker terminal, as is the index of suspicion for that incoming call. Real time presentation of the index of suspicion enables call-takers to make better call-handling decisions based on risk analysis and historical call data associated with a given caller.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates generally to telecommunications, and more particularly to public safety and commercial call centers.


2. Background of Related Art


A prank call to an emergency call center (e.g. a 911 call center) is a serious and dangerous offense. Unfortunately, as technology advances, so do the occurrences of such crimes.


Prank calls to emergency call centers range in terms of severity and motive. For instance, kids attempting to humor themselves may make seemingly harmless prank calls to emergency call centers, meanwhile holding up the time and attention of emergency dispatch personnel. More calculating prank calls to emergency call centers include swatting and diversionary calls.


A swatting prank call to an emergency call center is a call that attempts to lure emergency respondents to a fabricated emergency situation. Swatting prank calls have at times resulted in the dispatch of SWAT teams, bomb squads, and/or police personnel to unsuspecting homes and businesses and have led to numerous injuries and expenses due to road closures and property damage.


A diversionary prank call to an emergency call center is a call that attempts to lure emergency dispatch personnel to a particular location to divert police enforcement away from ongoing criminal activity. Diversionary prank calls are notably used by drug dealers.


Avoidance of prank calls, particularly to emergency call centers, is desired.


SUMMARY

A mechanism for rating and relaying risk and/or threat of communications requests (e.g. incoming calls) to call centers (e.g. commercial call centers, emergency call centers, etc.) comprises an index of suspicion aggregation server.


In accordance with the principles of the present invention, the inventive index of suspicion aggregation server quantifies, qualifies, and aggregates specific risks, suspicions, and/or threats relevant to a particular calling device, and formulates a scale of suspicion that the incoming call might be a prank call. The inventive index of suspicion aggregation server then rates all communications requests (e.g., emergency calls, emergency text messaging sessions, etc.) made to the commercial/emergency call center based on the formulated index of suspicion, and provides in real-time the index of suspicion to the call taker, providing them with additional information from which to make the judgment call as to whether an incoming call is a prank call.


The present invention enables call-takers (e.g., emergency dispatch personnel, public safety answering point (PSAP) telecommunicators, sales clerks, customer service personnel, etc.) to make smarter call-handling decisions based on risk analysis and historical data associated with a communications request.


A method and apparatus in accordance with disclosed embodiment provide a real-time index rating of suspicion that an incoming call may be a prank call, by obtaining a current location of a calling device to an incoming call, and comparing the obtained current location of the calling device to locations of known emergency events to determine a first level of confidence the incoming call relates to a known emergency event. A call history database is accessed to determine a second level of confidence from a call history relating to the calling device. A call forensic database is accessed to determine a third level of confidence relating to a pattern of known prank calls. The first level of confidence, the second level of confidence, and the third level of confidence, are aggregated into an index of suspicion rating, and provided in real-time to a called device during the incoming call.





BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the drawings, in which:



FIG. 1 depicts exemplary network architecture used to create, maintain, and present in real-time a risk of legitimacy (i.e., an index of suspicion) associated with an incoming communications request such as an emergency call, in accordance with the principles of the present invention.



FIG. 2 shows an exemplary method for generating and presenting in real-time a risk of legitimacy (i.e., an index of suspicion) associated with an incoming communications request such as an emergency call made to an emergency call center, in accordance with the principles of the present invention.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Typically a police report is filed to report a prank call to an emergency call center. With the police report, a subsequent call from the same party may be flagged as a potential hoax. However, such tactics are not comprehensive nor fully preventative. Moreover, liability attaches to the emergency personnel should a real emergency call be made from a phone previously used to make a prank call. This is particularly problematic in the current environment of reused phone numbers. Emergency call centers are not the only calls subject to prank calls. For instance, prank calls to commercial call centers have been a long-standing nuisance and expense.


The present invention provides a tool as a gauge of whether or not an incoming call is a prank call.


In particular, the present invention provides a system to rate and relay risks and/or threats associated with a communications network request (e.g., an incoming call) to a call center (e.g., a commercial call center, an emergency call center such as a public safety answering point (PSAP), etc.) to enable call-takers (e.g., emergency dispatch personnel, public safety answering point (PSAP) telecommunicators, sales clerks, customer service personnel, etc.) to better gauge uncertainty and/or facts surrounding an incident being reported and/or claims being made in the call.


The present invention provides an index of suspicion aggregation server that determines and presents an index of suspicion of an associated incoming call. The index of suspicion aggregation server quantifies, qualifies, and aggregates specific risks, suspicions, and/or threats, relevant to a particular caller or source of a communication request (e.g., an emergency 911 call).


The inventive index of suspicion aggregation server rates each communications request routed to an emergency/commercial call center, and presents the rating as an “index of suspicion” to the recipient of the call in real-time. This way the recipient of the incoming call can weigh for themselves whether or not the incoming call is a prank call, using both the content of the incoming call with their own judgment, and the index of suspicion relating to the caller. With the real-time presentation of the index of suspicion relating to the caller, appropriate action can be taken by the recipient of the call utilizing appropriate communication protocols.


The index of suspicion aggregation server may build an appropriate database from which to rate the suspicion of a given caller utilizing primarily post-call information. For instance, as legitimate calls are received at an emergency call center over the years from a given phone number, those confidence markers are stored in the database and associated with the caller.


Other techniques for rating risk and/or threat associated with a communications request (and thus for generating an index of suspicion) include those used to reduce credit card fraud based on suspicious transaction activity and/or location. For example, when a credit card is used overseas after a long period of time in country, a low level fraud alert is generated. The fraud alert is usually easily erased with a verbal verification of the legitimate use of the credit card from the registered owner. Similarly, historical emergency call data can be ‘legitimized’ by a later confirmation of the legitimacy of the call. For instance, after the emergency subsides, a network operator may call back the emergency caller to have them verbally confirm the legitimacy of the earlier emergency call. Such legitimacy data is used to establish a lower index of suspicion.


The index of suspicion may be presented in any suitable fashion that ranges from an indicator of low or no suspicion, to an indicator of high or certain suspicion, that the call is a prank call. For instance, an indicator of 5% may indicate no suspicion, while an indicator of 100% index of suspicion may indicate to the recipient of the call that the incoming call is certainly a prank call. The recipient may still take the call as desired or required, but with the real-time estimate of the ‘index of suspicion’.



FIG. 1 depicts exemplary network architecture used to create, maintain, and present in real-time a risk of legitimacy (i.e., an index of suspicion) associated with an incoming communications request such as an emergency call, in accordance with the principles of the present invention.


In particular, as portrayed in FIG. 1, an index of suspicion aggregation server 100 retrieves, calculates and provides—in real-time—an index of suspicion relating to a given caller, together with an incoming call to a serviced bureau (e.g., a PSAP call center.) The index of suspicion as disclosed is provided to the called party device via an index of call presentation server 200. The index of suspicion presentation server 200 may route the incoming call or other communications request to the called party.


The index of suspicion aggregation server 100 queries any one or more network components to acquire and/or generate historical information relevant to creation of the index of suspicion. Incoming calls come through a call queue 116.


Past call related information, and a success/prank measure may be included, in an appropriate caller forensic database 114.


Call history (such when, if any, past calls were received from a given caller) may be maintained in a call history database 112 and consulted by the index of suspicion aggregation server 100.


A manual call center 108 includes the recipient device receiving the incoming call for which an index of suspicion is presented.


A real-time location information server 106 provides real-time information regarding the location of the caller to the index of suspicion aggregation server 100. The location of the caller may be utilized in the calculation of the index of suspicion. For instance, if the caller is within a region associated with a registered address for the calling phone, a lower index of suspicion may be associated with the incoming emergency call.


An event database 102 stores information relevant to known or recently established events, e.g., the location of a car accident, etc. If an incoming call is coming in from a known location of an event, the index of suspicion will be appropriately lowered.


A location history database 104 may be maintained relevant to given callers to appropriately flag as suspicious calls made from an area associated with a higher frequency of suspicious calls.


A device configuration profile database 110 may also be maintained and accessible by the index of suspicion aggregation server 100.


The inventive index of suspicion aggregation server 100 maintains a database of relevant past pranks, illegitimacy, suspicions, as well as legitimate calls, associated with given callers, and derives therefrom an index of suspicion to be provided along with an incoming call to the recipient device. Appropriate weighting may be given to the age of a prank report, suspicious call report, legitimate call report, etc. on a given caller, and aggregated into a given index of suspicion. Aggregation may comprise, e.g., simple multiplication of each weighted event stored in the call history database.


The index of suspicion aggregation server 100 rates all communications requests (e.g., incoming VoIP calls, incoming wireless calls, incoming text messages, etc.) made to the serviced commercial call center or emergency call center by determining an index of suspicion regarding a caller associated with an incoming call in the call queue 116, and provides the index of suspicion to the called party device in real-time, as the incoming call is first presented to the called party, or soon thereafter but in any event while the incoming call (or text message session) is still active.



FIG. 2 shows an exemplary method for generating and presenting in real-time a risk of legitimacy (i.e., an index of suspicion) associated with an incoming communications request such as an emergency call made to an emergency call center, in accordance with the principles of the present invention.


In particular, as shown at the bottom of FIG. 2, an emergency call communications request is initiated from an emergency calling device 300.


In step 2, the emergency call is routed to an emergency call handling and routing server 400.


In step 3, the emergency call handling and routing server 400 directs the incoming emergency call to the index of suspicion aggregation server 100. Alternatively, the incoming emergency call may be routed directly to the recipient with an identity of a caller being directed to the index of suspicion aggregation server 100 for generation of the index of suspicion.


The index of suspicion aggregation server 100 may optionally loop the incoming call (or associated messaging including the caller's identity) back to the emergency call handling and routing server 400, as depicted in step 4a, to cache the emergency call in an incoming call queue 116 while rating information relevant to the generation of the index of suspicion is gathered.


Alternatively, as portrayed in optional steps 5a and 5b, the index of suspicion aggregation server 100 may re-route the emergency call (or text messaging session) back to the emergency call handling and routing server 400, to redirect the incoming call to a manual call center 108 for answering by an intermediary call-taker or automated answering system.


As shown in FIG. 2, various application services may be involved in the determination of an index of suspicion for a given incoming emergency communications request. For instance, as depicted in optional step 6, real-time location information is acquired for the emergency communications request via interaction with the real-time location information server 106. An incoming call initiated from a prepaid calling device may deem the incoming request more suspicious, whereas multiple calls initiated from the same location may deem subsequent requests made from that location more reliable, i.e., less suspicious.


Acquired location information is compared with location information previously obtained for the communications request, with a result adding to the rating of the index of suspicion.


Moreover, as portrayed in step 7, location information acquired for the emergency communications request is compared to previous location data obtained for the initiated call, caller, calling device, or location, maintained in the location history database 104. Acquired data is rated and combined into the presented index of suspicion.


In step 8, the index of suspicion aggregation server 100 queries a device configuration profile database 110 to compare and rate device configuration information acquired for the emergency calling device 300 (e.g., firmware, OS versions, patch level, virus reporting, applications installed, etc.)


As shown in optional step 9, the index of suspicion aggregation server 100 additionally queries a call history database 112 to compare and rate the incoming emergency communications request to the determined legitimacy of previous calls from the same calling device (i.e., a prior call history). Information such as last call made, number of calls made over a specified period of time, call pattern statistics, etc. may be consulted and aggregated into the index of suspicion presented in real-time to the recipient of the incoming call.


In steps 10a and 10b, the communications request is routed to the index of suspicion emergency call presentation server 200, whereupon the incoming call is routed to an emergency call-taker terminal 500 together in real-time with an aggregated index of suspicion that the call is a prank call (or conversely that the call is likely legitimate.)


As shown in steps 11a and 11b, the emergency call-taker terminal 500 may query the index of suspicion aggregation server 100 to request caller forensic data from the caller forensic database 114. Caller forensic data may include: background information of the caller, recent activity of the calling device, past history of the calling device, etc. The index of suspicion aggregation server 100 then returns, in real-time, an index of suspicion to the emergency call-taker terminal 500 based on available forensic data.


Also, as portrayed in steps 12a and 12b, the emergency call-taker terminal 500 may direct the index of suspicion aggregation server 100 to request that an event database 102 be queried for statistics relevant to whether or not a known emergency event is currently taking place in the vicinity of the location of the caller.


The index of suspicion may be presented to the called party via an appropriate web-based browser on a terminal associated with the called party.


The index of suspicion provides, in real-time, an “un-believability” measure based on metrics (e.g., device configuration data, font set, language, real-time location information, configured location information, registration or lack thereof, call history, etc.) for a calling device.


The index of suspicion aggregation server 100 rates and relays a measure of the risk and/or threat that an incoming call is a prank call—in real-time—to provide a recipient of an incoming call additional information from which to make a judgment that the call is or is not a prank call.


The present invention enables call centers (e.g. emergency call centers and commercial call centers) to better manage callers, contacts, and/or touch points with real-time presentation of the associated risk and/or associated suspicious correlative data relevant to a given incoming call. The present invention additionally allows call centers to provide updated (feedback) information to the index of suspicion aggregation server 100 based on recent activity, and enables metrics and algorithms used to calculate risk to be adjusted in light of varying circumstances.


The inventive method is applicable to service industries, particularly emergency service industries. Knowledge in real-time of an index of suspicion enables a call-taker to make better call handling decisions based on risk analysis and/or historical data associated with a call, caller, calling device, etc.


While the invention has been described with reference to the exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments of the invention without departing from the true spirit and scope of the invention.

Claims
  • 1. A method of providing a real-time index rating of suspicion that an incoming call may be a prank call, comprising: requesting a current location of a wireless calling device to an incoming call, from a network positioning server;comparing said obtained current location of said wireless calling device to locations of known active emergency events;determining a first level of confidence that said incoming call relates to a known emergency event based on said comparison of said current location of said wireless calling device to locations of known active emergency events;accessing a call history database to determine a second level of confidence from a call history relating to said wireless calling device;accessing a call forensic database to determine a third level of confidence relating to a pattern of known prank calls;aggregating said first level of confidence, said second level of confidence, and said third level of confidence, into an index of suspicion; andproviding said index of suspicion rating in real-time to a called device during said incoming call.
  • 2. The method of providing a real-time index rating of suspicion that an incoming call may be a prank call according to claim 1, wherein: said pattern of known prank calls relates to known locations of prank calls.
  • 3. The method of providing a real-time index rating of suspicion that an incoming call may be a prank call according to claim 1, wherein: said pattern of known prank calls relates to peak times of prank calls.
  • 4. The method of providing a real-time index rating of suspicion that an incoming call may be a prank call according to claim 1, wherein: said pattern of known prank calls relates to a caller identity linked to said wireless calling device.
  • 5. The method of providing a real-time index rating of suspicion that an incoming call may be a prank call according to claim 1, further comprising: updating said call forensic database to include an entry of a confirmed prank call from a location of said wireless calling device.
  • 6. The method of providing a real-time index rating of suspicion that an incoming call may be a prank call according to claim 1, further comprising: updating said call history database to include an entry of a confirmed prank call from said wireless calling device.
  • 7. The method of providing a real-time index rating of suspicion that an incoming call may be a prank call according to claim 1, further comprising: updating said call history database to include an entry of a confirmed prank call from a caller identity linked to said wireless calling device.
  • 8. The method of providing a real-time index rating of suspicion that an incoming call may be a prank call according to claim 1, wherein: said index of suspicion rating is provided to said called device upon request of said called device.
  • 9. An index of suspicion aggregation server to provide a real-time index rating of suspicion that an incoming call may be a prank call, comprising: means for requesting a current location of a wireless calling device to an incoming call, from a network positioning server;means for comparing said obtained current location of said wireless calling device to locations of known active emergency events based on said comparison of said current location of said wireless calling device to locations of known active emergency events to determine a first level of confidence that said incoming call relates to a known emergency event;means for accessing a call history database to determine a second level of confidence from a call history relating to said wireless calling device;means for accessing a call forensic database to determine a third level of confidence relating to a pattern of known prank calls;means for aggregating said first level of confidence, said second level of confidence, and said third level of confidence, into an index of suspicion; andmeans for providing said index of suspicion rating in real-time to a called device during said incoming call.
  • 10. The index of suspicion aggregation server to provide a real-time index rating of suspicion that an incoming call may be a prank call according to claim 9, wherein: said pattern of known prank calls relates to known locations of prank calls.
  • 11. The index of suspicion aggregation server to provide a real-time index rating of suspicion that an incoming call may be a prank call according to claim 9, wherein: said pattern of known prank calls relates to peak times of prank calls.
  • 12. The index of suspicion aggregation server to provide a real-time index rating of suspicion that an incoming call may be a prank call according to claim 9, wherein: said pattern of known prank calls relates to a caller identity linked to said wireless calling device.
  • 13. The index of suspicion aggregation server to provide a real-time index rating of suspicion that an incoming call may be a prank call according to claim 9, further comprising: means for updating said call forensic database to include an entry of a confirmed prank call from a location of said wireless calling device.
  • 14. The index of suspicion aggregation server to provide a real-time index rating of suspicion that an incoming call may be a prank call according to claim 9, further comprising: means for updating said call history database to include an entry of a confirmed prank call from said wireless calling device.
  • 15. The index of suspicion aggregation server to provide a real-time index rating of suspicion that an incoming call may be a prank call according to claim 9, further comprising: means for updating said call history database to include an entry of a confirmed prank call from a caller identity linked to said wireless calling device.
  • 16. The index of suspicion aggregation server to provide a real-time index rating of suspicion that an incoming call may be a prank call according to claim 9, wherein: said index of suspicion rating is provided to said called device upon request of said called device.
Parent Case Info

The present invention claims priority from U.S. Provisional No. 61/803,662 to Ehrlich et al., entitled “A Method for Establishing and Using an Index of Suspicion” filed Mar. 20, 2013, the entirety of which is expressly incorporated herein by reference.

US Referenced Citations (819)
Number Name Date Kind
1103073 O'Connell Jul 1914 A
4445118 Taylor et al. Apr 1984 A
4494119 Wimbush Jan 1985 A
4651156 Martinez Mar 1987 A
4706275 Kamil Nov 1987 A
4737916 Ogawa Apr 1988 A
4891638 Davis Jan 1990 A
4891650 Scheffer Jan 1990 A
4939662 Numura Jul 1990 A
4952928 Carroll Aug 1990 A
4972484 Theile Nov 1990 A
5014206 Scribner May 1991 A
5043736 Darnell Aug 1991 A
5055851 Scheffer Oct 1991 A
5068656 Sutherland Nov 1991 A
5068891 Marshall Nov 1991 A
5070329 Jasimaki Dec 1991 A
5081667 Drori Jan 1992 A
5119104 Heller Jun 1992 A
5126722 Kamis Jun 1992 A
5144283 Arens Sep 1992 A
5161180 Chavous Nov 1992 A
5166972 Smith Nov 1992 A
5177478 Wagai Jan 1993 A
5193215 Olmer Mar 1993 A
5208756 Song May 1993 A
5214789 George May 1993 A
5218367 Scheffer Jun 1993 A
5223844 Mansell Jun 1993 A
5239570 Koster Aug 1993 A
5265630 Hartmann Nov 1993 A
5266944 Caroll Nov 1993 A
5283570 DeLuca Feb 1994 A
5289527 Tiedemann Feb 1994 A
5293642 Lo Mar 1994 A
5299132 Wortham Mar 1994 A
5301354 Schwendeman Apr 1994 A
5311516 Kuznicke May 1994 A
5325302 Izidon Jun 1994 A
5327529 Fults Jul 1994 A
5334974 Simms Aug 1994 A
5335246 Yokev Aug 1994 A
5343493 Karimulah Aug 1994 A
5347568 Moody Sep 1994 A
5351235 Lahtinen Sep 1994 A
5361212 Class Nov 1994 A
5363425 Mufti Nov 1994 A
5365451 Wang Nov 1994 A
5374936 Feng Dec 1994 A
5379451 Nakagoshi Jan 1995 A
5381338 Wysocki Jan 1995 A
5387993 Heller Feb 1995 A
5388147 Grimes Feb 1995 A
5389934 Kass Feb 1995 A
5390339 Bruckery Feb 1995 A
5394158 Chia Feb 1995 A
5396227 Carroll Mar 1995 A
5398190 Wortham Mar 1995 A
5406614 Hara Apr 1995 A
5418537 Bird May 1995 A
5422813 Schuchman Jun 1995 A
5423076 Westergren Jun 1995 A
5434789 Fraker Jul 1995 A
5454024 Lebowitz Sep 1995 A
5461390 Hosher Oct 1995 A
5470233 Fruchterman Nov 1995 A
5479408 Will Dec 1995 A
5479482 Grimes Dec 1995 A
5485161 Vaugh Jan 1996 A
5485163 Singer Jan 1996 A
5488563 Chazelle Jan 1996 A
5494091 Freeman Feb 1996 A
5497149 Fast Mar 1996 A
5504491 Chapman Apr 1996 A
5506886 Maine Apr 1996 A
5508931 Snider Apr 1996 A
5513243 Kage Apr 1996 A
5515287 Hakoyama May 1996 A
5517199 DiMattei May 1996 A
5519403 Bickley May 1996 A
5530655 Lokhoff Jun 1996 A
5530914 McPheters Jun 1996 A
5532690 Hertel Jul 1996 A
5535434 Siddoway Jul 1996 A
5539395 Buss Jul 1996 A
5539398 Hall Jul 1996 A
5539829 Lokhoff Jul 1996 A
5543776 L'Esperance Aug 1996 A
5546445 Dennison Aug 1996 A
5552772 Janky Sep 1996 A
5555286 Tendler Sep 1996 A
5557254 Johnson Sep 1996 A
5568119 Schipper Oct 1996 A
5568153 Beliveau Oct 1996 A
5574648 Pilley Nov 1996 A
5579372 Angstrom Nov 1996 A
5588009 Will Dec 1996 A
5592535 Klotz Jan 1997 A
5594780 Wiedeman Jan 1997 A
5604486 Lauro Feb 1997 A
5606313 Allen Feb 1997 A
5606618 Lokhoff Feb 1997 A
5606850 Nakamura Mar 1997 A
5610815 Gudat Mar 1997 A
5614890 Fox Mar 1997 A
5615116 Gudat Mar 1997 A
5621793 Bednarek Apr 1997 A
5628051 Salin May 1997 A
5629693 Janky May 1997 A
5633912 Tsoi May 1997 A
5636122 Shah Jun 1997 A
5636276 Brugger Jun 1997 A
5661652 Sprague Aug 1997 A
5661755 Van de Kerkhof Aug 1997 A
5682600 Salin Oct 1997 A
5684951 Goldman Nov 1997 A
5689245 Noreen Nov 1997 A
5689269 Norris Nov 1997 A
5689809 Grube Nov 1997 A
5699053 Jonsson Dec 1997 A
5727057 Emery Mar 1998 A
5731785 Lemelson Mar 1998 A
5740534 Ayerst Apr 1998 A
5761618 Lynch Jun 1998 A
5765152 Erickson Jun 1998 A
5767795 Schaphorst Jun 1998 A
5768509 Gunluk Jun 1998 A
5771353 Eggleston Jun 1998 A
5774533 Patel Jun 1998 A
5774670 Montulli Jun 1998 A
5774824 Streit Jun 1998 A
5787357 Salin Jul 1998 A
5794142 Vantilla Aug 1998 A
5797094 Houde Aug 1998 A
5797096 Lupien Aug 1998 A
5801700 Ferguson Sep 1998 A
5802492 DeLorrme Sep 1998 A
5806000 Vo Sep 1998 A
5809415 Rossman Sep 1998 A
5812086 Bertiger Sep 1998 A
5812087 Krasner Sep 1998 A
5822700 Hult Oct 1998 A
5828740 Khue Oct 1998 A
5841396 Krasner Nov 1998 A
5857201 Wright, Jr. Jan 1999 A
5864667 Barkan Jan 1999 A
5874914 Krasner Feb 1999 A
5896369 Warsta Apr 1999 A
5920821 Seaholtz Jul 1999 A
5922074 Richard Jul 1999 A
5926118 Hayashida Jul 1999 A
5930250 Klok Jul 1999 A
5944768 Ito Aug 1999 A
5953398 Hill Sep 1999 A
5960362 Grob Sep 1999 A
5974054 Couts Oct 1999 A
5978685 Laiho Nov 1999 A
5982301 Ohta Nov 1999 A
5983099 Yao Nov 1999 A
5983109 Montoya Nov 1999 A
5987323 Houtari Nov 1999 A
5998111 Abe Dec 1999 A
5999124 Sheynblat Dec 1999 A
6002936 Roel-Ng Dec 1999 A
6014602 Kithol Jan 2000 A
6032051 Hall Feb 2000 A
6035025 Hanson Mar 2000 A
6035253 Hayashi Mar 2000 A
6049710 Nilsson Apr 2000 A
6052081 Krasner Apr 2000 A
6058300 Hanson May 2000 A
6058338 Agashe et al. May 2000 A
6061018 Sheynblat May 2000 A
6061346 Nordman May 2000 A
6064336 Krasner May 2000 A
6064875 Morgan May 2000 A
6067045 Castelloe May 2000 A
6070067 Nguyen May 2000 A
6075982 Donovan Jun 2000 A
6081229 Soliman Jun 2000 A
6081508 West Jun 2000 A
6085320 Kaliski, Jr. Jul 2000 A
6091957 Larkins Jul 2000 A
6101378 Barabash Aug 2000 A
6108533 Brohoff Aug 2000 A
6115611 Kimoto Sep 2000 A
6122503 Daly Sep 2000 A
6122520 Want Sep 2000 A
6124810 Segal Sep 2000 A
6131067 Girerd Oct 2000 A
6133874 Krasner Oct 2000 A
6134316 Kallioniemi Oct 2000 A
6134483 Vayanos Oct 2000 A
6138003 Kingdon Oct 2000 A
6148197 Bridges Nov 2000 A
6148198 Anderson Nov 2000 A
6149353 Nilsson Nov 2000 A
6150980 Krasner Nov 2000 A
6154172 Piccionelli Nov 2000 A
6169516 Watanabe Jan 2001 B1
6169891 Gorham Jan 2001 B1
6169901 Boucher Jan 2001 B1
6169902 Kawamoto Jan 2001 B1
6173181 Losh Jan 2001 B1
6178505 Schnieder Jan 2001 B1
6178506 Quick, Jr. Jan 2001 B1
6181935 Gossman Jan 2001 B1
6181939 Ahvenainen Jan 2001 B1
6182006 Meek Jan 2001 B1
6182227 Blair Jan 2001 B1
6185426 Alperovich Feb 2001 B1
6188354 Soliman Feb 2001 B1
6188752 Lesley Feb 2001 B1
6188909 Alananra Feb 2001 B1
6188957 Bechtolsheim Feb 2001 B1
6189098 Kaliski, Jr. Feb 2001 B1
6195557 Havinis Feb 2001 B1
6198431 Gibson Mar 2001 B1
6199045 Giniger Mar 2001 B1
6199113 Alegre Mar 2001 B1
6204844 Fumarolo Mar 2001 B1
6205330 Windbladh Mar 2001 B1
6208290 Krasner Mar 2001 B1
6208854 Roberts Mar 2001 B1
6215441 Moeglein Apr 2001 B1
6219557 Havinis Apr 2001 B1
6223046 Hamill-Keays Apr 2001 B1
6226529 Bruno May 2001 B1
6239742 Krasner May 2001 B1
6247135 Feaugue Jun 2001 B1
6249680 Wax Jun 2001 B1
6249742 Frriederich Jun 2001 B1
6249744 Morita Jun 2001 B1
6249873 Richard Jun 2001 B1
6253074 Carlsson Jun 2001 B1
6253203 O'Flaherty Jun 2001 B1
6260147 Quick, Jr. Jul 2001 B1
6266614 Alumbaugh Jul 2001 B1
6275692 Skog Aug 2001 B1
6275849 Ludwig Aug 2001 B1
6278701 Ayyagari Aug 2001 B1
6278936 Jones Aug 2001 B1
6289373 Dezonno Sep 2001 B1
6297768 Allen, Jr. Oct 2001 B1
6307504 Sheynblat Oct 2001 B1
6308269 Proidl Oct 2001 B2
6313786 Sheynblat Nov 2001 B1
6317594 Gossman Nov 2001 B1
6317684 Roeseler Nov 2001 B1
6321091 Holland Nov 2001 B1
6321092 Fitch Nov 2001 B1
6321158 DeLorme Nov 2001 B1
6321257 Kotala Nov 2001 B1
6324524 Lent Nov 2001 B1
6327473 Soliman Dec 2001 B1
6327479 Mikkola Dec 2001 B1
6331825 Ladner Dec 2001 B1
6333919 Gaffney Dec 2001 B2
6360093 Ross Mar 2002 B1
6360102 Havinis Mar 2002 B1
6363254 Jones Mar 2002 B1
6366782 Fumarolo Apr 2002 B1
6366856 Johnson Apr 2002 B1
6367019 Ansell Apr 2002 B1
6370389 Isomursu Apr 2002 B1
6377209 Krasner Apr 2002 B1
6397143 Paschke May 2002 B1
6400314 Krasner Jun 2002 B1
6400943 Montoya Jun 2002 B1
6400958 Isomursu Jun 2002 B1
6411254 Moeglein Jun 2002 B1
6415224 Wako Jul 2002 B1
6421002 Krasner Jul 2002 B2
6427001 Contractor Jul 2002 B1
6429808 King Aug 2002 B1
6433734 Krasner Aug 2002 B1
6434381 Moore Aug 2002 B1
6441752 Fomukong Aug 2002 B1
6442384 Shah Aug 2002 B1
6442391 Johansson Aug 2002 B1
6449473 Raivisto Sep 2002 B1
6449476 Hutchinson, IV Sep 2002 B1
6456852 Bar Sep 2002 B2
6463272 Wallace Oct 2002 B1
6466788 Carlsson Oct 2002 B1
6477150 Maggenti Nov 2002 B1
6504491 Christians Jan 2003 B1
6505049 Dorenbosch Jan 2003 B1
6510387 Fuchs Jan 2003 B2
6512922 Burg Jan 2003 B1
6512930 Sandegren Jan 2003 B2
6515623 Johnson Feb 2003 B2
6519466 Pande Feb 2003 B2
6522682 Kohli Feb 2003 B1
6526026 Menon Feb 2003 B1
6529500 Pandharipande Mar 2003 B1
6529722 Heinrich Mar 2003 B1
6529829 Turetzky Mar 2003 B2
6531982 White Mar 2003 B1
6538757 Sansone Mar 2003 B1
6539200 Schiff Mar 2003 B1
6539232 Hendrey et al. Mar 2003 B2
6539304 Chansarkar Mar 2003 B1
6542464 Takeda Apr 2003 B1
6542734 Abrol Apr 2003 B1
6542743 Soliman Apr 2003 B1
6549522 Flynn Apr 2003 B1
6549776 Joong Apr 2003 B1
6549844 Egberts Apr 2003 B1
6556832 Soliman Apr 2003 B1
6560461 Fomukong May 2003 B1
6560534 Abraham May 2003 B2
6563824 Bhatia May 2003 B1
6564261 Gudjonsson May 2003 B1
6570530 Gaal May 2003 B2
6571095 Koodli May 2003 B1
6571174 Rigazio May 2003 B2
6574558 Kohli Jun 2003 B2
6580390 Hay Jun 2003 B1
6584552 Kuno Jun 2003 B1
6587691 Granstam Jul 2003 B1
6594500 Bender Jul 2003 B2
6597311 Sheynblat Jul 2003 B2
6600927 Hamilton Jul 2003 B2
6603973 Foladare Aug 2003 B1
6606495 Korpi Aug 2003 B1
6606554 Edge Aug 2003 B2
6609004 Morse Aug 2003 B1
6611757 Brodie Aug 2003 B2
6618670 Chansarkar Sep 2003 B1
6621423 Cooper Sep 2003 B1
6621452 Knockeart Sep 2003 B2
6621810 Leung Sep 2003 B1
6628233 Knockeart Sep 2003 B2
6633255 Krasner Oct 2003 B2
6640184 Rabe Oct 2003 B1
6640185 Tokota Oct 2003 B2
6643516 Stewart Nov 2003 B1
6650288 Pitt Nov 2003 B1
6661353 Gopen Dec 2003 B1
6661372 Girerd Dec 2003 B1
6665539 Sih Dec 2003 B2
6665541 Krasner Dec 2003 B1
6665613 Duvall Dec 2003 B2
6665715 Houri Dec 2003 B1
6671620 Garin Dec 2003 B1
6677894 Sheynblat Jan 2004 B2
6680694 Knockeart Jan 2004 B1
6687504 Raith Feb 2004 B1
6691019 Seeley Feb 2004 B2
6694258 Johnson Feb 2004 B2
6697629 Grilli Feb 2004 B1
6698195 Hellinger Mar 2004 B1
6701144 Kirbas Mar 2004 B2
6703971 Pande Mar 2004 B2
6703972 Van Diggelen Mar 2004 B2
6704651 Van Diggelen Mar 2004 B2
6707421 Drury Mar 2004 B1
6714793 Carey Mar 2004 B1
6718174 Vayanos Apr 2004 B2
6720915 Sheynblat Apr 2004 B2
6721578 Minear Apr 2004 B2
6721652 Sanqunetti Apr 2004 B1
6721716 Gross Apr 2004 B1
6721871 Piispanen Apr 2004 B2
6724342 Bloebaum Apr 2004 B2
6725159 Krasner Apr 2004 B2
6728701 Stoica Apr 2004 B1
6731940 Nagendran May 2004 B1
6734821 Van Diggelen May 2004 B2
6738013 Orler May 2004 B2
6738800 Aquilon May 2004 B1
6741842 Goldberg May 2004 B2
6744856 Karnik Jun 2004 B2
6744858 Ryan Jun 2004 B1
6745038 Callaway, Jr. Jun 2004 B2
6747596 Orler Jun 2004 B2
6748195 Phillips Jun 2004 B1
6751464 Burg Jun 2004 B1
6756938 Zhao Jun 2004 B2
6757266 Hundscheidt Jun 2004 B1
6757544 Rangarajan Jun 2004 B2
6757545 Nowak Jun 2004 B2
6766174 Kenyon Jul 2004 B1
6771639 Holden Aug 2004 B1
6771742 McCalmont Aug 2004 B2
6772340 Peinado Aug 2004 B1
6775267 Kung Aug 2004 B1
6775534 Lindgren Aug 2004 B2
6775655 Peinado Aug 2004 B1
6775802 Gaal Aug 2004 B2
6778136 Gronemeyer Aug 2004 B2
6778885 Agashe Aug 2004 B2
6781963 Crockett Aug 2004 B2
6788249 Farmer Sep 2004 B1
6795444 Vo Sep 2004 B1
6795699 McGraw Sep 2004 B1
6799049 Zellner Sep 2004 B1
6799050 Krasner Sep 2004 B1
6801159 Swope Oct 2004 B2
6801850 Wolfson Oct 2004 B1
6804524 Vandermaijden Oct 2004 B1
6807534 Erickson Oct 2004 B1
6810323 Bullock Oct 2004 B1
6810405 LaRue Oct 2004 B1
6813264 Vassilovski Nov 2004 B2
6813501 Kinnunen Nov 2004 B2
6813560 Van Diggelen Nov 2004 B2
6816111 Krasner Nov 2004 B2
6816710 Krasner Nov 2004 B2
6816719 Heinonen Nov 2004 B1
6816734 Wong Nov 2004 B2
6816782 Walters Nov 2004 B1
6819919 Tanaka Nov 2004 B1
6820269 Baucke et al. Nov 2004 B2
6829475 Lee Dec 2004 B1
6829532 Obradovich Dec 2004 B2
6832373 O'Neill Dec 2004 B2
6839020 Geier Jan 2005 B2
6839021 Sheynblat Jan 2005 B2
6839417 Weisman Jan 2005 B2
6839630 Sakamoto Jan 2005 B2
6842696 Silvester Jan 2005 B2
6842715 Gaal Jan 2005 B1
6845321 Kerns Jan 2005 B1
6847822 Dennison Jan 2005 B1
6853916 Fuchs Feb 2005 B2
6856282 Mauro Feb 2005 B2
6861980 Rowitch Mar 2005 B1
6865171 Nilsson Mar 2005 B1
6865395 Riley Mar 2005 B2
6867733 Sandhu Mar 2005 B2
6867734 Voor Mar 2005 B2
6873854 Crockett Mar 2005 B2
6882850 McConnell et al. Apr 2005 B2
6885874 Grube Apr 2005 B2
6885940 Brodie Apr 2005 B2
6888497 King May 2005 B2
6888932 Snip May 2005 B2
6895238 Newell May 2005 B2
6895249 Gaal May 2005 B2
6895329 Wolfson May 2005 B1
6898516 Pechatnikov May 2005 B2
6900758 Mann May 2005 B1
6903684 Simic Jun 2005 B1
6904029 Fors Jun 2005 B2
6907224 Younis Jun 2005 B2
6907238 Leung Jun 2005 B2
6910818 McLoone Jun 2005 B2
6912230 Salkini Jun 2005 B1
6912395 Benes Jun 2005 B2
6912545 Lundy Jun 2005 B1
6915208 Garin Jul 2005 B2
6917331 Gronemeyer Jul 2005 B2
6925603 Naito Aug 2005 B1
6930634 Peng Aug 2005 B2
6934705 Tu Aug 2005 B2
6937187 Van Diggelen Aug 2005 B2
6937872 Krasner Aug 2005 B2
6940950 Dickinson et al. Sep 2005 B2
6941144 Stein Sep 2005 B2
6944535 Iwata Sep 2005 B2
6944540 King Sep 2005 B2
6947772 Minear Sep 2005 B2
6950058 Davis Sep 2005 B1
6957068 Hutchison Oct 2005 B2
6957073 Bye Oct 2005 B2
6961562 Ross Nov 2005 B2
6963557 Knox Nov 2005 B2
6963748 Chithambaram Nov 2005 B2
6965754 King Nov 2005 B2
6965767 Maggenti Nov 2005 B2
6968044 Beason Nov 2005 B2
6970871 Rayburn Nov 2005 B1
6970917 Kushwaha Nov 2005 B1
6973320 Brown Dec 2005 B2
6975266 Abraham Dec 2005 B2
6978453 Rao Dec 2005 B2
6980816 Rohler Dec 2005 B2
6985747 Chithambaram Jan 2006 B2
6990081 Schaefer Jan 2006 B2
6993355 Pershan Jan 2006 B1
6996720 DeMello Feb 2006 B1
6999782 Shaughnessy Feb 2006 B2
7024321 Deninger Apr 2006 B1
7024393 Peinado Apr 2006 B1
7047411 DeMello May 2006 B1
7058506 Kawase Jun 2006 B2
7065351 Carter Jun 2006 B2
7065507 Mohammed Jun 2006 B2
7072667 Olrik Jul 2006 B2
7079857 Maggenti Jul 2006 B2
7089110 Pechatnikov Aug 2006 B2
7092385 Gallant Aug 2006 B2
7103018 Hansen Sep 2006 B1
7103574 Peinado Sep 2006 B1
7106717 Rousseau Sep 2006 B2
7110773 Wallace Sep 2006 B1
7136466 Gao Nov 2006 B1
7136838 Peinado Nov 2006 B1
7142196 Connor Nov 2006 B1
7142205 Chithambaram Nov 2006 B2
7145900 Nix Dec 2006 B2
7151946 Maggenti Dec 2006 B2
7167187 Scott Jan 2007 B2
7171220 Belcea Jan 2007 B2
7171304 Wako Jan 2007 B2
7177397 Mccalmont Feb 2007 B2
7177398 Meer Feb 2007 B2
7177399 Dawson Feb 2007 B2
7184418 Baba Feb 2007 B1
7200380 Havlark Apr 2007 B2
7202801 Chou Apr 2007 B2
7209758 Moll Apr 2007 B1
7209969 Lahti Apr 2007 B2
7218940 Niemenna May 2007 B2
7221959 Lindquist May 2007 B2
7245900 Lamb Jul 2007 B1
7245910 Osmo Jul 2007 B2
7260186 Zhu Aug 2007 B2
7260384 Bales Aug 2007 B2
7266376 Nakagawa Sep 2007 B2
7286929 Staton Oct 2007 B2
7330899 Wong Feb 2008 B2
7333480 Clarke Feb 2008 B1
7340241 Rhodes Mar 2008 B2
7369508 Parantainen May 2008 B2
7369530 Keagy May 2008 B2
7424293 Zhu Sep 2008 B2
7426380 Hines Sep 2008 B2
7428571 Ichimura Sep 2008 B2
7436785 McMullen Oct 2008 B1
7440442 Grabelsky Oct 2008 B2
7450951 Vimpari Nov 2008 B2
7453990 Welenson Nov 2008 B2
7477903 Wilcock Jan 2009 B2
7495608 Chen Feb 2009 B1
7522581 Acharya Apr 2009 B2
7565157 Ortega Jul 2009 B1
7602886 Beech Oct 2009 B1
7623447 Faccin Nov 2009 B1
7627331 Winterbottom Dec 2009 B2
7653544 Bradley Jan 2010 B2
7660321 Cortes Feb 2010 B2
7702081 Klesper Apr 2010 B1
7711094 Olshansky May 2010 B1
7739033 Murata Jun 2010 B2
7747258 Farmer Jun 2010 B2
7751614 Funakura Jul 2010 B2
7774003 Ortega Aug 2010 B1
7783297 Ishii Aug 2010 B2
7822823 Jhanji Oct 2010 B2
7881233 Bieselin Feb 2011 B2
7881730 Sheha Feb 2011 B2
7895263 Kirchmeier Feb 2011 B1
7937067 Maier May 2011 B2
20010011247 O'Flaherty Aug 2001 A1
20010015756 Wilcock Aug 2001 A1
20010016849 Squibbs Aug 2001 A1
20020032036 Nakajima Mar 2002 A1
20020037735 Maggenti Mar 2002 A1
20020052214 Maggenti May 2002 A1
20020061760 Maggenti May 2002 A1
20020069239 Katada Jun 2002 A1
20020069529 Wieres Jun 2002 A1
20020077083 Zellner Jun 2002 A1
20020077084 Zellner Jun 2002 A1
20020077118 Zellner Jun 2002 A1
20020077897 Zellner Jun 2002 A1
20020085538 Leung Jul 2002 A1
20020086683 Kohar Jul 2002 A1
20020102996 Jenkins Aug 2002 A1
20020102999 Maggenti Aug 2002 A1
20020111172 DeWolf Aug 2002 A1
20020112047 Kushwaha Aug 2002 A1
20020118650 Jagadeesan Aug 2002 A1
20020123327 Vataja Sep 2002 A1
20020123354 Nowak Sep 2002 A1
20020126656 Park Sep 2002 A1
20020130906 Miyaki Sep 2002 A1
20020158777 Flick Oct 2002 A1
20020164998 Younis Nov 2002 A1
20020169539 Menard Nov 2002 A1
20020173317 Nykanen Nov 2002 A1
20020191595 Mar Dec 2002 A1
20030009277 Fan Jan 2003 A1
20030009602 Jacobs Jan 2003 A1
20030012148 Peters Jan 2003 A1
20030013449 Hose Jan 2003 A1
20030014487 Iwakawa Jan 2003 A1
20030016804 Sheha Jan 2003 A1
20030026245 Ejzak Feb 2003 A1
20030032448 Bulthius Feb 2003 A1
20030036848 Sheha Feb 2003 A1
20030036949 Kaddeche Feb 2003 A1
20030037163 Kitada Feb 2003 A1
20030040272 Lelievre Feb 2003 A1
20030045327 Kobayashi Mar 2003 A1
20030054835 Gutowski Mar 2003 A1
20030060938 Duvall Mar 2003 A1
20030065788 Salomaki Apr 2003 A1
20030072318 Lam Apr 2003 A1
20030078054 Okuda Apr 2003 A1
20030078064 Chan Apr 2003 A1
20030081557 Mettala May 2003 A1
20030096623 Kim May 2003 A1
20030101329 Lahti May 2003 A1
20030101341 Kettler May 2003 A1
20030103484 Oommen Jun 2003 A1
20030108176 Kung Jun 2003 A1
20030109245 McCalmont Jun 2003 A1
20030114157 Spitz Jun 2003 A1
20030119521 Tipnis Jun 2003 A1
20030119528 Pew Jun 2003 A1
20030125064 Koskinen Jul 2003 A1
20030126250 Jhanji Jul 2003 A1
20030137961 Tsirtsis Jul 2003 A1
20030149526 Zhou Aug 2003 A1
20030151501 Teckchandani Aug 2003 A1
20030153340 Crockett Aug 2003 A1
20030153341 Crockett Aug 2003 A1
20030153342 Crockett Aug 2003 A1
20030153343 Crockett Aug 2003 A1
20030161298 Bergman Aug 2003 A1
20030165254 Chen Sep 2003 A1
20030182053 Swope Sep 2003 A1
20030186709 Rhodes Oct 2003 A1
20030196105 Fineburg Oct 2003 A1
20030201931 Durst Oct 2003 A1
20030204640 Sahineja Oct 2003 A1
20030223381 Schroderus Dec 2003 A1
20030231190 Jawerth Dec 2003 A1
20030236618 Kamikawa Dec 2003 A1
20040002326 Maher Jan 2004 A1
20040002814 Gogic Jan 2004 A1
20040008225 Cambell Jan 2004 A1
20040021567 Dunn Feb 2004 A1
20040032485 Stephens Feb 2004 A1
20040041729 Rowitch Mar 2004 A1
20040043775 Kennedy Mar 2004 A1
20040044623 Wake Mar 2004 A1
20040047342 Gavish Mar 2004 A1
20040047461 Weisman et al. Mar 2004 A1
20040054428 Sheha Mar 2004 A1
20040068724 Gardner Apr 2004 A1
20040076277 Kuusinen Apr 2004 A1
20040098497 Banet May 2004 A1
20040124977 Biffar Jul 2004 A1
20040132465 Mattila Jul 2004 A1
20040146040 Phan-Anh Jul 2004 A1
20040181689 Kiyoto Sep 2004 A1
20040184584 McCalmont Sep 2004 A1
20040186880 Yamamoto Sep 2004 A1
20040190497 Knox Sep 2004 A1
20040198332 Lundsgaard Oct 2004 A1
20040198375 Schwengler Oct 2004 A1
20040198386 Dupray Oct 2004 A1
20040204829 Endo Oct 2004 A1
20040204847 Yanai Oct 2004 A1
20040205151 Sprigg Oct 2004 A1
20040205517 Lampert Oct 2004 A1
20040220957 McDonough Nov 2004 A1
20040229632 Flynn Nov 2004 A1
20040242238 Wang Dec 2004 A1
20040267445 De Luca Dec 2004 A1
20050027445 McDonough Feb 2005 A1
20050028034 Gantman Feb 2005 A1
20050031095 Pietrowics Feb 2005 A1
20050039178 Marolia Feb 2005 A1
20050041578 Huotari Feb 2005 A1
20050043037 Loppe Feb 2005 A1
20050043038 Maanoja Feb 2005 A1
20050053209 D'Evelyn Mar 2005 A1
20050062636 Conway Mar 2005 A1
20050063519 James Mar 2005 A1
20050071671 Karaoguz Mar 2005 A1
20050078612 Lang Apr 2005 A1
20050083911 Grabelsky Apr 2005 A1
20050085999 Onishi Apr 2005 A1
20050086467 Asokan Apr 2005 A1
20050090236 Schwinke Apr 2005 A1
20050101335 Kelly May 2005 A1
20050107673 Ball May 2005 A1
20050112030 Gaus May 2005 A1
20050119012 Merheb Jun 2005 A1
20050125148 Van Buer Jun 2005 A1
20050134504 Harwood Jun 2005 A1
20050135569 Dickinson Jun 2005 A1
20050136885 Kaltsukis Jun 2005 A1
20050149430 Williams Jul 2005 A1
20050159883 Humphries Jul 2005 A1
20050174991 Keagy Aug 2005 A1
20050190746 Xiong Sep 2005 A1
20050190892 Dawson Sep 2005 A1
20050192822 Hartenstein Sep 2005 A1
20050201528 Meer Sep 2005 A1
20050201529 Nelson Sep 2005 A1
20050209995 Aksu Sep 2005 A1
20050213716 Zhu Sep 2005 A1
20050219067 Chung Oct 2005 A1
20050232252 Hoover Oct 2005 A1
20050239458 Hurtta Oct 2005 A1
20050242168 Tesavis Nov 2005 A1
20050255857 Kim Nov 2005 A1
20050259675 Tuohino Nov 2005 A1
20050261002 Cheng Nov 2005 A1
20050265318 Khartabil Dec 2005 A1
20050271029 Iffland Dec 2005 A1
20050282518 D'Evelyn Dec 2005 A1
20050287979 Rollender Dec 2005 A1
20050289097 Trossen Dec 2005 A1
20060008065 Longman et al. Jan 2006 A1
20060019724 Bahl Jan 2006 A1
20060023747 Koren et al. Feb 2006 A1
20060026288 Acharya Feb 2006 A1
20060041375 Witmer Feb 2006 A1
20060053225 Poikselka Mar 2006 A1
20060058102 Nguyen et al. Mar 2006 A1
20060068753 Karpen Mar 2006 A1
20060069503 Suomela Mar 2006 A1
20060072729 Lee et al. Apr 2006 A1
20060074547 Kaufman Apr 2006 A1
20060077911 Shaffer Apr 2006 A1
20060088152 Green Apr 2006 A1
20060104306 Adamczkk May 2006 A1
20060120517 Moon Jun 2006 A1
20060128395 Muhonen Jun 2006 A1
20060135177 Winterbottom Jun 2006 A1
20060188083 Breen Aug 2006 A1
20060193447 Schwartz Aug 2006 A1
20060200359 Khan Sep 2006 A1
20060212558 Sahinoja Sep 2006 A1
20060212562 Kushwaha Sep 2006 A1
20060224752 Parekh Oct 2006 A1
20060233338 Venkata Oct 2006 A1
20060234639 Kushwaha Oct 2006 A1
20060234698 Fok Oct 2006 A1
20060239205 Warren Oct 2006 A1
20060250987 White Nov 2006 A1
20060258380 Liebowitz Nov 2006 A1
20060259365 Agarwal et al. Nov 2006 A1
20060268120 Funakura Nov 2006 A1
20060270421 Phillips Nov 2006 A1
20060281437 Cook Dec 2006 A1
20060293024 Benco Dec 2006 A1
20060293066 Edge Dec 2006 A1
20070003024 Olivier Jan 2007 A1
20070004461 Bathina Jan 2007 A1
20070014282 Mitchell Jan 2007 A1
20070019614 Hoffman Jan 2007 A1
20070021908 Jaugilas Jan 2007 A1
20070022011 Altberg et al. Jan 2007 A1
20070026854 Nath Feb 2007 A1
20070026871 Wager Feb 2007 A1
20070027997 Polk Feb 2007 A1
20070030539 Nath Feb 2007 A1
20070032244 Counts Feb 2007 A1
20070036139 Patel Feb 2007 A1
20070049288 Lamprecht Mar 2007 A1
20070054676 Duan Mar 2007 A1
20070060097 Edge Mar 2007 A1
20070072553 Barbera Mar 2007 A1
20070081635 Croak Apr 2007 A1
20070083911 Madden Apr 2007 A1
20070115941 Patel May 2007 A1
20070121601 Kikinis May 2007 A1
20070139411 Jawerth Jun 2007 A1
20070149166 Turcotte Jun 2007 A1
20070149213 Lamba Jun 2007 A1
20070162228 Mitchell Jul 2007 A1
20070182631 Berlinsky Aug 2007 A1
20070201623 Hines Aug 2007 A1
20070206568 Silver Sep 2007 A1
20070206613 Silver Sep 2007 A1
20070208687 O'Connor Sep 2007 A1
20070242660 Xu Oct 2007 A1
20070253429 James Nov 2007 A1
20070254625 Edge Nov 2007 A1
20070263610 Mitchell Nov 2007 A1
20070270164 Maier Nov 2007 A1
20070291733 Doran Dec 2007 A1
20080032703 Krumm Feb 2008 A1
20080037715 Prozeniuk Feb 2008 A1
20080045250 Hwang Feb 2008 A1
20080063153 Krivorot Mar 2008 A1
20080065775 Polk Mar 2008 A1
20080077324 Hatano Mar 2008 A1
20080084975 Schwartz Apr 2008 A1
20080117859 Shahidi May 2008 A1
20080129475 Breed Jun 2008 A1
20080162637 Adamczyk Jul 2008 A1
20080176582 Ghai Jul 2008 A1
20080186164 Emigh Aug 2008 A1
20080195314 Green Aug 2008 A1
20080200182 Shim Aug 2008 A1
20080214202 Toomey Sep 2008 A1
20080220747 Ashkenazi Sep 2008 A1
20080288166 Onishi Nov 2008 A1
20090003535 Grabelsky Jan 2009 A1
20090067417 Kalavade Mar 2009 A1
20090097450 Wallis Apr 2009 A1
20090113346 Wickramasuriya Apr 2009 A1
20090128404 Martino May 2009 A1
20090177557 Klein Jul 2009 A1
20090224931 Dietz Sep 2009 A1
20090298488 Snapp Dec 2009 A1
20090328163 Preece Dec 2009 A1
20100003976 Zhu Jan 2010 A1
20100004993 Troy Jan 2010 A1
20100042592 Stolz Feb 2010 A1
20100067444 Faccin Mar 2010 A1
20100167760 Kim Jul 2010 A1
20100188992 Raleigh Jul 2010 A1
20100268848 Maurya Oct 2010 A1
20110113060 Martini May 2011 A1
20110165861 Wilson et al. Jul 2011 A1
20120015639 Trivi et al. Jan 2012 A1
20130083902 Goswami et al. Apr 2013 A1
20140105373 Sharpe Apr 2014 A1
Foreign Referenced Citations (6)
Number Date Country
WO9921380 Oct 1998 WO
WO0145342 Jun 2001 WO
WO0211407 Feb 2002 WO
WO2004025941 Mar 2004 WO
WO2007027166 Jun 2005 WO
WO2005051033 Jun 2005 WO
Non-Patent Literature Citations (18)
Entry
Le-Pond Chin, Jyh-Hong Wen, Ting-Way Liu, The Study of the Interconnection of GSM Mobile Communications Systems Over IP Based Network, May 6, 2001, IEEE, Vehicular Technology Conference, vol. 3, pp. 2219-2223.
Qualcomm CDMA Technologies, LBS Control Plane Roaming—80-VD377-1NP A, 2006, pp. 1-10.
Qualcomm CDMA Technologies, MS Resident User Plane LBS Roaming—80-VC718-1 E, 2006, pp. 1-37.
3rd Generation Partnership Project 2, Position Determination Service Standard for Dual Mode Spread Spectrum Systems, Feb. 16, 2001, pp. i-X, 1-1-1-5, 2-1-2-2, 3-1-3-51, 4-1-4-66, A-1-A-2, B-1-B-2, C-1-C-2, D-1-D-2.
Intrado Inc., Qwest Detailed SR/ALI to MPC/GMLC Interface Specification for TCP/IP Implementation of TIA/EIA/J-STD-036 E2 with Phase I Location Description Addition, Intrado Informed Response; Apr. 2004; Issue 1.11; pp. 1-57.
Extended European Search Report from EPO in European Appl. No. 06827172.5 dated Dec. 29, 2009.
Qualcomm CDMA Technologies, LBS Control Plane/User Plane Overview—80-VD378-1 NP B, 2006, pp. 1-36.
Bhalla et al, TELUS, Technology Strategy—LBS Roaming Summit, Sep. 19, 2006.
Alfredo Aguirre, Ilusacell, First and Only Carrier in Mexico with a 3G CDMA Network, 2007.
Mike McMullen, Sprint, LBS Roaming Summit, Sep. 19, 2006.
Nars Haran, U.S. Cellular, Packet Data—Roaming and LBS Overview, Nov. 2, 2007, pp. 1-15.
Location Based Services V2 Roaming Support (non proprietary), 80-V8470-2NP A, dated Jan. 27, 2005, pp. 1-56.
Yilin Ahao, Efficient and reliable date transmission for cellular and GPS based mayday systems, Nov. 1997, IEEE, IEEE Conference on Intelligent Transportation System, 1997. ITSC 97, 555-559.
Examiner's Office Letterin Japanese Patent Application No. 2006-542691 dated Sep. 7, 2009.
JP Laid-Open Gazette No. 2004-158947 (English abstract only).
JP Laid-Open Gazette No. 2007-507123 (counterpart English text US Patent Application Publication No. 2007/0054676).
T. Hattori, “Wireless Broadband Textbook,” IDG Japan, Jun. 10, 2002, p. 142-p. 143. (no English text).
Schulzrinne et al., Emergency Services for Internet Telephony Systems draft-schulzrinne-sipping-emergency-arch, IETF Standard Working Draft, Feb. 4, 2004, 1-22.
Related Publications (1)
Number Date Country
20140286484 A1 Sep 2014 US
Provisional Applications (1)
Number Date Country
61803662 Mar 2013 US