The invention relates to an indexable cutting insert for a milling tool for machining work pieces, said indexable cutting insert being radially mounted in rotatable manner on a milling head on a rotation-symmetrically designed Y axis on the milling head.
Machining with rotating blades has been a well known procedure for years though the procedure has obtained distinctiveness in manufacture to only a small degree. In the present case, a tool is used the active element whereof comprises a round, rotatably mounted disk blade, said disk blade executing during the machining process an automatic rotational movement kinematicly-based on the machining process and the fact that the disk blade axis is slanted in relation to the cutting direction. Due to the said rotating movement of the disk blade during machining, a new part of the blade is always engaged in continuous sequence, whereby each point on the blade remains only briefly in the cutting zone, which causes only slight heating of the disk blade.
A corresponding milling cutter here is known, for example, from the patent application DD 118 543. In this embodiment, not only a rotating rotary disk, but also a fixed blade is provided on the milling head, in order to in this way achieve a particular cutting design. A further embodiment of the prior art is also known from the patent application U.S. Pat. No. 2,885,766, wherein indexable cutting inserts rotatably mounted in the milling head are provided, said indexable cutting inserts being mounted rotatably on the milling head on rotation-symmetrically designed axes. With this milling head known from the prior art, the rotatably mounted indexable cutting inserts are disposed in U-shaped nests so that the axes are, in particular, embedded on both sides in the milling head.
In addition, further embodiments are known to the art such as, for example, are described in the patent application U.S. Pat. No. 5,478,175. This publication discloses a rotatable blade equipped with a shank formed integrally to the rear side thereof, said shank being rotatably mounted in a pocket hole bore in the carrier material of the milling head. An equivalent solution is also known to the art from the patent application DE 10 2005 051 695, wherein, in particular, the indexable cutting insert is attached to a carrier element and wherein the carrier element is rotatably held in the tool. In this case, the carrier element is equipped coaxially to the Y axis with a shaft end rotatably disposed in a pocket hole bore in the tool. In this embodiment known according to the prior art, in particular, the carrier element provided may also be designed as actively turn-actuated so that, due to the rotational movement of the milling tool, the cutting insert attached to the carrier here is also driven by a transmission gear provided in the milling head. A corresponding embodiment is also described in the patent application CH 480 120.
With the said solutions for milling tools known from the prior art which are equipped with rotatably mounted cutting disks, it is considered as disadvantageous that the embodiments known to the art are very costly to build with regard to their rotatably mounted indexable cutting inserts, which is due to the costly design of the mounting for the indexable cutting insert. Thus, for example, all solutions known from the prior art have in common that, in particular, in order to exchange the indexable cutting insert, though rotatably mounted, the execution of several operations on the milling head is necessary to on the one hand, detach the indexable cutting insert out of the milling head and/or on the other hand, after detaching the carrier means, the indexable cutting insert still has to be detached from the carrier means itself. An additional disadvantage of the solutions known to the art is seen in the fact that in particular with regard to the storage inventory of rotatably mounted indexable cutting inserts, indexable cutting inserts particularly adapted to the milling head have to be kept available in storage.
The invention therefore has the object of offering an indexable cutting insert for a milling head for machining work pieces, said indexable cutting insert being radially rotatably mounted, where the design of said milling head for mounting the blades is substantially simpler, and, in particular, the process of exchanging the cutting insert is substantially simpler.
Solution
According to the invention, the object is achieved with the features of claim 1, and advantageous embodiments of the invention ensue from the sub-claims.
The advantages obtained with the invention, in particular, include the fact that as a consequence of a pin solution in conjunction with the envelopment of the rotating indexable cutting insert by the carrier material of the milling head, an indexable cutting insert rotating in a cage is created, said indexable cutting insert having sufficient motion freedom and/or rotational freedom to on the one hand, penetrate the material during the drilling process and on the other hand, be able to remove a corresponding chip during machining. The simple embedment of the indexable cutting insert here is only achieved by the shape of the milling head in conjunction with the mounting pin. Thereby it is guaranteed that the rotating disk has, in particular during machining, sufficient rotational freedom without incurring the risk that the blades might separate from their mountings by themselves.
The indexable cutting insert here is disposed freely rotatably under a tolerance play on the free end of a mounting pin, said mounting pin being detachably attached with braced seating to the milling head, and the freely rotatably mounted indexable cutting insert is enveloped by and/or embedded in the material of the milling head, on the one hand on the entire surface of the rear side and on the other hand, on parts of the frontal side in a way to prevent a self-detachment from the mounting pin. Due to the detachably attached mounting pin forming the rotational axis for the indexable cutting insert, it is guaranteed that by simply detaching the mounting pin, the indexable cutting insert is released within the cage thereof so that it is possible to simply remove the indexable cutting insert from its nest or allow the same to drop therefrom. For this purpose, the mounting pin is disposed in a penetrating bore on the milling head. It is now easily understood that the mounting pin can easily be pushed through from one side so that, in particular, the mounting pin releases the indexable cutting insert from its seat and allows it to be removed from the nest.
According to a particularly advantageous development of the indexable cutting insert, said indexable cutting insert is equipped with a cylindrical bore for the formation of a sliding mounting on the mounting pin. On the frontal part, the indexable cutting insert has a ring-shaped area comprising a smooth disk surface for the formation of a sliding ring, said sliding ring being supported under stress on the enveloping and surrounding area of the milling head.
According to a particularly advantageous development of the shape, the indexable cutting insert is, according to an initial embodiment, equipped with an enveloped cutting edge. The indexable cutting insert here can also, according to a second embodiment, be equipped with a cutting edge gradually stepped in relation to the disk surface. The said stepped cutting edge may also be furnished with a chip trough.
The indexable cutting insert inserted in the milling head here is located in the milling head in such a way that the cutting edge of the indexable cutting insert is located in an area recessed within the enveloping and/or surrounding material of the milling head. The enveloping and/or surrounding material of the milling head here works in conjunction only with the disk surface.
Due to the pin solution in conjunction with the envelopment of the rotating indexable cutting insert by the carrier material of the milling head, an indexable cutting insert rotating within a cage is created, said indexable cutting insert having sufficient motion freedom and/or rotational freedom to on the one hand, penetrate into the material during the drilling process and on the other hand, during machining to remove a corresponding chip without impediment and without baked-on material, be it on the carrier material or on the indexable cutting insert itself. The simple embedment of the indexable cutting insert here is achieved solely by the shape of the milling head in conjunction with the mounting pin. Thus it is guaranteed that the rotating disk has, in particular during machining, sufficient rotational freedom without incurring the risk that the blades might separate from their mountings by themselves.
The mounting pin here has at the other end a tapped area wherewith the said mounting pin is fixed in the material of the milling head. The mounting pin is equipped such that it has a frontal cylindrical area for the rotational mounting of the indexable cutting insert, and, in the central area, a conically designed area for the fixation in the carrier material of the milling head. The tapped section provided for bracing in the carrier material then abuts the conical area so that the pin can be inserted in the carrier material of the milling head and be braced therein, and that thus said pin occupies a stable mounting axis for the free rotational mounting of the indexable cutting insert. It is easily understood that for bracing the mounting pin, the conical design accordingly works in conjunction with a conicity in the milling head material. When the tapped pin is screwed in, the pin tightens itself against the conical surfaces, which effects a stabilization of the rotational axis. In order to operate and/or brace the pin, a hex socket is disposed coaxially to the shank axis of the mounting pin.
According to a particularly advantageous development of the indexable cutting insert, the said indexable cutting insert is equipped with a circumferential groove wherein engages a track ring or cog disposed on the milling head. The circumferential groove here is radially disposed on the indexable cutting insert. According to an alternative embodiment, the circumferential groove is disposed on the rear bearing surface or support surface of the indexable cutting insert. Thus it is achieved that, in particular, the cutting insert receives, aside from the free rotational mounting on the mounting pin, an additional guidance stability in the rotation, either due to a track ring or a cog.
An embodiment of the invention is represented in the drawings 1 through 12 in purely schematic manner and is described in more detail below. The drawings show in:
In the embodiment of a basic form,
The indexable cutting insert 1 here is disposed under a tolerance play 5 freely rotatably on the free end 6 of a mounting pin 7, said mounting pin 7 being detachably attached with braced seating on the milling head 3. The freely rotatably mounted indexable cutting insert 1, in order to prevent a self-detachment from the mounting pin 7, here is enveloped and/or surrounded by the material 8 of the milling head 3, on the one hand on the entire surface of the rear side 9; and on the other hand, in parts on the frontal side 10. As can be seen from
The indexable cutting insert 1 with the blade 14, rotatably mounted under a tolerance play 5 on the mounting pin 7, is surrounded by a free space 15 in the material 8 so that there is sufficient free space for any material sticking to the blade 14 so that the indexable cutting insert 1 has sufficient rotational freedom.
According to a further embodiment of the indexable cutting insert 1, represented in
According to
A development of the indexable cutting insert 1 represented according to
As already described above, the cutting edge 16 of the indexable cutting insert 1 is located in a space recessed within the enveloping and/or surrounding material 8 of the milling head 3. The enveloping and/or surrounding material 8 of the milling head 3 here works only in conjunction with the disk surface 13.
It is now easily understood that the Y axis 4.1 is provided to run rotation-symmetrically on the milling head 2.1, while the said Y axis 4.1 runs at an offset in relation to the rotational axis 5.1. This can be particularly clearly seen in
Thus it becomes clear, when considering
In a development of, in particular, a stable rotational axis 12.1 for the indexable cutting insert 3.1, the mounting pin 8.1 is equipped on the other end 13.1 thereof with a tapped area 14.1 serving to fix the said mounting pin 8.1 in the material of the milling head 2.1. As can be seen from
In a development of the invention, in particular represented in
Number | Date | Country | Kind |
---|---|---|---|
202008000027.0 | Mar 2008 | DE | national |
202008008863.1 | Oct 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/053154 | 3/17/2009 | WO | 00 | 9/17/2010 |