Tangential cutting inserts, also known as on-edge, or lay down, cutting inserts, are oriented in an insert holder in such a manner that during a cutting operation on a workpiece the cutting forces are directed along a major (thicker) dimension of the cutting insert. An advantage of such an arrangement being that the cutting insert can withstand greater cutting forces than when oriented in such a manner that the cutting forces are directed along a minor (thinner) dimension of the cutting insert.
Currently, double-side indexable cutting inserts with multiple cutting edges are relegated to having negative axial rake angles for cutting clearance. By mounting the cutting inserts with a negative axial rake angle, the cutting inserts cannot take complete advantage of the greater cutting forces that the cutting insert can withstand when tangentially mounted in the insert holder or toolholder by taking a limited depth of cut.
Briefly, according to this invention, there is provided an indexable cutting insert, comprising a first component including a top surface and at least one side surface, wherein a first cutting edge is defined at an intersection between the at least one side surface and the top surface; a third component mirror symmetric with respect to the first component about a vertical axis of the cutting insert; and a second component disposed between the first and third components, wherein the first cutting edge defines a positive axial rake angle.
In another aspect of the invention, a toolholder comprises at least one insert pocket capable of receiving an indexable cutting insert. The indexable cutting insert comprises a first component including a top surface and at least one side surface, wherein a first cutting edge is defined at an intersection between the at least one side surface and the top surface; a third component mirror symmetric with respect to the first component about a vertical axis of the cutting insert; and a second component disposed between the first and third components, wherein the first cutting edge defines a positive axial rake angle.
In yet another aspect of the invention, a method of making an indexable cutting insert from three basic components: a first component including a top surface and at least one side surface, wherein at least one cutting edge is defined at an intersection between the at least one side surface and the top surface; a third component being mirror symmetric with respect to the first component about a vertical axis of the cutting insert; and a second component disposed between the first and third components, the method comprising the steps of: rotating the first component about the vertical axis by a first offset angle with respect to a third component; and rotating the second component about the vertical axis at a second offset angle with respect to the first and third components, whereby the at least one cutting edge defines a positive axial rake angle.
In yet another embodiment, an indexable cutting insert is comprised of a body having a central axis extending therethrough and a central plane perpendicular to the axis and midway through the body. The body has a first component which, when viewed along the central axis, has vertices connected by chords to define a first symmetric polygonal shape. The first component has a top surface and side surfaces. A third component which, when viewed along the central axis, has vertices connected by chords to define a third symmetric polygonal shape. The third component has a bottom surface and side surfaces. The third component is coaxial with the first component and positioned such that the top surface of the first component defines a front face of the insert while the bottom surface of the third component defines a rear face of the insert. The third component is mirror symmetric about the central axis with respect to the first component. At least one cutting edge and an adjacent transition segment are formed by the intersection of a first component side and the top surface. The cutting edge and the transition segment form an edge/segment pair. The at least one cutting edge extends in a direction angled from the associated chord to form an axial rake angle.
Further features of the present invention, as well as the advantages derived therefrom, will become clear from the following detailed description made with reference to the drawings in which:
Referring to the drawings, wherein like reference characters represent like elements,
The first component 12 is generally polygonal in shape. In the illustrated embodiment, the first component 12 includes an outer surface that forms a top surface 18 of the cutting insert 10, and the third component includes a similar outer surface that forms a bottom surface 19 (
The first component 12 includes a plurality of sidewalls or side surfaces, shown generally at 22, 24, 26 and 28. In the illustrated embodiment, each of the side surfaces 22, 24, 26 and 28 are substantially identical to each other. For brevity, only the side surface 22 will be discussed in detail. The side surface 22 includes a first substantially planar surface 22a, a first radiused surface 22b, a second radiused or planar surface 22c, and a second substantially planar surface 22d. The first and second radiused surfaces 22b, 22c may form a continuous radiused surface for forming a blend between the first and third planar surfaces 22a, 22d. The purpose of the first and second radiused surfaces 22b, 22c is to provide adequate chip removal during a cutting operation. The side surface 22 forms an axial rake face when the cutting insert 10 is mounted in the insert pocket 310 of a toolholder 300 (
A first leading edge or cutting edge 30 is formed at the intersection between the first planar surface 22a of the side surface 22 and the top surface 18. Similarly, a second leading edge or cutting edge 32 is formed at the intersection between the first planar surface 24a of the side surface 24 and the top surface 18, a third leading edge or cutting edge 34 is formed at the intersection between the first planar surface 26a of the side surface 26 and the top surface 18, and a fourth leading edge or cutting edge 36 is formed at the intersection between the first planar surface 28a of the side surface 28 and the top surface 18. Because the third component 16 is substantially identical to the first component 12, the cutting insert 10 has a total of eight cutting edges (2 components×4 cutting edges/component=8 cutting edges). It will be appreciated that the invention can be practiced with fewer or greater number of cutting edges. For example, a cutting insert can be designed with first and third components in the form an equilateral triangle. In this case, the cutting insert would have a total of six cutting edges (2 components×3 cutting edges/component=six cutting edges). In another example, a cutting insert can be designed with ten cutting edges in the case where the first and third components are in the form of a pentagram (2 components×5 cutting edges/component=10 cutting edges). Although the illustrated embodiment has two substantially identical polygon components, it is possible that a cutting insert can be designed with additional polygon components separated by additional center components with a like number of sides.
As shown in
In the illustrated embodiment, a length or distance 46 between the four vertexes 38, 40, 42 and 44 of the first (and third) component 12 is substantially identical forming a square having a dimension of approximately 0.500 inches (12.70 mm). However, it will be appreciated that the distance 46 between the vertexes 38, 40, 42 and 44 need not be equidistant to practice the principles of the invention. For example, the distance between the four vertexes 38, 40, 42 and 44 may form a rectangle in which the vertexes 32 and 38 and the vertexes 34 and 36 have a substantially identical first distance, while the vertexes 32 and 34 and the vertexes 36 and 38 have a substantially identical second distance that is different than the first distance.
In addition, the invention is not limited to the number of vertexes 38, 40, 42 and 44. For example, the principles of the invention can be practiced with the first and third components 12, 16 having three vertexes, which may or may not be equidistant from each other forming a polygon shape of an equilateral triangle. In another example, the first and third components 12, 16 may have five vertexes, which may or may not be equidistant from each other forming a polygon shape of the pentagram. Other polygon shapes are within the contemplation of the invention.
One aspect of the invention is that each cutting edge 30, 32, 34 and 36 has a length that extends from a respective nose radius 38, 40, 42 and 44 to the first radiused surface 22b, 24b, 26b and 28b of the respective side surface 22, 24, 26 and 28. As shown in
Another aspect of the invention is that each cutting edge 30, 32, 34 and 36 (and each of the four cutting edges of the third component 16) is formed at a positive axial rake angle 50. In the illustrated embodiment, the angle 50 is approximately fifteen (15) degrees; however, the invention is not limited by the angle 50 so long that it is a positive axial rake angle. For example, the positive axial rake angle 50 may be lesser, for example, ten (10) degrees, or greater, for example, twenty (20) degrees, depending on design factors, such as, for example, the material to be cut, the desired depth of cut, and the feed rate for the cutting insert 10. This aspect of the invention also allows the cutting insert 10 to provide a more aggressive depth of cut for a particular material to be cut, such as steel, and the like, as compared to conventional cutting inserts.
The second component 14 comprises generally a square-shaped polygon having four substantially planar sidewalls 52, 54, 56 and 58 that provide an abutment surface for the cutting insert 10 when the cutting insert 10 is mounted in a pocket wall 310 of a toolholder 300 (
As seen in
In addition, the second component 14 is rotated or offset relative to the first and third components 12, 16 by an offset angle 64 to allow the cutting insert 10 to be indexable. In other words, the offset angle 64 allows for the first and third components 12, 16 to the cutting insert 10 to be seated properly in the insert pocket 310 of the toolholder 300 (
As shown in
For example, the principles of the design concept of the invention can be used achieve a cutting insert 100, shown in
The first component 112 includes a plurality of axial rake faces or side surfaces, shown generally at 122, 124, 126 (out of view) and 128 (out of view). In the illustrated embodiment, each of the axial rake faces or side surfaces 122, 124, 126 and 128 are substantially identical to each other. For brevity, only the side surface 122 will be discussed in detail. The side surface 122 includes a first substantially planar surface 122a, a first radiused surface 122b, a second radiused surface 122c, and a second substantially planar surface 122d. The first and second radiused surfaces 122b, 122c may form a continuous radiused surface for forming a blend between the first and third planar surfaces 122a, 122d. Although the illustrated embodiment shows the surface 122a as substantially planar, it is envisioned that the surface 122a may have a serpentine shape, S-shape, and the like.
A first leading edge or cutting edge 130 is formed at the intersection between the first planar surface 122a of the side surface 122 and the top surface 118. Similarly, a second, third and fourth leading edges or cutting edges 132, 134 and 136 are formed at the intersection between the first planar surfaces 124a, 126a and 128a of the side surfaces 124, 126 and 128 and the top surface 118. Because the third component 116 is substantially identical to the first component 112, the cutting insert 100 has a total of eight cutting edges (2 components×4 cutting edges/component=8 cutting edges).
A radiused blend 153 is formed by the second component 114 and extends between the side surface 122 of the first component 112 and the sidewall 152 of the second component 114. The radiused blend 153 cooperates with the radiused side surfaces 122b and 122c of the first component 112 for effective chip control. In the illustrated embodiment, the radiused blend 153 has an S-shaped profile; however, other shapes are contemplated by the invention. Similarly, a radiused blend 155 is formed by the second component 114 and extends between the side surface 124 of the first component 112 and the sidewall 154 of the second component 114. Likewise, a radiused blend 157 (out of view) is formed by the second component 114 and extends between the side surface 126 of the first component 112 and the sidewall 156 of the second component 114, and a radiused blend 159 (out of view) is formed by the second component 114 and extends between the side surface 128 of the first component 112 and the sidewall 158 of the second component 114.
A first vertex or nose radius 138 is formed at the intersection between the second planar surface 122d of the side surface 122 and the first planar surface 128a of the adjacent side surface 128. Similarly, a second vertex or nose radius 140 is formed at the intersection between the second planar surface 124d of the side surface 124 and the first planar surface 122a of the adjacent side surface 122, a third vertex or nose radius 142 is formed at the intersection between the second planar surface 126d of the side surface 126 and the first planar surface 124a of the adjacent side surface 124, and a fourth vertex or nose radius 144 is formed at the intersection between the second planar surface 128d of the side surface 128 and the first planar surface 126a of the adjacent side surface 126.
In addition, a first wiper edge 139 is formed at the intersection between the nose radius 138 and the sidewalls 152, 158 of the second component 114. Similarly, a second wiper edge 141 is formed at the intersection between the nose radius 140 and the sidewalls 152, 154 of the second component 114, a third wiper edge 143 (out of view) is formed at the intersection between the nose radius 142 and the sidewalls 154, 156 of the second component 114, and a fourth wiper edge 143 (out of view) is formed at the intersection between the nose radius 144 and the sidewalls 156, 158 of the second component 114.
By using the design concept of the invention, each cutting edge 130, 132, 134 and 136 has a length that extends from a respective nose radius 138, 140, 142 and 144 to the first radiused surface 122b, 124b, 126b and 128b of the respective side surface 122, 124, 126 and 128. The length of each cutting edge 130, 132, 134 and 136 is greater than one-half of an inscribed circle (IC) dimension of the cutting insert 100 to provide a more aggressive depth of cut for a particular material to be cut as compared to conventional insert designs.
Another aspect of the invention is that each cutting edge 130, 132, 134 and 136 (and each of the four cutting edges of the third component 116) is formed at a positive axial rake angle 150. In the illustrated embodiment, the angle 150 is approximately fifteen (15) degrees; however, the invention is not limited by the angle 150 so long that it is a positive axial rake angle. For example, the positive axial rake angle 150 may be any angle greater than zero (0) degrees, depending on design factors, such as, for example, the material to be cut, the desired depth of cut, and the feed rate for the cutting insert 100. This aspect of the invention also allows the cutting insert 100 to provide a more aggressive depth of cut for a particular material to be cut, such as steel, and the like, as compared to conventional cutting inserts.
In another example, the principles of the design concept of the invention can be used to achieve a cutting insert 100′, shown in
In the illustrated embodiment, the angled sidewall 152a is formed at a seating angle 157 of approximately ten (10) degrees with respect to the longitudinal or z-axis. Similarly, the angled sidewalls 154a, 156a (out of view) and 158a (out of view) are formed at a seating angle 157 of approximately ten (10) degrees. The angled sidewall 152b is also formed at a seating angle 159 of approximately ten (10) degrees. Similarly, the angled sidewalls 154b, 156b (out of view) and 158b (out of view) are at a seating angle 159 of approximately ten (10) degrees. The seating angles 157, 159 of the sidewalls 152′, 154′, 156′ and 158′ help “dovetail” the cutting insert 100′ into the insert pocket 310 of the toolholder 300 (
In the illustrated embodiment, the angles 157, 159 are substantially identical. However, the angle 159 may be different than the angle 157. Further, the angles 157, 159 may be any desirable angle other than ten (10) degrees, depending on the desired cutting operation performed by the cutting insert 100′.
In yet another example, the principles of the design concept of the invention can be used achieve a cutting insert 200, shown in
The first component 212 includes a plurality of axial rake faces or side surfaces, shown generally at 222, 224, 226 (out of view) and 228 (out of view). In the illustrated embodiment, each of the axial rake faces or side surfaces 222, 224, 226 and 228 are substantially identical to each other. For brevity, only the side surface 222 will be discussed in detail. The side surface 222 includes a first substantially planar surface 222a, a first radiused surface 222b, a second radiused surface 222c, and a second substantially planar surface 122d. The first and second radiused surfaces 222b, 222c may form a continuous radiused surface for forming a blend between the first and third planar surfaces 222a, 222d. Although the illustrated embodiment shows the surface 222a as substantially planar, it is envisioned that the surface 222a may have a serpentine shape, S-shape, and the like.
A first leading edge or cutting edge 230 is formed at the intersection between the first planar surface 222a of the side surface 222 and the top surface 218. Similarly, a second, third and fourth leading edges or cutting edges 232, 234 and 236 are formed at the intersection between the first planar surfaces 224a, 226a and 228a of the side surfaces 224, 226 and 228 and the top surface 218. Because the third component 216 is substantially identical to the first component 212, the cutting insert 200 has a total of eight cutting edges (2 components×4 cutting edges/component=8 cutting edges).
A radiused blend 253 is formed by the second component 214 and extends between the side surface 222 of the first component 212 and the sidewall 252 of the second component 214. The radiused blend 253 cooperates with the radiused side surfaces 222b and 222c of the first component 212 for effective chip control. In the illustrated embodiment, the radiused blend 253 has an S-shaped profile; however, other shapes are contemplated by the invention. Similarly, a radiused blend 255 is formed by the second component 214 and extends between the side surface 224 of the first component 212 and the sidewall 254 of the second component 214. Likewise, a radiused blend 257 (out of view) is formed by the second component 214 and extends between the side surface 226 of the first component 212 and the sidewall 256 of the second component 214, and a radiused blend 259 (out of view) is formed by the second component 214 and extends between the side surface 228 of the first component 212 and the sidewall 258 of the second component 214.
A first vertex or nose radius 238 is formed at the intersection between the second planar surface 222d of the side surface 222 and the first planar surface 228a of the adjacent side surface 228. Similarly, a second vertex or nose radius 240 is formed at the intersection between the second planar surface 224d of the side surface 224 and the first planar surface 222a of the adjacent side surface 222, a third vertex or nose radius 242 is formed at the intersection between the second planar surface 226d of the side surface 226 and the first planar surface 224a of the adjacent side surface 224, and a fourth vertex or nose radius 244 is formed at the intersection between the second planar surface 228d of the side surface 228 and the first planar surface 226a of the adjacent side surface 226.
In addition, a first wiper edge 239 is formed at the intersection between the nose radius 238 and the sidewalls 252, 258 of the second component 214. Similarly, a second wiper edge 241 is formed at the intersection between the nose radius 240 and the sidewalls 252, 254 of the second component 214, a third wiper edge 243 (out of view) is formed at the intersection between the nose radius 242 and the sidewalls 254, 256 of the second component 214, and a fourth wiper edge 243 (out of view) is formed at the intersection between the nose radius 244 and the sidewalls 256, 258 of the second component 214.
By using the design concept of the invention, each cutting edge 230, 232, 234 and 236 has a length that extends from a respective nose radius 238, 240, 242 and 244 to the first radiused surface 222b, 224b, 226b and 228b of the respective side surface 222, 224, 226 and 228. The length of each cutting edge 230, 232, 234 and 236 is greater than one-half of an inscribed circle (IC) dimension of the cutting insert 200 to provide a more aggressive depth of cut for a particular material to be cut as compared to conventional insert designs.
Another aspect of the invention is that each cutting edge 230, 232, 234 and 236 (and each of the four cutting edges of the third component 216) is formed at a positive axial rake angle 250. In the illustrated embodiment, the angle 250 is approximately fifteen (15) degrees; however, the invention is not limited by the angle 250 so long that it is a positive axial rake angle. For example, the positive axial rake angle 250 may be any angle greater than zero (0) degrees, depending on design factors, such as, for example, the material to be cut, the desired depth of cut, and the feed rate for the cutting insert 200. This aspect of the invention also allows the cutting insert 200 to provide a more aggressive depth of cut for a particular material to be cut, such as steel, and the like, as compared to conventional cutting inserts.
As shown in
As illustrated, the cutting insert 200 is mounted in the insert pocket 310 at a negative angle 320 of approximately five (5) degrees such that the vertex 238 of the cutting insert 200 is slightly below an outer surface 322 of the toolholder 300. As a result of mounting the cutting insert 200 at the negative angle 320 in the insert pocket 310, the cutting insert 200 provides a net positive axial rake angle of approximately ten (10) degrees (15−5=10). It will be appreciated that the net positive axial rake angle can be any desirable positive axial rake angle, depending on the amount of positive axial rake provided by the cutting insert 10, 100, 200 and the amount of negative angle 320 of the insert pocket 310.
In yet another example, the principles of the design concept can be used to achieve a cutting insert 400 shown in
Therefore, the third component 416, which when viewed along the central axis 468 also has vertices 538, 540, 542, 544 connected by chords (only chord 549 illustrated in
The third component 416 is coaxial with the first component 412 and positioned such that the top surface 418 of the first component 412 defines a front face of the insert 400 while the bottom surface 419 of the third component 416 defines a rear face of the insert 400. Directing attention to
The first cutting edge 430 extends in a direction angled from the associated chord 446 to form an axial rake angle A. It should be appreciated that in its pure form the term axial rake angle is directed entirely to the angle formed by the first cutting edge 430 only when the insert 400 is mounted within the cutter 300. However, for purposes of this discussion, the term axial rake angle is relative to the insert 400 and is measured from the chord 446 to the cutting edge 430. The insert in accordance with the subject invention may provide an axial rake angle A that is greater than 0 degrees and less than 30 degrees.
Briefly directing attention to
Returning to
The insert 400 may further include a second component 414 positioned coaxially between the first component 412 and the third component 416. The second component 414, as illustrated in
As illustrated in
As illustrated in
Directing attention to
What has so far been described with respect to a rake angle associated with the cutting edge 430 is the axial rake angle A illustrated in
Directing attention to
Directing further attention to
While attention has been directed to cutting edge 430 of the first component 412, it should be appreciated that the features discussed with respect to cutting edge 430 are also applicable to cutting edges 432, 434, 436 and, furthermore, to similar cutting edges found on the third component 416.
Directing attention again to
It should be appreciated that the edge/segment pair associated with cutting edge 430 and the transition segment 431 associated with chord 446 (
As illustrated in
The cutting inserts 10, 100, 200, 400 discussed within this application are secured within the pocket 310 of the toolholder to a bolt (not shown) extending through the aperture 420 and by securing the cutting insert 400 within the pocket 310, such that two of the mounting pads 453, 455, 457, 459 rest against receiving surfaces within the toolholder pocket 310. However, it should be appreciated that in certain circumstances, the entire second component 414 may be eliminated and the aperture 420 may be modified to secure the insert 400 within the pocket 310 of the toolholder 300. In particular, the aperture 420 may have a splined shaft, or in the alternative, may have a non-circular shaft to prevent rotation of the insert about a non-circular bolt when mounted within the pocket 310.
Other mounting arrangements for the cutting inserts 10, 100, 200, 400 are within the scope of the invention. For example, the cutting insert 200 can be helically arranged and tangentially mounted on an endmill toolholder 500, as shown in
As described above, the indexable cutting insert 10, 100, 200, 400 includes multiple cutting edges with a positive axial rake angle when mounted in the insert pocket of a toolholder. By providing a positive axial rake angle, the cutting insert allows for a more aggressive axial depth of cut when compared to conventional cutting inserts with negative axial rake angles.
The documents, patents and patent applications referred to herein are hereby incorporated by reference.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.
This application is a continuation-in-part of U.S. application Ser. No. 11/471,046 filed Jun. 20, 2006, which will issue as U.S. Pat. No. 7,357,604 on Apr. 15, 2008.
Number | Date | Country | |
---|---|---|---|
Parent | 11471046 | Jun 2006 | US |
Child | 12082970 | US |