The present invention relates to improvements in indexable mills, and more particularly to an indexable mill for burring, trimming, and chamfering workpieces.
Generally, workpieces formed using stamping, die-casting or casting can have local overflow of material at their sides corresponding to the joint of molds as burrs due to many reasons, such as excessive pressure, worn molds, overheat and poor registering. When such defects when going beyond a threshold of acceptability need to be removed. For removing burrs, the common solution is to wear out them manually using an emery wheel or a blasting machine. However, both polishing and blasting can generate considerable noise and dust that contaminates the working environment and requires additional equipment such as operators' dust-proof gears and air cleaning devices, making the manufacturing costs increased. Besides, polishing using emery wheels is dangerous because the peel sands of the emery wheel and burr scraps can scatter in high speed and hurt operators, making this work often short-handed even with attractive pay. Additionally, manual polishing or blasting is unstable in both quality and output. This makes some dealers try to use robotic devices to replace human operation.
However, such robotic devices usually require high initial investment, and are less cost-efficient unless in a mass manufacturing setting. Besides, even if the foregoing polishing or blasting operation is conducted by machinery instead of human, it is nothing more than a solution to workforce, leaving the problems about tough working environment and containment unsolved. Hence, for small-scale production, manual polishing or blasting still have extensive use.
Referring to
Referring to
In addition, since the trapezoid tenons 51 and the trapezoid mortises 61 are of a trapezoid shape, which is particularly subject to angular deviation during production, and once the deviation exits, precisely assembling is impossible.
Therefore, for minimizing the accumulative tolerance and achieving tight combination, the trapezoid tenons 51 and the trapezoid mortises 61 must be processed using high-precision machine tools. This means that the production speed and in turn the output are limited, and the manufacturing costs are increased.
Moreover, since the tool holder 50 and the indexable chamfer bit 60 are combined using fit between the three trapezoid tenons 51 and the threes trapezoid mortises 61, such multiple fit not only increases manufacturing costs, but also may lead to excessive positioning and limit.
Since the precise fit of the trapezoid tenons and the trapezoid mortises requires minimized tolerance and in turn highly accurate production, the size of the tool is limited. This means that the prior-art device has its lower limit in terms of workpieces it can chamfer. Currently, for round holes, only those larger than 11 mm can be chamfered in this way.
Conventionally, burring casts has been conducted manually using polishing or blasting, so the working environment is tough, making the quality and output of the products unstable. During operation, the peel sands of the emery wheel and burr scraps can scatter in high speed and hurt operators, making the work too dangerous and unhealthy for people to take and leading a high turnover rate. Even if the machinery alternative is used, it is nothing more than a solution to workforce, and is unable to reduce or improve the problems about containment to the environment. Besides, in addition to a screw fastening the conventional indexable chamfer mill, tool holder and indexable chamfer bit, an additional engaging means includes three 120°-separated trapezoid tenons peripherally formed on the end surface of the tool holder of the chamfer mill and three corresponding 120°-separated trapezoid mortises peripherally formed on the end surface of the indexable chamfer bit for alignment and interlinking. Accumulative tolerance can generated during manufacturing of these trapezoid tenons and trapezoid mortises, and the larger the angular tolerance is, the greater the accumulative total is. When the accumulative total is great to an extent, the fit between the trapezoid tenons and the trapezoid mortise can have serious deviation.
The disclosed indexable mill comprises a tool holder, having one end thereof provided with a positioning shaft, wherein the positioning shaft has one side thereof provided with a braking block, and the positioning shaft is centrally formed with a threaded hole; and an indexable bit is centrally provided with a positioning hole and a through hole, the positioning hole being configured to receive the positioning shaft, the positioning hole of the indexable bit having one side thereof formed with a gap, the gap forming a braking notch, the braking block and the braking notch being in plug-socket like connection, and the through hole being configured to receive a screw bolt that fixes the indexable bit to the tool holder.
The plug-socket like connection between the positioning shaft of the tool holder and the positioning hole of the indexable bit provides a first positioning function. The wrapping, curved surface contact between the braking block and the braking notch provides a second positioning function. The dual positioning enhances stability and rigidity of the combination.
Preferably, the tool holder has the end thereof provided with a core, and the positioning shaft is deposited on the core, in which the core is configured to be inserted into an edge following wheel and the indexable bit, and the screw bolt fixes the core. The present invention replaces polishing with milling, thereby reducing contamination in the working environment, and being suitable for both large- and small-scale production. The edge following wheel rolls along the profile of the cast or workpiece to the tool is working on, so the indexable bit is led to move along the parting line on the cast or workpiece to trim burrs, making the present invention practical and inventive.
Referring to
The tool holder 10 has its one end provided with a positioning shaft 11. The positioning shaft 11 has its one side provided with a braking block 12. The braking block 12 has its two sides formed as curved mortises 121. The positioning shaft 11 is centrally formed with a threaded hole 13.
The indexable bit 20 has its main body peripherally provided with more than one chamfer blade 21. The indexable bit 20 is centrally formed with a positioning hole 22 and a through hole. The through hole is a countersunk hole 23. The positioning hole 22 is configured to receive and thereby align and position the positioning shaft 11. The positioning hole 22 of the indexable bit 20 has a gap at its one side. The gap forms a braking notch 24. The braking notch 24 has its two sides formed as curved tenons 241 for increased contact area and functions of positioning, retaining and interlinking. The countersunk hole 23 is configured to receive a screw bolt 30 that fixes the indexable bit 20 to the tool holder 10.
Referring to
Referring to
The curved surface contact between the braking block 12 and the braking notch 24 provides a second positioning function. The curved mortises 121 of the braking block 12 embrace and limit the tenons 241 of the braking notch 24, so mutual containment formed between the braking block 12 and the braking notch 24, thereby securing the indexable bit 20 and the tool holder 10 in the form of plug-socket like connection. When working with the positioning between the positioning shaft 11 and the positioning hole 22, the second positioning function contributes to dual positioning, high combination rigidity and low vibration. The dual positioning eliminates problems associated with excessive limit or excessive positioning. The point is that the positioning shaft 11 and the curved mortise 121 at the two sides of the braking block 12 of the tool holder 10 can be formed with a single tool in one operation, and the positioning hole 22 and the curved tenons 241 at the two sides of the braking notch 24 of the indexable bit 20 can be also formed with a single tool in one operation, thereby minimizing accumulation of tolerance and ensuring high machining accuracy.
Referring to
The indexable bit 20 has its one end provided with a positioning hole 22. The positioning hole 22 is configured to engage with the core 14 at the front end of the tool holder 10. At the other end of the indexable bit 20, there is a countersunk hole 23 for receiving a screw bolt 30. In the present embodiment, the indexable bit 20 is a side mill. In the embodiment of
The edge following wheel 40 may be a bearing or a ring that is configured to roll when moving along the profile of a cast or a workpiece, and thereby leads the indexable bit 20 to perform milling along the outline of the cast or the workpiece. Additionally, the edge following wheel 40 may be peripherally mounted with a bushing 41 having various levels of thickness, as shown in
In the embodiment shown in
Referring to
Referring to
With the configuration described above, the combination of the tool holder and the indexable bit in the present invention provides improved stability and rigidity thanks to the dual positioning formed by the first positioning function raised from the plug-socket like connection between the positioning shaft of the tool holder and the positioning hole of the indexable bit, and the second positioning function raised from the embracing and curved surface contact between the braking block and the braking notch, in addition to the conventional screw fastening. Such a structure is first disclosed by the present invention and has not been seen in like products. During fabrication, the improved processing procedure prevents excessive limit and excessive positioning, and since the shear strength and the transmissible torque are increased to 1.257 times and 1.257 times, respectively, the present invention eliminates the problems about excessive machining and excessive positioning as seen in the prior art. In addition, the present invention replaces polishing with milling, thereby reducing contamination in the working environment, and being suitable for both large- and small-scale production. The edge following wheel rolls along the profile of the cast or workpiece to the tool is working on, so the indexable bit is led to move along the parting line on the cast or workpiece to trim burrs, making the present invention practical and inventive.
Number | Date | Country | Kind |
---|---|---|---|
106114872 | May 2017 | TW | national |
106123082 | Jul 2017 | TW | national |