Indicating charge status

Information

  • Patent Grant
  • 11894705
  • Patent Number
    11,894,705
  • Date Filed
    Thursday, December 31, 2020
    3 years ago
  • Date Issued
    Tuesday, February 6, 2024
    3 months ago
Abstract
Charging/recharging systems and charge status indicators are provided. In one implementation, a charge status indicator includes a charge sensing device configured to sense the charge of a rechargeable power supply. The charge status indicator further includes a detection device configured to compare the sensed charge with a plurality of predetermined levels in order to determine one of a plurality of capacity ranges of the rechargeable power supply. The charge status indicator also includes a first light emitting diode (LED), a second LED, and a switching circuit configured to switch the first and second LEDs on and off using a plurality of predefined illumination patterns to indicate the capacity range of the rechargeable power supply.
Description
FIELD OF THE INVENTION

The present invention relates to portable electronic devices and more particularly relates to devices for indicating the charge status of rechargeable power supplies used for powering the portable electronic devices.


BACKGROUND

Generally speaking, portable electronic devices are included in many aspects of everyday life. Examples of some portable electronic devices may include cell phones, wireless landline telephones, electric razors, calculators, wireless computer peripherals, radios, flashlights, wireless barcode scanners, just to name a few. Typically, these portable devices are powered by primary cell (non-rechargeable) batteries or secondary cell (rechargeable) batteries.


Although rechargeable batteries are normally a better economic choice than primary cell batteries and add less toxic waste to landfills, other power sources are available for powering portable electronic devices. For example, supercapacitors are a battery-free alternative that provides many advantages over conventional batteries.


Although supercapacitors do not hold a charge for as long as batteries, supercapacitors are able to be charged or recharged much faster than rechargeable batteries. Also, supercapacitors can be discharged and recharged hundreds of thousands of times without losing their charging capacity. On the other hand, rechargeable batteries may only be able to be discharged and recharged a few hundred times before their charging capacity declines to a point of no longer being usable.


Another advantage is that supercapacitors do not degrade like rechargeable batteries and therefore may never need to be replaced. Also, since there are no chemical reactions involved in the charging and discharging of supercapacitors, there is therefore no decay of chemical materials. Thus, supercapacitors can eliminate the environmental issues associated with the use and disposal of primary cell batteries and rechargeable batteries.


Because of the familiarity with rechargeable batteries, many users may have become accustomed to the practice of charging, discharging, and recharging of rechargeable batteries. Particularly, users may be aware that charging batteries before a first use may take hours and that recharging the batteries may take 10-30 minutes, depending on the type of batteries being used. Therefore, a user might repeatedly check the status of the battery charging process until the batteries are eventually ready to be used. Typically, there may be a single indicator for indicating that the rechargeable batteries are ready to be used.


However, since supercapacitors are charged, discharged, and recharged much faster than batteries, a new type of charge status indication process would be beneficial for users. Therefore, a need exists for a charge status indicator for indicating more information regarding the charge of a rechargeable power supply, particularly a rechargeable supercapacitor. In this way, a user can be informed of the various stages of charge status levels of the supercapacitors.


SUMMARY

Accordingly, in one aspect, the present invention embraces systems, devices, and methods for indicating the charge status of power supplies used for providing power to portable electronic devices. In particular, with the advent of new power supply technologies, such as supercapacitors, that are now being used in common electronic devices, charge status can be indicated to the user in a faster way and in a way that expresses more information than what is typically provided.


In an exemplary embodiment, a charging system is provided. The charging system includes a handheld electronic device having a rechargeable power supply and a base charger configured to support the handheld electronic device during a charging stage. The base charger is configured to provide electric charge to the handheld electronic device during the charging stage to recharge the rechargeable power supply. The charging system further includes a charge sensor configured to sense the charge of the rechargeable power supply and a detection device configured to compare the sensed charge of the rechargeable power supply with a plurality of predetermined charge levels in order to determine one of a plurality of capacity ranges of the rechargeable power supply. The charging system also includes a charge status indicator comprises first and second light emitting diodes (LEDs) and a switching circuit. The switching circuit of the charge status indicator is configured to switch the first and second LEDs according to one of a plurality of predefined illumination patterns to indicate a capacity range of the rechargeable power supply corresponding to the capacity range determined by the detection device.


In another exemplary embodiment, a recharging device is provided. In this embodiment, the recharging device comprises a charging cradle configured to support a handheld electronic device during a charging stage. The charging cradle is configured to supply electric power to the handheld electronic device during the charging stage to recharge a supercapacitor of the handheld electronic device. The recharging device also includes a charge status indicator comprising first and second light emitting diodes (LEDs) and a control circuit. Also, the recharging device includes a sensor configured to continuously sense the charge of the supercapacitor to determine one of a plurality of capacity ranges of the supercapacitor. The control circuit of the charge status indicator is configured to switch the first and second LEDs on and off using a plurality of predefined illumination patterns to indicate the capacity range of the supercapacitor determined by the sensor.


In yet another exemplary embodiment, a charge status indicator includes a charge sensing device configured to sense the charge of a rechargeable power supply and a detection device configured to compare the sensed charge with a plurality of predetermined levels in order to determine one of a plurality of capacity ranges of the rechargeable power supply. The charge status indicator further includes a first light emitting diode (LED), a second LED, and a switching circuit configured to switch the first and second LEDs on and off using a plurality of predefined illumination patterns to indicate the capacity range of the rechargeable power supply.


The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically depicts a perspective view of a charging system according to an embodiment of the present invention.



FIG. 2 schematically depicts a top view of the recharging device shown in FIG. 1 according to an embodiment of the present invention.



FIG. 3 schematically depicts a perspective view of the portable electronic device shown in FIG. 1 according to an embodiment of the present invention.



FIG. 4 schematically depicts a perspective view of a charging system according to a second embodiment of the present invention.



FIG. 5 schematically depicts a block diagram of a charge status indicator according to an embodiment of the present invention.



FIG. 6 schematically depicts a chart showing various illumination patterns of LEDs for indicating the status of a rechargeable power supply according to an embodiment of the present invention.





DETAILED DESCRIPTION

The present invention embraces charging systems for charging and/or recharging a rechargeable power supply. In particular, the rechargeable power supplies described in the present disclosure may include supercapacitors in place of conventional rechargeable batteries. Furthermore, the present invention is directed to charge status indicators and other systems for indicating the charge status of the rechargeable power supply or supercapacitors.



FIG. 1 is a perspective view of an embodiment of a charging system 10. In this embodiment, the charging system 10 includes a wireless electronic device 12 and a recharging device 14. The wireless electronic device 12 may be a handheld device, such as a wireless barcode scanner or laser scanner. In other embodiments, the wireless electronic device 12 may include other types of portable devices, such as wireless landline telephones, electric razors, calculators, flashlights, etc.


The recharging device 14 in the embodiment of FIG. 1 includes a cradle 16 and a base 18. The cradle 16 may be designed to support the wireless electronic device 12 and may include electrical contacts (not shown) for making electrical connection with the wireless electronic device 12. In this manner, electrical power can be provided to the wireless electronic device 12 from the cradle 16 to charge or recharge a rechargeable power supply (not shown) attached externally to a housing 20 of the wireless electronic device 12 or disposed inside the housing 20 of the wireless electronic device 12. The rechargeable power supply may include one or more supercapacitors.


In some embodiments, the wireless electronic device 12 may include a charge status indicator 22 for indicating the charge status of the rechargeable power supply. As shown, the charge status indicator 22 may include a first indicator 24 and a second indicator 26. The first and second indicators 24, 26 may be light emitting diodes (LEDs). According to other embodiments, a second charge status indicator 32 may be incorporated in the base 18. The second charge status indicator 32 may also include a first indicator (e.g., LED) 34 and a second indicator (e.g., LED) 36.


The first and second indicators 24, 26 of the charge status indicator 22 may be positioned in two different locations, as shown, to give the appearance of separate indicators. In an alternative embodiment, the indicators 24, 26 may be located under an opaque window to give the appearance of the same indicator providing two (or more) different colors of light. With an opaque or semi-opaque window, a user would perceive that the light may be coming from the same location and may not notice the difference in the locations of the yellow and green LEDs. Likewise, the first and second indicators 34, 36 of the charge status indicator 32 may also be positioned in different locations (as shown) or under the same opaque window to give the perception of the same location with different colors.


One embodiment may include incorporating the charge status indicator 22 only on the wireless electronic device 12. A second embodiment may include incorporating the charge status indicator 32 only on the base 18. A third embodiment may include incorporating the two charge status indicators 22, 32 on both the wireless electronic device 12 and base 18, respectively.


According to the embodiment of FIG. 1, the base 18 of the recharging device 14 may be configured to hold the cradle 16 above a surface to enable a user to easily engage the wireless electronic device 12 with the cradle 16. Also, the base 18 may include a power cord (not shown) that can be plugged into an electrical outlet, allowing power to be supplied from the outlet to the charging system 10 for charging the rechargeable power supply of the wireless electronic device 12.



FIG. 2 is a top view of an embodiment of the recharging device 14 shown in FIG. 1 with the wireless electronic device 12 removed. In addition to the elements described with respect to FIG. 1, the cradle 16 of the recharging device 14 further comprises electrical contacts 40 for communicating with the wireless electronic device 12 when it is properly seated in the cradle 16. The electrical contacts 40 are configured to provide power to the wireless electronic device 12 for recharging the rechargeable power supply. The electrical contacts 40 are also configured to communicate charge status information from the wireless electronic device 12 to the recharging device 14, particularly with respect to embodiments in which the recharging device 14 includes the charge status indicator 32. The electrical contacts 40 may also be configured to electrically communicate other signals as needed.


The recharging device 14 may further include a power indicator 42 incorporated on the base 18. The power indicator 42 may be configured to indicate when power is being supplied to the recharging device 14 from the electrical outlet allowing the recharging device 14 to properly charge or recharge the rechargeable power supply of the wireless electronic device 12.



FIG. 3 is a perspective view of an embodiment of the wireless electronic device 12 shown in FIG. 1. For example, the wireless electronic device 12 may be a wireless barcode scanner. In addition to the features shown and described with respect to FIG. 1, the wireless electronic device 12 may further include contacts 50 configured for making electrical connection with the electrical contacts 40 of the cradle 16 (FIG. 2). Therefore, when the wireless electronic device 12 is properly seated or nested on the cradle 16, the contacts 50 are configured to touch the electrical contacts 40 of the cradle 16. As mentioned above, when the contacts 40, 50 are connected, electrical power can be provided to the rechargeable power supply as needed for charging or recharging the rechargeable power supply. Also, other communication signals may be shared between the wireless electronic device 12 and the recharging device 14 via the contacts 40, 50.


Therefore, according to one implementation, the charging system 10 (FIGS. 1-3) comprises a handheld electronic device (e.g., wireless electronic device 12) having a rechargeable power supply. The charging system 10 also includes a base charger or recharging device 14 configured to support the handheld electronic device during a charging stage. A charge status indicator (e.g., one or both of charge status indicators 22, 32) comprises first and second LEDs (e.g., LEDs 24, 26 or LEDs 34, 36) and a switching circuit. The base charger is configured to provide electric charge to the handheld electronic device during the charging stage to recharge the rechargeable power supply of the handheld electronic device. The charge status indicator 22, 32 comprises a charge sensor for sensing the charge of the rechargeable power supply. The charge status indicator 22, 32 further comprises a detection device configured to compare the sensed charge of the rechargeable power supply with a plurality of predetermined charge levels in order to determine one of a plurality of capacity ranges of the rechargeable power supply. The switching circuit of the charge status indicator 22, 32 is configured to switch the first and second LEDs (e.g., LEDs 24, 26 or LEDs 34, 36) on and off in one of a plurality of predefined illumination patterns (or on/off patterns) to indicate a capacity range of the rechargeable power supply corresponding to the capacity range determined by the detection device.


In some embodiments, the charge status indicator 32 is incorporated in the base charger (e.g., recharging device 14). In another embodiment, the charge status indicator 22 is incorporated in the handheld electronic device. Specifically, the rechargeable power supply may include at least one supercapacitor. The handheld electronic device may be a wireless barcode scanner.


The plurality of capacity ranges may include a first range designating a “near empty” status, a second range designating a “ready to use” status, a third range designating a “greater than half capacity” status, and a fourth range designating an “at or near full capacity” status. The switching circuit may be configured to switch the first and second LEDs in a first predefined illumination pattern (or on/off pattern) when the charge of the rechargeable power supply falls within the first range, a second predefined illumination pattern when the charge of the rechargeable power supply falls within the second range, a third predefined illumination pattern when the charge of the rechargeable power supply falls within the third range, and a fourth predefined illumination pattern when the charge of the rechargeable power supply falls within the fourth range. In particular, the first predefined illumination pattern may include repeating a cycle of switching the first LED on for about 500 ms and off for about 500 ms. The second predefined illumination pattern may include repeating a cycle of switching the second LED on for about 500 ms and off for about 500 ms. The third predefined illumination pattern may include repeating a cycle of switching the second LED on for about 1000 ms and off for about 500 ms. Also, the fourth predefined illumination pattern may include switching the second LED on.


In one example, the first LED may be a yellow LED and the second LED may be a green LED. The switching circuit may be configured to switch the first and second LEDs off when the base charger is not charging the rechargeable power supply or when the handheld electronic device is not properly supported by the base charger. Furthermore, the switching circuit may be configured to switch at least one of the first and second LEDs in a rapid on/off pattern when at least one of the charge sensor and detection device detects a charging error or a condition in which the charging has been suspended.



FIG. 4 is a perspective view of a second embodiment of a charging system 50. In this embodiment, the charging system 50 includes a wireless electronic device 52 and a recharging device 54. The wireless electronic device 52 may be a handheld device, such as a wireless barcode scanner or laser scanner. In other embodiments, the wireless electronic device 52 may include other types of portable devices, such as wireless landline telephones, electric razors, calculators, flashlights, etc.


The recharging device 54 in the embodiment of FIG. 4 includes a base that acts as a cradle for supporting the wireless electronic device 52 during charging. The recharging device 54 may be designed to support the wireless electronic device 52 and may include electrical contacts (not shown) for making electrical connection with the wireless electronic device 52. In this manner, electrical power can be provided to the wireless electronic device 52 from the recharging device 54 to charge or recharge a rechargeable power supply (not shown) attached externally to the wireless electronic device 52 or disposed inside a housing of the wireless electronic device 52. The rechargeable power supply may include one or more supercapacitors.


In some embodiments, the wireless electronic device 52 may include a charge status indicator 56 for indicating the charge status of the rechargeable power supply. As shown, the charge status indicator 56 may include a first indicator 58 and a second indicator 60. The first and second indicators 58, 60 may be light emitting diodes (LEDs). According to other embodiments, a second charge status indicator 62 may be incorporated in the recharging device 54. The second charge status indicator 62 may also include first and second LEDs.


One embodiment may include incorporating the charge status indicator 56 only on the wireless electronic device 52. A second embodiment may include incorporating the charge status indicator 62 only on the recharging device 54. A third embodiment may include incorporating the two charge status indicators 56, 62 on both the wireless electronic device 52 and recharging device 54, respectively.


According to the embodiment of FIG. 4, the recharging device 54 may be configured to support the wireless electronic device 52 in an upright manner. Also, the recharging device 54 may include a power cord (not shown) that can be plugged into an electrical outlet, allowing power to be supplied from the outlet to the charging system 50 for charging the rechargeable power supply of the wireless electronic device 52.


The charge status indicator 62 may be built into an oval page button that may be used for paging the wireless electronic device 52. The oval page button may include an opaque or semi-opaque material through which light from one or more indicators may be diffused. One side (e.g., the left side) of the oval page button may comprise the charge status indicator 62, which may include a first indicator (e.g., a green LED) and a second indicator (e.g., a yellow LED) underneath the opaque or semi-opaque material. The user may perceive the color change when one or the other of the indicators is illuminated, but may not necessarily notice the change in the location of the indicators underneath the button. In some embodiments, the other side (e.g., the right side) of the oval page button may include a third indicator (e.g., a red LED) used for other indications, such as a “power on” indication or a paging operation.



FIG. 5 is a block diagram illustrating an embodiment of a charge status indicator 60. The charge status indicator 60 of FIG. 5 may represent an embodiment of the charge status indicator 22 incorporated on the wireless electronic device 12 and/or an embodiment of the charge status indicator 32 incorporated on the recharging device 14. According to some embodiments, portions of the charge status indicator 60 may be incorporated in the wireless electronic device 12 while other portions of the charge status indicator 60 may be incorporated in the recharging device 14.


In this embodiment, the charge status indicator 60 includes a sensor 62, memory 64, a charge level comparing unit 66, an output control unit 68, and output devices 70. The sensor 62 may be a charge sensor for sensing the stored charge of the rechargeable power supply. The memory 64 may be configured to store various charge level values. The charge level comparing unit 66 is configured to compare the charge sensed by the sensor 62 with the various charge level values stored in the memory 64.


Based on the comparison made by the charge level comparing unit 66, the charge level comparing unit 66 and/or the output control unit 68 may be configured to determine one of multiple different ranges within which the sensed charge level lies. Once the range is detected, the output control unit 68 is configured to control the output devices 70 to indicate the detected range to the user.


The output devices 70 may include visual and/or audible indicating devices. For example, the output devices 70 may include two LEDs for visually indicating the charge status. In this sense, the output control unit 68 may be configured as a switching control device for switching the LEDs on and off according to predefined patterns. The predefined patterns may include signals that can intuitively communicate various charge status levels to the user. For instance, the output devices 70 may include a first LED having one color (e.g., yellow) and a second LED having another color (e.g., green).


According to one embodiment, the charge status indicator 60 may include a charge sensing device (e.g., sensor 62) configured to sense the charge of a rechargeable power supply. The charge status indicator 60 may further includes a detection device (e.g., charge level comparing unit 66) configured to compare the sensed charge with a plurality of predetermined levels in order to determine one of a plurality of capacity ranges of the rechargeable power supply. The charge status indicator 60 also include the output devices 70, such as a first LED and a second LED. Also, a switching circuit (e.g., output control unit 68) is configured to switch the first and second LEDs on and off using a plurality of predefined illumination (or on/off) patterns to indicate the capacity range of the rechargeable power supply.


Furthermore, the rechargeable power supply may include at least one supercapacitor and may be incorporated in a wireless barcode scanner. The charge status indicator may additionally or alternatively be incorporated in a cradle (e.g., recharging device 14) that is configured to support the wireless barcode scanner during a charging process, wherein the cradle may be further configured to provide electric charge to the wireless barcode scanner during the charging process to recharge the supercapacitor of the wireless barcode scanner.


The plurality of capacity ranges may include a first range designating a “near empty” status, a second range designating a “ready to use” status, a third range designating a “greater than half capacity” status, and a fourth range designating an “at or near full capacity” status. The switching circuit (e.g., output control unit 68) may be configured to switch the first and second LEDs in a first predefined illumination pattern when the charge of the rechargeable power supply falls within the first range, a second predefined illumination pattern when the charge of the rechargeable power supply falls within the second range, a third predefined illumination pattern when the charge of the rechargeable power supply falls within the third range, and a fourth predefined illumination pattern when the charge of the rechargeable power supply falls within the fourth range. For example, the first predefined illumination pattern may include repeating a cycle of switching the first LED on for about 500 ms and off for about 500 ms, the second predefined illumination pattern may include repeating a cycle of switching the second LED on for about 500 ms and off for about 500 ms, the third predefined illumination pattern may include repeating a cycle of switching the second LED on for about 1000 ms and off for about 500 ms, and the fourth predefined illumination pattern may include switching the second LED on indefinitely.


In addition, the switching circuit (e.g., output control unit 68) may be configured to switch the first and second LEDs off when the base charger is not charging the rechargeable power supply or when the handheld electronic device is not properly supported by the base charger. The switching circuit may also be configured to switch at least one of the first and second LEDs in a rapid on/off pattern when the charge sensing device or detection device detects a charging error or a condition in which the charging process has been suspended.



FIG. 6 is a diagram of a chart 80 showing exemplary implementations of illumination or on/off patterns of the output devices 70 for indicating the status of the rechargeable power supply. The chart 80 defines the signals that may be provided by the output control unit 68 (or switching circuit) for controlling the illumination of the output devices 70 (e.g., LEDs). In this embodiment, the indicators or output devices 70 include a first LED (i.e., “LED #1”) and a second LED (i.e., “LED #2”). According to other embodiments, the charge status indicator 60 may include additional LEDs (e.g., three or more LEDs).


According to the chart 80 of FIG. 6, the output control unit 68 is configured to switch the LEDs on and off in predefined patterns depending on the detected status. When the wireless electronic device 12 (e.g., barcode scanner) is absent (i.e., not seated in the cradle 16), both LEDs may be off to indicate a “Scanner Absent” status or other “wireless electronic device absent” status. If a charging error is detected, one or both of the LEDs may be switched on and off in a rapid pattern (e.g., 300 ms on and 300 ms off). This on/off cycle is repeated indefinitely until another condition is detected.


The indicators may also indicate a “near empty” status, which may be indicated by a repeating on/off pattern of LED #1 (e.g., yellow LED), such as a pattern of 500 ms on and 500 ms off. The second LED is switched off. The “near empty” indication may represent a condition in which the rechargeable power supply is currently holding a charge at 0% to about 25% full capacity.


A “ready to use” status may be defined by switching LED #2 (e.g., green LED) repeatedly on and off in a signal pattern of 500 ms high (i.e., on) and 500 ms low (i.e., off). The first LED is switched off during this time. The “ready to use” indication may represent a condition in which the rechargeable power supply is currently holding a charge of about 25% to about 50% of full capacity. As an example, when the rechargeable power supply is a supercapacitor and the wireless electronic device is a barcode scanner, the “ready to use” indication may signal to the user that the barcode scanner can be used to scan at least a few barcodes before the rechargeable power supply needs to be recharged further.


A “half capacity” status may be defined by switching LED #1 off and switching LED #2 on and off in a pattern of one second at a high signal (i.e., on) and 500 ms at a low signal (i.e., off). The “half capacity” indication may represent a condition in which the rechargeable power supply is currently holding a charge of about 50% to about 75% of full capacity.


The status of “full capacity” or “near full capacity” may be defined by switching LED #2 on indefinitely and LED #1 is switched off. The “full capacity” indication may represent a condition in which the rechargeable power supply is currently holding a charge of about 75% to 100% of full capacity.


It should be noted that other embodiments may include different output devices 70 or a different number of LEDs. Other embodiments may also include different colors of LEDs and/or different timing signals for switching the LEDs on and off. Also, other embodiments may be used to indicate different ranges of charges with respect to full capacity.


To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:


U.S. Pat. Nos. 6,832,725; 7,128,266; 7,159,783; 7,413,127; 7,726,575; 8,294,969; 8,317,105; 8,322,622; 8,366,005; 8,371,507; 8,376,233; 8,381,979; 8,390,909; 8,408,464; 8,408,468; 8,408,469; 8,424,768; 8,448,863; 8,457,013; 8,459,557; 8,469,272; 8,474,712; 8,479,992; 8,490,877; 8,517,271; 8,523,076; 8,528,818; 8,544,737; 8,548,242; 8,548,420; 8,550,335; 8,550,354; 8,550,357; 8,556,174; 8,556,176; 8,556,177; 8,559,767; 8,599,957; 8,561,895; 8,561,903; 8,561,905; 8,565,107; 8,571,307; 8,579,200; 8,583,924; 8,584,945; 8,587,595; 8,587,697; 8,588,869; 8,590,789; 8,596,539; 8,596,542; 8,596,543; 8,599,271; 8,599,957; 8,600,158; 8,600,167; 8,602,309; 8,608,053; 8,608,071; 8,611,309; 8,615,487; 8,616,454; 8,621,123; 8,622,303; 8,628,013; 8,628,015; 8,628,016; 8,629,926; 8,630,491; 8,635,309; 8,636,200; 8,636,212; 8,636,215; 8,636,224; 8,638,806; 8,640,958; 8,640,960; 8,643,717; 8,646,692; 8,646,694; 8,657,200; 8,659,397; 8,668,149; 8,678,285; 8,678,286; 8,682,077; 8,687,282; 8,692,927; 8,695,880; 8,698,949; 8,717,494; 8,717,494; 8,720,783; 8,723,804; 8,723,904; 8,727,223; 8,740,082; 8,740,085; 8,746,563; 8,750,445; 8,752,766; 8,756,059; 8,757,495; 8,760,563; 8,763,909; 8,777,108; 8,777,109; 8,779,898; 8,781,520; 8,783,573; 8,789,757; 8,789,758; 8,789,759; 8,794,520; 8,794,522; 8,794,525; 8,794,526; 8,798,367; 8,807,431; 8,807,432; 8,820,630; 8,822,848; 8,824,692; 8,824,696; 8,842,849; 8,844,822; 8,844,823; 8,849,019; 8,851,383; 8,854,633; 8,866,963; 8,868,421; 8,868,519; 8,868,802; 8,868,803; 8,870,074; 8,879,639; 8,880,426; 8,881,983; 8,881,987; 8,903,172; 8,908,995; 8,910,870; 8,910,875; 8,914,290; 8,914,788; 8,915,439; 8,915,444; 8,916,789; 8,918,250; 8,918,564; 8,925,818; 8,939,374; 8,942,480; 8,944,313; 8,944,327; 8,944,332; 8,950,678; 8,967,468; 8,971,346; 8,976,030; 8,976,368; 8,978,981; 8,978,983; 8,978,984; 8,985,456; 8,985,457; 8,985,459; 8,985,461; 8,988,578; 8,988,590; 8,991,704; 8,996,194; 8,996,384; 9,002,641; 9,007,368; 9,010,641; 9,015,513; 9,016,576; 9,022,288; 9,030,964; 9,033,240; 9,033,242; 9,036,054; 9,037,344; 9,038,911; 9,038,915; 9,047,098; 9,047,359; 9,047,420; 9,047,525; 9,047,531; 9,053,055; 9,053,378; 9,053,380; 9,058,526; 9,064,165; 9,064,165; 9,064,167; 9,064,168; 9,064,254; 9,066,032; 9,070,032; 9,076,459; 9,079,423; 9,080,856; 9,082,023; 9,082,031; 9,084,032; 9,087,250; 9,092,681; 9,092,682; 9,092,683; 9,093,141; 9,098,763; 9,104,929; 9,104,934; 9,107,484; 9,111,159; 9,111,166; 9,135,483; 9,137,009; 9,141,839; 9,147,096; 9,148,474; 9,158,000; 9,158,340; 9,158,953; 9,159,059; 9,165,174; 9,171,543; 9,183,425; 9,189,669; 9,195,844; 9,202,458; 9,208,366; 9,208,367; 9,219,836; 9,224,024; 9,224,027; 9,230,140; 9,235,553; 9,239,950; 9,245,492; 9,248,640; 9,250,652; 9,250,712; 9,251,411; 9,258,033; 9,262,633; 9,262,660; 9,262,662; 9,269,036; 9,270,782; 9,274,812; 9,275,388; 9,277,668; 9,280,693; 9,286,496; 9,298,964; 9,301,427; 9,313,377; 9,317,037; 9,319,548; 9,342,723; 9,361,882; 9,365,381; 9,373,018; 9,375,945; 9,378,403; 9,383,848; 9,384,374; 9,390,304; 9,390,596; 9,411,386; 9,412,242; 9,418,269; 9,418,270; 9,465,967; 9,423,318; 9,424,454; 9,436,860; 9,443,123; 9,443,222; 9,454,689; 9,464,885; 9,465,967; 9,478,983; 9,481,186; 9,487,113; 9,488,986; 9,489,782; 9,490,540; 9,491,729; 9,497,092; 9,507,974; 9,519,814; 9,521,331; 9,530,038; 9,572,901; 9,558,386; 9,606,581; 9,646,189; 9,646,191; 9,652,648; 9,652,653; 9,656,487; 9,659,198; 9,680,282; 9,697,401; 9,701,140; U.S. Design Pat. No. D702,237; U.S. Design Pat. No. D716,285; U.S. Design Pat. No. D723,560; U.S. Design Pat. No. D730,357; U.S. Design Pat. No. D730,901; U.S. Design Pat. No. D730,902; U.S. Design Pat. No. D734,339; U.S. Design Pat. No. D737,321; U.S. Design Pat. No. D754,205; U.S. Design Pat. No. D754,206; U.S. Design Pat. No. D757,009; U.S. Design Pat. No. D760,719; U.S. Design Pat. No. D762,604; U.S. Design Pat. No. D766,244; U.S. Design Pat. No. D777,166; U.S. Design Pat. No. D771,631; U.S. Design Pat. No. D783,601; U.S. Design Pat. No. D785,617; U.S. Design Pat. No. D785,636; U.S. Design Pat. No. D790,505; U.S. Design Pat. No. D790,546; International Publication No. 2013/163789; U.S. Patent Application Publication No. 2008/0185432; U.S. Patent Application Publication No. 2009/0134221; U.S. Patent Application Publication No. 2010/0177080; U.S. Patent Application Publication No. 2010/0177076; U.S. Patent Application Publication No. 2010/0177707; U.S. Patent Application Publication No. 2010/0177749; U.S. Patent Application Publication No. 2010/0265880; U.S. Patent Application Publication No. 2011/0202554; U.S. Patent Application Publication No. 2012/0111946; U.S. Patent Application Publication No. 2012/0168511; U.S. Patent Application Publication No. 2012/0168512; U.S. Patent Application Publication No. 2012/0193423; U.S. Patent Application Publication No. 2012/0194692; U.S. Patent Application Publication No. 2012/0203647; U.S. Patent Application Publication No. 2012/0223141; U.S. Patent Application Publication No. 2012/0228382; U.S. Patent Application Publication No. 2012/0248188; U.S. Patent Application Publication No. 2013/0043312; U.S. Patent Application Publication No. 2013/0082104; U.S. Patent Application Publication No. 2013/0175341; U.S. Patent Application Publication No. 2013/0175343; U.S. Patent Application Publication No. 2013/0257744; U.S. Patent Application Publication No. 2013/0257759; U.S. Patent Application Publication No. 2013/0270346; U.S. Patent Application Publication No. 2013/0292475; U.S. Patent Application Publication No. 2013/0292477; U.S. Patent Application Publication No. 2013/0293539; U.S. Patent Application Publication No. 2013/0293540; U.S. Patent Application Publication No. 2013/0306728; U.S. Patent Application Publication No. 2013/0306731; U.S. Patent Application Publication No. 2013/0307964; U.S. Patent Application Publication No. 2013/0308625; U.S. Patent Application Publication No. 2013/0313324; U.S. Patent Application Publication No. 2013/0332996; U.S. Patent Application Publication No. 2014/0001267; U.S. Patent Application Publication No. 2014/0025584; U.S. Patent Application Publication No. 2014/0034734; U.S. Patent Application Publication No. 2014/0036848; U.S. Patent Application Publication No. 2014/0039693; U.S. Patent Application Publication No. 2014/0049120; U.S. Patent Application Publication No. 2014/0049635; U.S. Patent Application Publication No. 2014/0061306; U.S. Patent Application Publication No. 2014/0063289; U.S. Patent Application Publication No. 2014/0066136; U.S. Patent Application Publication No. 2014/0067692; U.S. Patent Application Publication No. 2014/0070005; U.S. Patent Application Publication No. 2014/0071840; U.S. Patent Application Publication No. 2014/0074746; U.S. Patent Application Publication No. 2014/0076974; U.S. Patent Application Publication No. 2014/0097249; U.S. Patent Application Publication No. 2014/0098792; U.S. Patent Application Publication No. 2014/0100813; U.S. Patent Application Publication No. 2014/0103115; U.S. Patent Application Publication No. 2014/0104413; U.S. Patent Application Publication No. 2014/0104414; U.S. Patent Application Publication No. 2014/0104416; U.S. Patent Application Publication No. 2014/0106725; U.S. Patent Application Publication No. 2014/0108010; U.S. Patent Application Publication No. 2014/0108402; U.S. Patent Application Publication No. 2014/0110485; U.S. Patent Application Publication No. 2014/0125853; U.S. Patent Application Publication No. 2014/0125999; U.S. Patent Application Publication No. 2014/0129378; U.S. Patent Application Publication No. 2014/0131443; U.S. Patent Application Publication No. 2014/0133379; U.S. Patent Application Publication No. 2014/0136208; U.S. Patent Application Publication No. 2014/0140585; U.S. Patent Application Publication No. 2014/0152882; U.S. Patent Application Publication No. 2014/0158770; U.S. Patent Application Publication No. 2014/0159869; U.S. Patent Application Publication No. 2014/0166759; U.S. Patent Application Publication No. 2014/0168787; U.S. Patent Application Publication No. 2014/0175165; U.S. Patent Application Publication No. 2014/0191684; U.S. Patent Application Publication No. 2014/0191913; U.S. Patent Application Publication No. 2014/0197304; U.S. Patent Application Publication No. 2014/0214631; U.S. Patent Application Publication No. 2014/0217166; U.S. Patent Application Publication No. 2014/0231500; U.S. Patent Application Publication No. 2014/0247315; U.S. Patent Application Publication No. 2014/0263493; U.S. Patent Application Publication No. 2014/0263645; U.S. Patent Application Publication No. 2014/0270196; U.S. Patent Application Publication No. 2014/0270229; U.S. Patent Application Publication No. 2014/0278387; U.S. Patent Application Publication No. 2014/0288933; U.S. Patent Application Publication No. 2014/0297058; U.S. Patent Application Publication No. 2014/0299665; U.S. Patent Application Publication No. 2014/0332590; U.S. Patent Application Publication No. 2014/0351317; U.S. Patent Application Publication No. 2014/0362184; U.S. Patent Application Publication No. 2014/0363015; U.S. Patent Application Publication No. 2014/0369511; U.S. Patent Application Publication No. 2014/0374483; U.S. Patent Application Publication No. 2014/0374485; U.S. Patent Application Publication No. 2015/0001301; U.S. Patent Application Publication No. 2015/0001304; U.S. Patent Application Publication No. 2015/0009338; U.S. Patent Application Publication No. 2015/0014416; U.S. Patent Application Publication No. 2015/0021397; U.S. Patent Application Publication No. 2015/0028104; U.S. Patent Application Publication No. 2015/0029002; U.S. Patent Application Publication No. 2015/0032709; U.S. Patent Application Publication No. 2015/0039309; U.S. Patent Application Publication No. 2015/0039878; U.S. Patent Application Publication No. 2015/0040378; U.S. Patent Application Publication No. 2015/0049347; U.S. Patent Application Publication No. 2015/0051992; U.S. Patent Application Publication No. 2015/0053769; U.S. Patent Application Publication No. 2015/0062366; U.S. Patent Application Publication No. 2015/0063215; U.S. Patent Application Publication No. 2015/0088522; U.S. Patent Application Publication No. 2015/0096872; U.S. Patent Application Publication No. 2015/0100196; U.S. Patent Application Publication No. 2015/0102109; U.S. Patent Application Publication No. 2015/0115035; U.S. Patent Application Publication No. 2015/0127791; U.S. Patent Application Publication No. 2015/0128116; U.S. Patent Application Publication No. 2015/0133047; U.S. Patent Application Publication No. 2015/0134470; U.S. Patent Application Publication No. 2015/0136851; U.S. Patent Application Publication No. 2015/0142492; U.S. Patent Application Publication No. 2015/0144692; U.S. Patent Application Publication No. 2015/0144698; U.S. Patent Application Publication No. 2015/0149946; U.S. Patent Application Publication No. 2015/0161429; U.S. Patent Application Publication No. 2015/0178523; U.S. Patent Application Publication No. 2015/0178537; U.S. Patent Application Publication No. 2015/0178685; U.S. Patent Application Publication No. 2015/0181109; U.S. Patent Application Publication No. 2015/0199957; U.S. Patent Application Publication No. 2015/0210199; U.S. Patent Application Publication No. 2015/0212565; U.S. Patent Application Publication No. 2015/0213647; U.S. Patent Application Publication No. 2015/0220753; U.S. Patent Application Publication No. 2015/0220901; U.S. Patent Application Publication No. 2015/0227189; U.S. Patent Application Publication No. 2015/0236984; U.S. Patent Application Publication No. 2015/0239348; U.S. Patent Application Publication No. 2015/0242658; U.S. Patent Application Publication No. 2015/0248572; U.S. Patent Application Publication No. 2015/0254485; U.S. Patent Application Publication No. 2015/0261643; U.S. Patent Application Publication No. 2015/0264624; U.S. Patent Application Publication No. 2015/0268971; U.S. Patent Application Publication No. 2015/0269402; U.S. Patent Application Publication No. 2015/0288689; U.S. Patent Application Publication No. 2015/0288896; U.S. Patent Application Publication No. 2015/0310243; U.S. Patent Application Publication No. 2015/0310244; U.S. Patent Application Publication No. 2015/0310389; U.S. Patent Application Publication No. 2015/0312780; U.S. Patent Application Publication No. 2015/0327012; U.S. Patent Application Publication No. 2016/0014251; U.S. Patent Application Publication No. 2016/0025697; U.S. Patent Application Publication No. 2016/0026838; U.S. Patent Application Publication No. 2016/0026839; U.S. Patent Application Publication No. 2016/0040982; U.S. Patent Application Publication No. 2016/0042241; U.S. Patent Application Publication No. 2016/0057230; U.S. Patent Application Publication No. 2016/0062473; U.S. Patent Application Publication No. 2016/0070944; U.S. Patent Application Publication No. 2016/0092805; U.S. Patent Application Publication No. 2016/0101936; U.S. Patent Application Publication No. 2016/0104019; U.S. Patent Application Publication No. 2016/0104274; U.S. Patent Application Publication No. 2016/0109219; U.S. Patent Application Publication No. 2016/0109220; U.S. Patent Application Publication No. 2016/0109224; U.S. Patent Application Publication No. 2016/0112631; U.S. Patent Application Publication No. 2016/0112643; U.S. Patent Application Publication No. 2016/0117627; U.S. Patent Application Publication No. 2016/0124516; U.S. Patent Application Publication No. 2016/0125217; U.S. Patent Application Publication No. 2016/0125342; U.S. Patent Application Publication No. 2016/0125873; U.S. Patent Application Publication No. 2016/0133253; U.S. Patent Application Publication No. 2016/0171597; U.S. Patent Application Publication No. 2016/0171666; U.S. Patent Application Publication No. 2016/0171720; U.S. Patent Application Publication No. 2016/0171775; U.S. Patent Application Publication No. 2016/0171777; U.S. Patent Application Publication No. 2016/0174674; U.S. Patent Application Publication No. 2016/0178479; U.S. Patent Application Publication No. 2016/0178685; U.S. Patent Application Publication No. 2016/0178707; U.S. Patent Application Publication No. 2016/0179132; U.S. Patent Application Publication No. 2016/0179143; U.S. Patent Application Publication No. 2016/0179368; U.S. Patent Application Publication No. 2016/0179378; U.S. Patent Application Publication No. 2016/0180130; U.S. Patent Application Publication No. 2016/0180133; U.S. Patent Application Publication No. 2016/0180136; U.S. Patent Application Publication No. 2016/0180594; U.S. Patent Application Publication No. 2016/0180663; U.S. Patent Application Publication No. 2016/0180678; U.S. Patent Application Publication No. 2016/0180713; U.S. Patent Application Publication No. 2016/0185136; U.S. Patent Application Publication No. 2016/0185291; U.S. Patent Application Publication No. 2016/0186926; U.S. Patent Application Publication No. 2016/0188861; U.S. Patent Application Publication No. 2016/0188939; U.S. Patent Application Publication No. 2016/0188940; U.S. Patent Application Publication No. 2016/0188941; U.S. Patent Application Publication No. 2016/0188942; U.S. Patent Application Publication No. 2016/0188943; U.S. Patent Application Publication No. 2016/0188944; U.S. Patent Application Publication No. 2016/0189076; U.S. Patent Application Publication No. 2016/0189087; U.S. Patent Application Publication No. 2016/0189088; U.S. Patent Application Publication No. 2016/0189092; U.S. Patent Application Publication No. 2016/0189284; U.S. Patent Application Publication No. 2016/0189288; U.S. Patent Application Publication No. 2016/0189366; U.S. Patent Application Publication No. 2016/0189443; U.S. Patent Application Publication No. 2016/0189447; U.S. Patent Application Publication No. 2016/0189489; U.S. Patent Application Publication No. 2016/0192051; U.S. Patent Application Publication No. 2016/0202951; U.S. Patent Application Publication No. 2016/0202958; U.S. Patent Application Publication No. 2016/0202959; U.S. Patent Application Publication No. 2016/0203021; U.S. Patent Application Publication No. 2016/0203429; U.S. Patent Application Publication No. 2016/0203797; U.S. Patent Application Publication No. 2016/0203820; U.S. Patent Application Publication No. 2016/0204623; U.S. Patent Application Publication No. 2016/0204636; U.S. Patent Application Publication No. 2016/0204638; U.S. Patent Application Publication No. 2016/0227912; U.S. Patent Application Publication No. 2016/0232891; U.S. Patent Application Publication No. 2016/0292477; U.S. Patent Application Publication No. 2016/0294779; U.S. Patent Application Publication No. 2016/0306769; U.S. Patent Application Publication No. 2016/0314276; U.S. Patent Application Publication No. 2016/0314294; U.S. Patent Application Publication No. 2016/0316190; U.S. Patent Application Publication No. 2016/0323310; U.S. Patent Application Publication No. 2016/0325677; U.S. Patent Application Publication No. 2016/0327614; U.S. Patent Application Publication No. 2016/0327930; U.S. Patent Application Publication No. 2016/0328762; U.S. Patent Application Publication No. 2016/0330218; U.S. Patent Application Publication No. 2016/0343163; U.S. Patent Application Publication No. 2016/0343176; U.S. Patent Application Publication No. 2016/0364914; U.S. Patent Application Publication No. 2016/0370220; U.S. Patent Application Publication No. 2016/0372282; U.S. Patent Application Publication No. 2016/0373847; U.S. Patent Application Publication No. 2016/0377414; U.S. Patent Application Publication No. 2016/0377417; U.S. Patent Application Publication No. 2017/0010141; U.S. Patent Application Publication No. 2017/0010328; U.S. Patent Application Publication No. 2017/0010780; U.S. Patent Application Publication No. 2017/0016714; U.S. Patent Application Publication No. 2017/0018094; U.S. Patent Application Publication No. 2017/0046603; U.S. Patent Application Publication No. 2017/0047864; U.S. Patent Application Publication No. 2017/0053146; U.S. Patent Application Publication No. 2017/0053147; U.S. Patent Application Publication No. 2017/0053647; U.S. Patent Application Publication No. 2017/0055606; U.S. Patent Application Publication No. 2017/0060316; U.S. Patent Application Publication No. 2017/0061961; U.S. Patent Application Publication No. 2017/0064634; U.S. Patent Application Publication No. 2017/0083730; U.S. Patent Application Publication No. 2017/0091502; U.S. Patent Application Publication No. 2017/0091706; U.S. Patent Application Publication No. 2017/0091741; U.S. Patent Application Publication No. 2017/0091904; U.S. Patent Application Publication No. 2017/0092908; U.S. Patent Application Publication No. 2017/0094238; U.S. Patent Application Publication No. 2017/0098947; U.S. Patent Application Publication No. 2017/0100949; U.S. Patent Application Publication No. 2017/0108838; U.S. Patent Application Publication No. 2017/0108895; U.S. Patent Application Publication No. 2017/0118355; U.S. Patent Application Publication No. 2017/0123598; U.S. Patent Application Publication No. 2017/0124369; U.S. Patent Application Publication No. 2017/0124396; U.S. Patent Application Publication No. 2017/0124687; U.S. Patent Application Publication No. 2017/0126873; U.S. Patent Application Publication No. 2017/0126904; U.S. Patent Application Publication No. 2017/0139012; U.S. Patent Application Publication No. 2017/0140329; U.S. Patent Application Publication No. 2017/0140731; U.S. Patent Application Publication No. 2017/0147847; U.S. Patent Application Publication No. 2017/0150124; U.S. Patent Application Publication No. 2017/0169198; U.S. Patent Application Publication No. 2017/0171035; U.S. Patent Application Publication No. 2017/0171703; U.S. Patent Application Publication No. 2017/0171803; U.S. Patent Application Publication No. 2017/0180359; U.S. Patent Application Publication No. 2017/0180577; U.S. Patent Application Publication No. 2017/0181299; U.S. Patent Application Publication No. 2017/0190192; U.S. Patent Application Publication No. 2017/0193432; U.S. Patent Application Publication No. 2017/0193461; U.S. Patent Application Publication No. 2017/0193727; U.S. Patent Application Publication No. 2017/0199266; U.S. Patent Application Publication No. 2017/0200108; and U.S. Patent Application Publication No. 2017/0200275.


In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims
  • 1. A method comprising: sensing, by a charge sensor in a handheld electronic device, a charge of a rechargeable power supply in the handheld electronic device;determining, by a charge level comparing unit in the handheld electronic device, whether the handheld electronic device is able to perform a function based on a comparison of the charge of the rechargeable power supply and a predetermined charge level; andin response to determining that the handheld electronic device is able to perform the function, generating an illumination pattern of a plurality of illumination patterns by switching a plurality of LEDs to indicate that the handheld electronic device is able to perform the function before the rechargeable power supply needs to be recharged further, wherein the plurality of LEDs is incorporated into (1) the handheld electronic device and (2) a base charger configured to support the handheld electronic device.
  • 2. The method of claim 1, wherein at least one of the plurality of illumination patterns indicates a “ready to use” status by switching at least one LED of the plurality of LEDs repeatedly on and off in a signal pattern of high and low.
  • 3. The method of claim 1, wherein switching the plurality of LEDs comprises switching, by a switching circuit, one or more LEDs for one or more timing signals.
  • 4. The method of claim 1, further comprising: detecting at least one of a charging error and a condition in which charging has been suspended, by at least the charge sensor and a detection device in the handheld electronic device; andswitching at least one LED of the plurality of LEDs in a rapid on/off pattern.
  • 5. The method of claim 1, further comprising: switching, by a switching circuit, a first LED and a second LED of the plurality of LEDs according to a first illumination pattern when the charge of the rechargeable power supply falls within a first range;switching, by the switching circuit, the first LED and the second LED according to a second illumination pattern when the charge of the rechargeable power supply falls within a second range;switching, by the switching circuit, the first LED and the second LED according to a third predefined illumination pattern when the charge of the rechargeable power supply falls within a third range; andswitching, by the switching circuit, the first LED and the second LED according to a fourth predefined illumination pattern when the charge of the rechargeable power supply falls within a fourth range.
  • 6. The method of claim 5, wherein switching the first LED on for about 500 ms and off for about 500 ms by repeating a cycle of switching as the first illumination pattern; switching the second LED on for about 500 ms and off for about 500 ms by repeating a cycle of switching as the second illumination pattern;switching the second LED on for about 1000 ms and off for about 500 ms by repeating a cycle of switching as the third illumination pattern; andswitching the second LED on as the fourth illumination pattern.
  • 7. The method of claim 1, wherein designating, a “near empty” status, a “ready to use” status, a “greater than half capacity” status, and an “at or near full capacity” status as a first, second, third and fourth range respectively of a plurality of capacity ranges.
  • 8. The method of claim 1, wherein the illumination pattern indicates a “near empty” status by a condition in which the rechargeable power supply is currently holding a charge at 0% to about 25% full capacity.
  • 9. The method of claim 1, wherein the illumination pattern indicates a “ready to use” status by a condition in which the rechargeable power supply is currently holding a charge of about 25% to about 50% of full capacity.
  • 10. The method of claim 1, wherein the illumination pattern indicates a “half capacity” status by a condition in which the rechargeable power supply is currently holding a charge of about 50% to about 75% of full capacity.
  • 11. The method of claim 1, wherein the illumination pattern indicates a status of “full capacity” or “near full capacity” by a condition in which the rechargeable power supply is currently holding a charge of about 75% to 100% of full capacity.
  • 12. A charge status indicator incorporated in a handheld electronic device, comprising: a charge sensing device configured to sense a charge of a rechargeable power supply incorporated in the handheld electronic device;a comparing device configured to determine whether the handheld electronic device is able to perform a function based on a comparison of the sensed charge and a predetermined charge level; anda switching circuit configured to, in response to a determination that the handheld electronic device is able to perform the function, switch a plurality of LEDs on and off using an illumination pattern of a plurality of illumination patterns to indicate a that the handheld electronic device is able to perform the function before the rechargeable power supply needs to be recharged further,wherein the plurality of LEDs is incorporated into (1) the handheld electronic device and (2) a base charger configured to support the handheld electronic device.
  • 13. The charge status indicator of claim 12, wherein the switching circuit is configured to indicate a plurality of capacity ranges comprising a first range designating a “near empty” status, a second range designating a “ready to use” status, a third range designating a “greater than half capacity” status, and a fourth range designating an “at or near full capacity” status.
  • 14. The charge status indicator of claim 12, wherein the rechargeable power supply is recharged when the handheld electronic device is placed on the base charger, and wherein the switching circuit is configured to switch the at least one LED of the plurality of LEDs off when the base charger is not charging the rechargeable power supply or when the handheld electronic device is not properly supported by a charging cradle.
  • 15. The charge status indicator of claim 12, wherein the switching circuit, in response to detecting a charging error, is configured to switch at least one LED of the plurality of LEDs on and off in a rapid pattern, wherein the rapid pattern is repeated indefinitely until another condition is detected.
  • 16. The charge status indicator of claim 12, wherein the switching circuit is configured to switch at least one LED of the plurality of LEDs on and off for different timing signals.
  • 17. The charge status indicator of claim 12, wherein at least one LED of the plurality of LEDs indicates different ranges of charge with respect to “full capacity” status.
  • 18. The charge status indicator of claim 12, wherein the charge status indicator includes a button of an opaque or semi-opaque material through which light from one or more LEDs diffuses.
  • 19. The button according to claim 18, wherein the button includes LEDs of different colors underneath the opaque or semi-opaque material such that a user perceives a color change of one or more LEDs of the LEDs and does not notice a change in location of the one or more LEDs underneath the opaque or semi-opaque material.
  • 20. The charge status indicator according to claim 12, wherein a memory is configured to store various charge level values.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/869,844, filed Jan. 12, 2018, the entire contents of which are incorporated herein by reference.

US Referenced Citations (675)
Number Name Date Kind
5164652 Johnson et al. Nov 1992 A
5939856 Demuro et al. Aug 1999 A
6222343 Crisp et al. Apr 2001 B1
6832725 Gardiner et al. Dec 2004 B2
7128266 Zhu et al. Oct 2006 B2
7159783 Walczyk et al. Jan 2007 B2
7413127 Ehrhart et al. Aug 2008 B2
7639019 Bosse et al. Dec 2009 B2
7726575 Wang et al. Jun 2010 B2
8044815 Du et al. Oct 2011 B2
8294969 Plesko Oct 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8322622 Liu Dec 2012 B2
8366005 Kotlarsky et al. Feb 2013 B2
8371507 Haggerty et al. Feb 2013 B2
8376233 Horn et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Van et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein, Jr. Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre, Jr. Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
8740082 Wilz, Sr. Jun 2014 B2
8740085 Furlong et al. Jun 2014 B2
8746563 Hennick et al. Jun 2014 B2
8750445 Peake et al. Jun 2014 B2
8752766 Xian et al. Jun 2014 B2
8756059 Braho et al. Jun 2014 B2
8757495 Qu et al. Jun 2014 B2
8760563 Koziol et al. Jun 2014 B2
8763909 Reed et al. Jul 2014 B2
8777108 Coyle Jul 2014 B2
8777109 Oberpriller et al. Jul 2014 B2
8779898 Havens et al. Jul 2014 B2
8781520 Payne et al. Jul 2014 B2
8783573 Havens et al. Jul 2014 B2
8789757 Barten Jul 2014 B2
8789758 Hawley et al. Jul 2014 B2
8789759 Xian et al. Jul 2014 B2
8794520 Wang et al. Aug 2014 B2
8794522 Ehrhart Aug 2014 B2
8794525 Amundsen et al. Aug 2014 B2
8794526 Wang et al. Aug 2014 B2
8798367 Ellis Aug 2014 B2
8807431 Wang et al. Aug 2014 B2
8807432 Van et al. Aug 2014 B2
8820630 Qu et al. Sep 2014 B2
8822848 Meagher Sep 2014 B2
8824692 Sheerin et al. Sep 2014 B2
8824696 Braho Sep 2014 B2
8842849 Wahl et al. Sep 2014 B2
8844822 Kotlarsky et al. Sep 2014 B2
8844823 Fritz et al. Sep 2014 B2
8849019 Li et al. Sep 2014 B2
D716285 Chaney et al. Oct 2014 S
8851383 Yeakley et al. Oct 2014 B2
8854633 Laffargue et al. Oct 2014 B2
8866963 Grunow et al. Oct 2014 B2
8868421 Braho et al. Oct 2014 B2
8868519 Maloy et al. Oct 2014 B2
8868802 Barten Oct 2014 B2
8868803 Caballero Oct 2014 B2
8870074 Gannon Oct 2014 B1
8879639 Sauerwein, Jr. Nov 2014 B2
8880426 Smith Nov 2014 B2
8881983 Havens et al. Nov 2014 B2
8881987 Wang Nov 2014 B2
8903172 Smith Dec 2014 B2
8908995 Benos et al. Dec 2014 B2
8910870 Li et al. Dec 2014 B2
8910875 Ren et al. Dec 2014 B2
8914290 Hendrickson et al. Dec 2014 B2
8914788 Pettinelli et al. Dec 2014 B2
8915439 Feng et al. Dec 2014 B2
8915444 Havens et al. Dec 2014 B2
8916789 Woodburn Dec 2014 B2
8918250 Hollifield Dec 2014 B2
8918564 Caballero Dec 2014 B2
8925818 Kosecki et al. Jan 2015 B2
8939374 Jovanovski et al. Jan 2015 B2
8942480 Ellis Jan 2015 B2
8944313 Williams et al. Feb 2015 B2
8944327 Meier et al. Feb 2015 B2
8944332 Harding et al. Feb 2015 B2
8950678 Germaine et al. Feb 2015 B2
D723560 Zhou et al. Mar 2015 S
8967468 Gomez et al. Mar 2015 B2
8971346 Sevier Mar 2015 B2
8976030 Cunningham et al. Mar 2015 B2
8976368 El et al. Mar 2015 B2
8978981 Guan Mar 2015 B2
8978983 Bremer et al. Mar 2015 B2
8978984 Hennick et al. Mar 2015 B2
8985456 Zhu et al. Mar 2015 B2
8985457 Soule et al. Mar 2015 B2
8985459 Kearney et al. Mar 2015 B2
8985461 Gelay et al. Mar 2015 B2
8988578 Showering Mar 2015 B2
8988590 Gillet et al. Mar 2015 B2
8991704 Hopper et al. Mar 2015 B2
8996194 Davis et al. Mar 2015 B2
8996384 Funyak et al. Mar 2015 B2
8998091 Edmonds et al. Apr 2015 B2
9002641 Showering Apr 2015 B2
9007368 Laffargue et al. Apr 2015 B2
9010641 Qu et al. Apr 2015 B2
9015513 Murawski et al. Apr 2015 B2
9016576 Brady et al. Apr 2015 B2
D730357 Fitch et al. May 2015 S
9022288 Nahill et al. May 2015 B2
9030964 Essinger et al. May 2015 B2
9033240 Smith et al. May 2015 B2
9033242 Gillet et al. May 2015 B2
9036054 Koziol et al. May 2015 B2
9037344 Chamberlin May 2015 B2
9038911 Xian et al. May 2015 B2
9038915 Smith May 2015 B2
D730901 Oberpriller et al. Jun 2015 S
D730902 Fitch et al. Jun 2015 S
9047098 Barten Jun 2015 B2
9047359 Caballero et al. Jun 2015 B2
9047420 Caballero Jun 2015 B2
9047525 Barber et al. Jun 2015 B2
9047531 Showering et al. Jun 2015 B2
9049640 Wang et al. Jun 2015 B2
9053055 Caballero Jun 2015 B2
9053378 Hou et al. Jun 2015 B1
9053380 Xian et al. Jun 2015 B2
9057641 Amundsen et al. Jun 2015 B2
9058526 Powilleit Jun 2015 B2
9061527 Tobin et al. Jun 2015 B2
9064165 Havens et al. Jun 2015 B2
9064167 Xian et al. Jun 2015 B2
9064168 Todeschini et al. Jun 2015 B2
9064254 Todeschini et al. Jun 2015 B2
9066032 Wang Jun 2015 B2
9070032 Corcoran Jun 2015 B2
D734339 Zhou et al. Jul 2015 S
D734751 Oberpriller et al. Jul 2015 S
9076459 Braho et al. Jul 2015 B2
9079423 Bouverie et al. Jul 2015 B2
9080856 Laffargue Jul 2015 B2
9082023 Feng et al. Jul 2015 B2
9082031 Liu et al. Jul 2015 B2
9084032 Rautiola et al. Jul 2015 B2
9087250 Coyle Jul 2015 B2
9092681 Havens et al. Jul 2015 B2
9092682 Wilz et al. Jul 2015 B2
9092683 Koziol et al. Jul 2015 B2
9093141 Liu Jul 2015 B2
D737321 Lee Aug 2015 S
9098763 Lu et al. Aug 2015 B2
9104929 Todeschini Aug 2015 B2
9104934 Li et al. Aug 2015 B2
9107484 Chaney Aug 2015 B2
9111159 Liu et al. Aug 2015 B2
9111166 Cunningham, IV Aug 2015 B2
9135483 Lu et al. Sep 2015 B2
9137009 Gardiner Sep 2015 B1
9141839 Xian et al. Sep 2015 B2
9147096 Wang Sep 2015 B2
9148474 Skvoretz Sep 2015 B2
9158000 Sauerwein, Jr. Oct 2015 B2
9158340 Reed et al. Oct 2015 B2
9158953 Gillet et al. Oct 2015 B2
9159059 Daddabbo et al. Oct 2015 B2
9165174 Huck Oct 2015 B2
9171543 Emerick et al. Oct 2015 B2
9183425 Wang Nov 2015 B2
9189669 Zhu et al. Nov 2015 B2
9195844 Todeschini et al. Nov 2015 B2
9202458 Braho et al. Dec 2015 B2
9203992 Ohhashi Dec 2015 B2
9208366 Liu Dec 2015 B2
9208367 Smith Dec 2015 B2
9219836 Bouverie et al. Dec 2015 B2
9224022 Ackley et al. Dec 2015 B2
9224024 Bremer et al. Dec 2015 B2
9224027 Van et al. Dec 2015 B2
D747321 London et al. Jan 2016 S
9230140 Ackley Jan 2016 B1
9235553 Fitch et al. Jan 2016 B2
9239950 Fletcher Jan 2016 B2
9245492 Ackley et al. Jan 2016 B2
9248640 Heng Feb 2016 B2
9250652 London et al. Feb 2016 B2
9250712 Todeschini Feb 2016 B1
9251411 Todeschini Feb 2016 B2
9258033 Showering Feb 2016 B2
9262633 Todeschini et al. Feb 2016 B1
9262660 Lu et al. Feb 2016 B2
9262662 Chen et al. Feb 2016 B2
9269036 Bremer Feb 2016 B2
9270782 Hala et al. Feb 2016 B2
9274812 Doren et al. Mar 2016 B2
9275388 Havens et al. Mar 2016 B2
9277668 Feng et al. Mar 2016 B2
9280693 Feng et al. Mar 2016 B2
9286496 Smith Mar 2016 B2
9297900 Jiang Mar 2016 B2
9298964 Li et al. Mar 2016 B2
9301427 Feng et al. Mar 2016 B2
D754205 Nguyen et al. Apr 2016 S
D754206 Nguyen et al. Apr 2016 S
9304376 Anderson Apr 2016 B2
9310609 Rueblinger et al. Apr 2016 B2
9313377 Todeschini et al. Apr 2016 B2
9317037 Byford et al. Apr 2016 B2
9319548 Showering et al. Apr 2016 B2
D757009 Oberpriller et al. May 2016 S
9342723 Liu et al. May 2016 B2
9342724 Mccloskey et al. May 2016 B2
9360304 Xue et al. Jun 2016 B2
9361882 Ressler et al. Jun 2016 B2
9365381 Colonel et al. Jun 2016 B2
9373018 Colavito et al. Jun 2016 B2
9375945 Bowles Jun 2016 B1
9378403 Wang et al. Jun 2016 B2
D760719 Zhou et al. Jul 2016 S
9383848 Daghigh Jul 2016 B2
9384374 Bianconi Jul 2016 B2
9390304 Chang et al. Jul 2016 B2
9390596 Todeschini Jul 2016 B1
D762604 Fitch et al. Aug 2016 S
9411386 Sauerwein, Jr. Aug 2016 B2
9412242 Van et al. Aug 2016 B2
9418269 Havens et al. Aug 2016 B2
9418270 Van et al. Aug 2016 B2
9423318 Liu et al. Aug 2016 B2
9424454 Tao et al. Aug 2016 B2
D766244 Zhou et al. Sep 2016 S
9436860 Smith et al. Sep 2016 B2
9443123 Hejl Sep 2016 B2
9443222 Singel et al. Sep 2016 B2
9454689 Mccloskey et al. Sep 2016 B2
9464885 Lloyd et al. Oct 2016 B2
9465967 Xian et al. Oct 2016 B2
9478113 Xie et al. Oct 2016 B2
9478983 Kather et al. Oct 2016 B2
D771631 Fitch et al. Nov 2016 S
9481186 Bouverie et al. Nov 2016 B2
9487113 Schukalski Nov 2016 B2
9488986 Solanki Nov 2016 B1
9489782 Payne et al. Nov 2016 B2
9490540 Davies et al. Nov 2016 B1
9491729 Rautiola et al. Nov 2016 B2
9497092 Gomez et al. Nov 2016 B2
9507974 Todeschini Nov 2016 B1
9519814 Cudzilo Dec 2016 B2
9521331 Bessettes et al. Dec 2016 B2
9530038 Xian et al. Dec 2016 B2
D777166 Bidwell et al. Jan 2017 S
9558386 Yeakley Jan 2017 B2
9572901 Todeschini Feb 2017 B2
9606581 Howe et al. Mar 2017 B1
D783601 Schulte et al. Apr 2017 S
D785617 Bidwell et al. May 2017 S
D785636 Oberpriller et al. May 2017 S
9646189 Lu et al. May 2017 B2
9646191 Unemyr et al. May 2017 B2
9652648 Ackley et al. May 2017 B2
9652653 Todeschini et al. May 2017 B2
9656487 Ho et al. May 2017 B2
9659198 Giordano et al. May 2017 B2
D790505 Vargo et al. Jun 2017 S
D790546 Zhou et al. Jun 2017 S
9680282 Arjen Jun 2017 B2
9697401 Feng et al. Jul 2017 B2
9701140 Alaganchetty et al. Jul 2017 B1
20060061332 Neu et al. Mar 2006 A1
20060192015 DiGiovanna Aug 2006 A1
20070063048 Havens et al. Mar 2007 A1
20080185432 Caballero et al. Aug 2008 A1
20090134221 Zhu et al. May 2009 A1
20100134072 Neu et al. Jun 2010 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20100265880 Rautiola et al. Oct 2010 A1
20110169999 Grunow et al. Jul 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20120111946 Golant May 2012 A1
20120116379 Yates et al. May 2012 A1
20120168511 Kotlarsky et al. Jul 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120193423 Samek Aug 2012 A1
20120194692 Mers et al. Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120223141 Good et al. Sep 2012 A1
20120228382 Havens et al. Sep 2012 A1
20120248188 Kearney Oct 2012 A1
20130043312 Van Horn Feb 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130082104 Kearney et al. Apr 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130277431 DiGiovanna Oct 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Affargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306731 Pedrao Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308625 Park et al. Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130332524 Fiala et al. Dec 2013 A1
20130332996 Fiala et al. Dec 2013 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140034734 Sauerwein, Jr. Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140038124 Gill et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140097249 Gomez et al. Apr 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140100813 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 Mccloskey et al. Apr 2014 A1
20140104414 Mccloskey et al. Apr 2014 A1
20140104416 Giordano et al. Apr 2014 A1
20140106725 Sauerwein, Jr. Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131443 Smith May 2014 A1
20140131444 Wang May 2014 A1
20140133379 Wang et al. May 2014 A1
20140136208 Maltseff et al. May 2014 A1
20140140585 Wang May 2014 A1
20140152882 Samek et al. Jun 2014 A1
20140158770 Sevier et al. Jun 2014 A1
20140159869 Zumsteg et al. Jun 2014 A1
20140166755 Liu et al. Jun 2014 A1
20140166757 Smith Jun 2014 A1
20140166759 Liu et al. Jun 2014 A1
20140168787 Wang et al. Jun 2014 A1
20140175165 Havens et al. Jun 2014 A1
20140191684 Valois Jul 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140197239 Havens et al. Jul 2014 A1
20140197304 Feng et al. Jul 2014 A1
20140204268 Grunow et al. Jul 2014 A1
20140214631 Hansen Jul 2014 A1
20140217166 Berthiaume et al. Aug 2014 A1
20140217180 Liu Aug 2014 A1
20140231500 Ehrhart et al. Aug 2014 A1
20140247315 Marty et al. Sep 2014 A1
20140263493 Amurgis et al. Sep 2014 A1
20140263645 Smith et al. Sep 2014 A1
20140270196 Braho et al. Sep 2014 A1
20140270229 Braho Sep 2014 A1
20140278387 Digregorio Sep 2014 A1
20140282210 Bianconi Sep 2014 A1
20140288933 Braho et al. Sep 2014 A1
20140297058 Barker et al. Oct 2014 A1
20140299665 Barber et al. Oct 2014 A1
20140332590 Wang et al. Nov 2014 A1
20140351317 Smith et al. Nov 2014 A1
20140362184 Jovanovski et al. Dec 2014 A1
20140363015 Braho Dec 2014 A1
20140369511 Sheerin et al. Dec 2014 A1
20140374483 Lu Dec 2014 A1
20140374485 Xian et al. Dec 2014 A1
20150001301 Ouyang Jan 2015 A1
20150001304 Todeschini Jan 2015 A1
20150009338 Laffargue et al. Jan 2015 A1
20150014416 Kotlarsky et al. Jan 2015 A1
20150021397 Rueblinger et al. Jan 2015 A1
20150028104 Ma et al. Jan 2015 A1
20150029002 Yeakley et al. Jan 2015 A1
20150032709 Maloy et al. Jan 2015 A1
20150039309 Braho et al. Feb 2015 A1
20150039878 Barten Feb 2015 A1
20150040378 Saber et al. Feb 2015 A1
20150049347 Laffargue et al. Feb 2015 A1
20150051992 Smith Feb 2015 A1
20150053769 Thuries et al. Feb 2015 A1
20150062366 Liu et al. Mar 2015 A1
20150063215 Wang Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150096872 Woodburn Apr 2015 A1
20150100196 Hollifield Apr 2015 A1
20150102109 Huck Apr 2015 A1
20150115035 Meier et al. Apr 2015 A1
20150127791 Kosecki et al. May 2015 A1
20150128116 Chen et al. May 2015 A1
20150133047 Smith et al. May 2015 A1
20150134470 Hejl et al. May 2015 A1
20150136851 Harding et al. May 2015 A1
20150142492 Kumar May 2015 A1
20150144692 Hejl May 2015 A1
20150144698 Teng et al. May 2015 A1
20150149946 Benos et al. May 2015 A1
20150161429 Xian Jun 2015 A1
20150178523 Gelay et al. Jun 2015 A1
20150178537 El et al. Jun 2015 A1
20150178685 Krumel et al. Jun 2015 A1
20150181109 Gillet et al. Jun 2015 A1
20150186703 Chen et al. Jul 2015 A1
20150199957 Funyak et al. Jul 2015 A1
20150210199 Payne Jul 2015 A1
20150212565 Murawski et al. Jul 2015 A1
20150213647 Laffargue et al. Jul 2015 A1
20150220753 Zhu et al. Aug 2015 A1
20150220901 Gomez et al. Aug 2015 A1
20150227189 Davis et al. Aug 2015 A1
20150236984 Sevier Aug 2015 A1
20150239348 Chamberlin Aug 2015 A1
20150242658 Nahill et al. Aug 2015 A1
20150248572 Soule et al. Sep 2015 A1
20150254485 Feng et al. Sep 2015 A1
20150261643 Caballero et al. Sep 2015 A1
20150264624 Wang et al. Sep 2015 A1
20150268971 Barten Sep 2015 A1
20150269402 Barber et al. Sep 2015 A1
20150288689 Todeschini et al. Oct 2015 A1
20150288896 Wang Oct 2015 A1
20150310243 Ackley et al. Oct 2015 A1
20150310244 Xian et al. Oct 2015 A1
20150310389 Crimm et al. Oct 2015 A1
20150312780 Wang et al. Oct 2015 A1
20150327012 Bian et al. Nov 2015 A1
20160014251 Hejl Jan 2016 A1
20160025697 Alt et al. Jan 2016 A1
20160026838 Gillet et al. Jan 2016 A1
20160026839 Qu et al. Jan 2016 A1
20160040982 Li et al. Feb 2016 A1
20160042241 Todeschini Feb 2016 A1
20160057230 Todeschini et al. Feb 2016 A1
20160062473 Bouchat et al. Mar 2016 A1
20160070944 Mccloskey et al. Mar 2016 A1
20160092805 Geisler et al. Mar 2016 A1
20160099581 Kawamura Apr 2016 A1
20160101936 Chamberlin Apr 2016 A1
20160102975 Mccloskey et al. Apr 2016 A1
20160104019 Todeschini et al. Apr 2016 A1
20160104274 Jovanovski et al. Apr 2016 A1
20160109219 Ackley et al. Apr 2016 A1
20160109220 Laffargue et al. Apr 2016 A1
20160109224 Thuries et al. Apr 2016 A1
20160112631 Ackley et al. Apr 2016 A1
20160112643 Laffargue et al. Apr 2016 A1
20160117627 Raj et al. Apr 2016 A1
20160124516 Schoon et al. May 2016 A1
20160125217 Todeschini May 2016 A1
20160125342 Miller et al. May 2016 A1
20160125873 Braho et al. May 2016 A1
20160133253 Braho et al. May 2016 A1
20160171597 Todeschini Jun 2016 A1
20160171666 Mccloskey Jun 2016 A1
20160171720 Todeschini Jun 2016 A1
20160171775 Todeschini et al. Jun 2016 A1
20160171777 Todeschini et al. Jun 2016 A1
20160174674 Oberpriller et al. Jun 2016 A1
20160178479 Goldsmith Jun 2016 A1
20160178685 Young et al. Jun 2016 A1
20160178707 Young et al. Jun 2016 A1
20160179132 Harr Jun 2016 A1
20160179143 Bidwell et al. Jun 2016 A1
20160179368 Roeder Jun 2016 A1
20160179378 Kent et al. Jun 2016 A1
20160180130 Bremer Jun 2016 A1
20160180133 Oberpriller et al. Jun 2016 A1
20160180136 Meier et al. Jun 2016 A1
20160180594 Todeschini Jun 2016 A1
20160180663 Mcmahan et al. Jun 2016 A1
20160180678 Ackley et al. Jun 2016 A1
20160180713 Bernhardt et al. Jun 2016 A1
20160185136 Ng et al. Jun 2016 A1
20160185291 Chamberlin Jun 2016 A1
20160186926 Oberpriller et al. Jun 2016 A1
20160188861 Todeschini Jun 2016 A1
20160188939 Sailors et al. Jun 2016 A1
20160188940 Lu et al. Jun 2016 A1
20160188941 Todeschini et al. Jun 2016 A1
20160188942 Good et al. Jun 2016 A1
20160188943 Franz Jun 2016 A1
20160188944 Wilz et al. Jun 2016 A1
20160189076 Mellott et al. Jun 2016 A1
20160189087 Morton et al. Jun 2016 A1
20160189088 Pecorari et al. Jun 2016 A1
20160189092 George et al. Jun 2016 A1
20160189284 Mellott et al. Jun 2016 A1
20160189288 Todeschini et al. Jun 2016 A1
20160189366 Chamberlin et al. Jun 2016 A1
20160189443 Smith Jun 2016 A1
20160189447 Valenzuela Jun 2016 A1
20160189489 Au et al. Jun 2016 A1
20160191684 Dipiazza et al. Jun 2016 A1
20160192051 Dipiazza et al. Jun 2016 A1
20160202951 Pike et al. Jul 2016 A1
20160202958 Zabel et al. Jul 2016 A1
20160202959 Doubleday et al. Jul 2016 A1
20160203021 Pike et al. Jul 2016 A1
20160203429 Mellott et al. Jul 2016 A1
20160203797 Pike et al. Jul 2016 A1
20160203820 Zabel et al. Jul 2016 A1
20160204623 Haggerty et al. Jul 2016 A1
20160204636 Allen et al. Jul 2016 A1
20160204638 Miraglia et al. Jul 2016 A1
20160227912 Oberpriller et al. Aug 2016 A1
20160232891 Pecorari Aug 2016 A1
20160292477 Bidwell Oct 2016 A1
20160294779 Yeakley et al. Oct 2016 A1
20160306769 Kohtz et al. Oct 2016 A1
20160314276 Wilz et al. Oct 2016 A1
20160314294 Kubler et al. Oct 2016 A1
20160316190 Mccloskey et al. Oct 2016 A1
20160323310 Todeschini et al. Nov 2016 A1
20160325677 Fitch et al. Nov 2016 A1
20160327614 Young et al. Nov 2016 A1
20160327930 Charpentier et al. Nov 2016 A1
20160328762 Pape Nov 2016 A1
20160330218 Hussey et al. Nov 2016 A1
20160343163 Venkatesha et al. Nov 2016 A1
20160343176 Ackley Nov 2016 A1
20160364914 Todeschini Dec 2016 A1
20160370220 Ackley et al. Dec 2016 A1
20160372282 Bandringa Dec 2016 A1
20160373847 Vargo et al. Dec 2016 A1
20160377414 Thuries et al. Dec 2016 A1
20160377417 Jovanovski et al. Dec 2016 A1
20170010141 Ackley Jan 2017 A1
20170010328 Mullen et al. Jan 2017 A1
20170010780 Waldron et al. Jan 2017 A1
20170012448 Miller Jan 2017 A1
20170016714 Laffargue et al. Jan 2017 A1
20170018094 Todeschini Jan 2017 A1
20170046603 Lee et al. Feb 2017 A1
20170047864 Stang et al. Feb 2017 A1
20170053146 Liu et al. Feb 2017 A1
20170053147 Germaine et al. Feb 2017 A1
20170053647 Nichols et al. Feb 2017 A1
20170055606 Xu et al. Mar 2017 A1
20170060316 Larson Mar 2017 A1
20170061961 Nichols et al. Mar 2017 A1
20170064634 Van et al. Mar 2017 A1
20170083730 Feng et al. Mar 2017 A1
20170091502 Furlong et al. Mar 2017 A1
20170091706 Lloyd et al. Mar 2017 A1
20170091741 Todeschini Mar 2017 A1
20170091904 Ventress, Jr. Mar 2017 A1
20170092908 Chaney Mar 2017 A1
20170094238 Germaine et al. Mar 2017 A1
20170098947 Wolski Apr 2017 A1
20170100949 Celinder et al. Apr 2017 A1
20170108838 Todeschini et al. Apr 2017 A1
20170108895 Chamberlin et al. Apr 2017 A1
20170118355 Wong et al. Apr 2017 A1
20170123598 Phan et al. May 2017 A1
20170124369 Rueblinger et al. May 2017 A1
20170124396 Todeschini et al. May 2017 A1
20170124687 Mccloskey et al. May 2017 A1
20170126873 Mcgary et al. May 2017 A1
20170126904 D'Armancourt et al. May 2017 A1
20170139012 Smith May 2017 A1
20170140329 Bernhardt et al. May 2017 A1
20170140731 Smith May 2017 A1
20170147847 Berggren et al. May 2017 A1
20170150124 Thuries May 2017 A1
20170169198 Nichols Jun 2017 A1
20170171035 Lu et al. Jun 2017 A1
20170171703 Maheswaranathan Jun 2017 A1
20170171803 Maheswaranathan Jun 2017 A1
20170180359 Wolski et al. Jun 2017 A1
20170180577 Nguon et al. Jun 2017 A1
20170181299 Shi et al. Jun 2017 A1
20170190192 Delario et al. Jul 2017 A1
20170193432 Bernhardt Jul 2017 A1
20170193461 Celinder et al. Jul 2017 A1
20170193727 Van et al. Jul 2017 A1
20170199266 Rice et al. Jul 2017 A1
20170200108 Au et al. Jul 2017 A1
20170200275 Mccloskey et al. Jul 2017 A1
Foreign Referenced Citations (2)
Number Date Country
2005211521 Mar 2006 AU
2013163789 Nov 2013 WO
Non-Patent Literature Citations (8)
Entry
US 8,548,242 B1, 10/2013, Longacre (withdrawn)
US 8,616,454 B2, 12/2013, Havens et al. (withdrawn)
Advisory Action (PTOL-303) dated Apr. 23, 2020 for U.S. Appl. No. 15/869,844.
Final Rejection dated Feb. 18, 2020 for U.S. Appl. No. 15/869,844.
Non-Final Rejection dated Nov. 5, 2019 for U.S. Appl. No. 15/869,844.
Notice of Allowance and Fees Due (PTOL-85) dated Jul. 29, 2020 for U.S. Appl. No. 15/869,844.
Notice of Allowance and Fees Due (PTOL-85) dated May 29, 2020 for U.S. Appl. No. 15/869,844.
Notice of Allowance and Fees Due (PTOL-85) dated Sep. 18, 2020 for U.S. Appl. No. 15/869,844.
Related Publications (1)
Number Date Country
20210126479 A1 Apr 2021 US
Continuations (1)
Number Date Country
Parent 15869844 Jan 2018 US
Child 17139688 US