1. Field of the Invention
The present invention relates to an indicating system for determining at least one engine parameter which includes a sensor unit that records a measured variable having a component that is dependent on the crank angle, and a computing unit that is connected to the sensor unit via an input, and further relates to an associated method for determining a parameter, and use in engine control.
2. The Prior Art
A complex sensor system and indicating technique may be used on engine test benches to obtain any desired engine parameter—understood to mean characteristic values and parameters of the internal combustion engine (diesel or spark ignition engine, for example) to be tested, or the operating characteristics thereof (during an operating cycle, for example)—or to compute same from measured values. The indicating system also generally includes a signal amplifier which appropriately processes, for example amplifies, conditions, filters, and/or digitizes, a sensor signal for further use. For certain sensors, such as the piezoelectric cylinder pressure sensors which are particularly important for the indicating technique, a charge amplifier is generally used as a signal amplifier. However, it is also possible to use, for example, strain gauges, piezoresistive pressure sensors, structure-borne noise sensors, sensors for sonic and ultrasonic emission analysis, ion current probes, flame radiation sensors, sensors for needle, valve, or piston lift, etc., each of which uses associated signal amplifiers. The necessary engine parameters are then often computed from the measured variables such as cylinder pressure, crank angle, etc., in separate downstream processing units, or measured variables such as cylinder pressure are evaluated on a time basis or on the basis of the measured crank angle for determining the engine parameters, whereby the computations and evaluations may also be performed online, i.e., during engine operation, or offline, i.e., after the fact. As a result, the processing units require their own input for a crank angle signal, for example from an angle sensor. Nevertheless, some internal parameters may also be determined without the crank angle information. For example, on the basis of the measured variation in the cylinder pressure over time, parameters such as peak pressure, combustion noise, knock intensity, frequency components, time differences between significant signal characteristics, etc., may also be determined without crank angle information. However, for their determination, even if only as an approximation, other important parameters such as the indicated average pressure, mass conversion points, course of combustion, combustion center of gravity, components of order analysis, ignition delay in degrees of the crank angle, etc., absolutely require, in addition to the cylinder pressure, crank angle information such as rotational speed, duration of one revolution of the crankshaft, instantaneous angular velocity, duration of an operating cycle, duration of an operating cycle divided by the number of cylinders, or an instantaneous rotational angle in any given angular resolution. Measurement of the crank angle information naturally increases the complexity of the sensor system. On engine test benches this complexity is often justified, since as a rule the most accurate determination possible of certain parameters and the most precise evaluation possible of the engine operation is desired, although for cost reasons the level of complexity is frequently minimized for this application. Another problem, of course, is the space requirement for a complex sensor system and indicating technique, and the fact that the necessary sensors can usually be retrofitted on the engine only with a great level of effort.
In principle, of course, it is also known to use an essentially periodic measurement signal, for example from a cylinder pressure sensor, to derive crank angle information. AT 388 830 B, for example, discloses that the drift compensation device of a charge amplifier circuit is triggered corresponding to the period of a measurement signal. The periodic trigger signals for the triggering device (i.e., essentially crank angle information) may be related to a crankshaft, either internally on the basis of the measurement signal, or externally on the basis of a connected signal transmitter.
The article “Simulationsmodelle von Verbrennungsmotoren für Echtzeitan-wendungen” [Simulation models for real-time applications in internal combustion engines], Gheorghiu V., Haus der Technik e.V., Session No. E-30-202-056-8, 1998 describes a method for computing crank angle information from the variation of pressure measured over time, also taking into account irregularities in the crankshaft revolutions.
Of course, these methods for determining crank angle information from an essentially periodic measurement signal provide only approximations of the required crank angle information. The resulting error depends essentially on the methods used for determining the crank angle information. For applications in the area of engine test benches, such approximation methods are generally unsuitable and therefore have not been considered. However, for use in the area of vehicle onboard measurement or indicating techniques or in the low-end indicating market, such indicating techniques are too costly and complicated.
Charge amplifiers having integrated peak value determination on the basis of the measurement signal are currently known. Such charge amplifiers have limited usefulness, however, since they allow only a single engine parameter to be determined and provide no flexibility. However, various engine parameters are generally required for meaningful use.
The object of the present invention is to provide an indicating arrangement which has a particularly simple and compact design, is advantageous, easy to install and operate, and still allows important engine parameters to be determined, and an associated method.
For the indicating arrangement and the associated method this object is achieved according to the invention by the fact that the computing unit computes crank angle information on the basis of the measured variable recorded by the sensor unit, and on the basis of the measured variable and the computed crank angle information, determines at least one engine parameter which requires knowledge of crank angle information and emits same as an output signal to an output.
In contrast to use of the high-end indicating technology in the area of engine test benches, for use in the low-end indicating market, i.e., for very inexpensive test benches, for example, or also in onboard measuring techniques for mass-produced vehicles, for example for parameterization, calibration, diagnosis, monitoring, control, etc. of an internal combustion engine, the complexity and cost of the indicating technology should preferably be low. For the reasons described above this cannot be achieved using a conventional indicating system or sensor system. Heretofore it has been necessary to use known indicating devices, for example a cylinder pressure sensor, to record measured values and send them to an engine control unit (ECU) or a processing unit where the measured values are evaluated, often taking into account other measured values such as the measured crank angle, for example, and optionally using stored characteristic maps. The sensor system necessary for this purpose naturally increases the cost and complexity of installation, start-up, maintenance, and parameterization of the sensors and the engine control unit or processing unit. These disadvantages are avoided by use of an indicating system according to the invention by the fact that the required parameters are determined with integration into the indicating system, without additional input of the crank angle (which would mean an additional costly sensor system in addition to necessary signal inputs), since it is known that the accuracy thus achieved in determining the parameters for use in the area of vehicle onboard measuring techniques or in the low-end indicating market, as well as for other applications for which lower accuracy is acceptable, is sufficient. An indicating system according to the invention results in particular in low capital costs, simpler installation in the vehicle, easier parameterization, a time advantage for start-up and measurement, capability for transfer to other systems, and an increase in quality with simultaneous time savings in engine development (as the result of avoiding iteration loops). Furthermore, such an indicating system does not require expert knowledge for operation. A targeted search for malfunctions (of components or the software structure of the engine control system) is also possible using this application. In addition, due to the fact that practically any given parameter can be determined, such an indicating system offers very flexible application possibilities.
For certain sensor units it is advantageous to provide a signal amplifier, in particular a charge amplifier, in the indicating system between the sensor unit and the computing unit which appropriately prepares, i.e., amplifies, conditions, filters, and/or digitizes, the sensor signal.
The flexibility and benefit of an indicating system according to the invention is further increased in the computing unit when it is provided that additional parameters, for example peak pressure, combustion noise, or knock intensity, are determined solely from the measured variable, i.e., without the use of crank angle information.
It may also be advantageous to equip an evaluation unit with multiple inputs for various measurement channels, and to provide each measurement channel or each group of measurement channels having at least one measurement channel with its own computing unit. It may be provided that these multiple computing units are also able to communicate with one another and thus exchange data. However, a single computing unit may also be advantageously used for all measurement channels.
Multiple measurement channels are of great importance, for example, for indicating in a multicylinder engine: each cylinder is provided with its own cylinder pressure sensor, and the multiple cylinder pressure courses are intended to be evaluated based on crank angle information that is valid for all. In this case, of course, for determining the crank angle information it is particularly advantageous for not only one, but, rather, multiple signals having a component that is dependent on the crank angle to be present, whereby use may also be made of a-priori knowledge, generally present, of the geometry of the engine, and thus of the offset in the time or crank angle between the individual signals.
When all units of the indicating system are situated in a common housing, a particularly compact device is obtained which is easy to use and which in particular also reduces the complexity of cabling outside the device. Such a device may be regarded as an “intelligent sensor,” since it supplies the necessary signals or data and engine parameters, and does not require downstream evaluation units.
The complexity of the downstream units may be further reduced by providing a filter unit and/or signal conditioning device and/or amplifier in the indicating system, since the indicating system already supplies the signal in the required level of processing.
A further integration stage may be achieved by integrating an engine control device into the indicating system, thus allowing the complexity of the necessary hardware to be further reduced.
Such an indicating system may be integrated into an engine control system in a particularly advantageous manner, since the engine control can be directly supplied with the necessary parameters, thus allowing the complexity of the engine control as well as of the sensor system for the engine control to be reduced.
The present invention is explained in greater detail with reference to the schematic, non-limiting
As illustrated in detail in
Likewise, a display device 15 on which a computed engine parameter may be displayed may also be provided on the evaluation unit 8.
A signal amplifier, in particular a charge amplifier 11 for a piezoelectric sensor, may also be provided between the sensor unit 10 and computing unit 12 in a known manner, as illustrated in
In addition, filter units and/or signal conditioning devices (not illustrated here) may be provided in the indicating system 6, for example in the evaluation unit 8 or between the sensor unit 10 and the evaluation unit 8.
On the basis of the measured variable the computing unit 12 computes crank angle information, for example rotational speed, duration of one revolution of the crankshaft, instantaneous angular velocity, duration of an operating cycle, duration of an operating cycle divided by the number of cylinders, or an instantaneous rotational angle in any given angular resolution, and on the basis of the measured variable and the computed crank angle information determines an engine parameter or an indicating parameter, for example the indicated average pressure, mass conversion points, course of combustion, combustion center of gravity, components of order analysis, ignition delay in degrees of the crank angle, etc. Thus, the indicating system. 6 or the evaluation unit 8 does not require its own crank angle input, and therefore the demands for the required sensor system are very low. The engine parameter determined in this manner and outputted at the output 13, as indicated in
The computing unit 12 may also be programmed as desired, thus allowing the user to perform any given evaluations of the measured variable. These include the type of determination of the crank angle information as well as which engine parameter(s) is/are determined. On the basis of a measured variable it is also possible, of course, to derive several different crank angle information items, for example in different approximations of accuracy, which together with the measured variable may be evaluated to produce different engine parameters.
Basically, any variable is suitable as a measured variable which contains a component that is dependent on the crank angle, i.e., a variable which is a function of time or of the crank angle, and which may therefore be derived from crank angle information. Of particular interest are variables which have periodicity in the cycle period (for 4 cycles, 720°, and for 2 cycles, 360°), or which at least have such a signal component. Other signal components, in particular those originating from transient operating states of the engine or from external influences, are not suitable for determining the crank angle information. The following are examples of suitable variables: cylinder pressure, flame radiation in the cylinder, ion current in the cylinder, ignition voltage, ignition current, injection pressure, mechanical vibrations, structure-borne noise, airborne noise, for example at the cylinder head or close to the fire deck, or pressure pulses of intake air or exhaust gas. Sensors are known for determining each of these variables. The variables are essentially periodic signals in steady state operation of the engine. In actual operation of an engine, however, the operating states of the engine constantly change as the result of acceleration or deceleration. For example, when the engine is run up or during rapid acceleration, the rotational speed, i.e., the instantaneous angular velocity, within an operating cycle changes, for which reason conventional FFT analyses for evaluating the measured variables frequently fail and more advanced methods must be used, such as the method known from AT 001 519 U for determining the rotational speed in an internal combustion engine.
An engine parameter determined in this manner may be stored in a downstream processing unit as an indicating variable, which, for example, allows subsequent evaluation of the recorded measurement data and parameters of the engine operation. Likewise, use in engine development or engine calibration and engine testing is also possible, for example for combustion design in boundary regions such as knocking or full load for diesel engines, or for improving comfort, for example regarding combustion noise, or simply just for monitoring continuous operation. However, such an engine parameter may also be used for the onboard measuring technique and engine control. For example, the engine parameter could be used to control the engine or certain aspects of the engine (the combustion, for example), or for adaptation to the engine control (from stored characteristic maps, for example) as the result of changing engine conditions. Likewise, a problem in the engine could be identified and indicated by monitoring certain engine parameters.
Of particular importance is the analysis of the energy flow or the creation of an energy or power balance of networked systems with an internal combustion engine, among others. For electrical machines it is comparatively simple to determine the power and energy supplied and discharged on the basis of, for example, the electrically measurable variables of the electrical supply, whereas for internal combustion engines this generally requires mechanical and/or thermodynamic measuring devices having relatively high time resolution, i.e., an indicating equipment which is able to determine the necessary instantaneous values, or, for example, the values averaged over a combustion cycle of the power and energy supplied, and to provide these values for evaluation. Thus, an indicating system according to the invention may be advantageously used for such applications as well.
Of course, besides an engine parameter which is necessary for determining crank angle information, any other given number of engine parameters may also be determined which do not require crank angle information and which may be derived directly from the measured variable. Such engine parameters may in turn be sent to an engine control device 7 or to another processing unit via the output 13.
However, it is also possible to integrate the engine control device 7 into the indicating system 6. The sensor signals may be evaluated by the evaluation unit 8, which may also perform functions for engine control, or these signals may be evaluated directly by the engine control device 7, which generally contains a computing unit such as a microprocessor, for example, in which case an additional evaluation unit 8 in the indicating system 6 could be dispensed with.
Of course, multiple measurement channels for various measured variables may similarly be provided in the evaluation unit 8, as illustrated in
Likewise, a separate computing unit 12 may be provided for each measurement channel in the evaluation unit 8, as illustrated in
Of course, the individual components of the indicating system 6 may also be provided in a common housing 9, as indicated in
The parameterization of the indicating system 6, evaluation unit 8, or computing unit 12, for example the sensitivity or resolution of the sensor unit 10, may be performed beforehand, as is well known, using compatible software. Independent parameterization could also be provided in which the indicating system 6 or portions thereof are parameterized during a learning process.
An indicating system as described above may be used in internal combustion engines in practically any given configuration and environment, in particular for test benches, for example a research and development test bench or a production test bench, on the internal combustion engine alone, for example as a drive, auxiliary drive, or generator, or in conjunction with other components, such as components of the drive train, the entire drive train, or in the vehicle. Of course, use in large-scale applications (in a manner of speaking, on the highway or on the water, etc.), or in the shop or on the dock, etc., is also possible.
Number | Date | Country | Kind |
---|---|---|---|
GM97/2007 | Feb 2007 | AT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/051309 | 2/4/2008 | WO | 00 | 9/23/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/098852 | 8/21/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4502446 | Kanegae et al. | Mar 1985 | A |
4744243 | Tanaka | May 1988 | A |
4747389 | Yuzawa et al. | May 1988 | A |
4913121 | Shimomura et al. | Apr 1990 | A |
4924830 | Abe | May 1990 | A |
4926822 | Abe et al. | May 1990 | A |
4962328 | Wöss et al. | Oct 1990 | A |
5076249 | Ikeuchi et al. | Dec 1991 | A |
5165380 | Okamura | Nov 1992 | A |
5355865 | Okamura | Oct 1994 | A |
5402675 | Entenmann et al. | Apr 1995 | A |
6230096 | Nishimoto | May 2001 | B1 |
6889540 | Yonezawa et al. | May 2005 | B2 |
6955697 | Hsu | Oct 2005 | B1 |
20020092499 | Kargillis et al. | Jul 2002 | A1 |
20030188714 | Yamamoto et al. | Oct 2003 | A1 |
20050205022 | Ito et al. | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
001519 | Jun 1997 | AT |
4406962 | Sep 1994 | DE |
19632490 | Mar 1997 | DE |
19713182 | Oct 1998 | DE |
Number | Date | Country | |
---|---|---|---|
20100030446 A1 | Feb 2010 | US |