Embodiments of the present application generally relate to locks and levers for entryway devices. More particularly, but not exclusively, embodiments of the present application relate to lock assemblies having adjustable status indicators.
Certain types of entryway devices and/or locksets can include a status indicator that can provide visual information regarding a status of the lockset and/or a room or passageway associated with the entryway device and/or lockset. The type of status information communicated by such status indicators can vary. For example, the status indicator can provide information indicating whether a door and/or the associated lockset is locked or unlocked, and/or whether a room or area associated with that door and/or lockset is occupied or unoccupied, among other types of information.
With respect to at least certain types of mechanical status indicators, the status indicator can often be mechanically coupled to the associated latch bolt, such as, for example, via a direct drive mechanism. However, use of such direct drive mechanisms, among other forms of mechanical coupling, can result in such locksets being susceptible at least to unauthorized unlocking via illicit physical manipulation of the status indicator. For example, if an individual were to forcibly move or otherwise displace a status indicator from displaying an indicator associated with a locked status to an unlocked status, such movement or displacement of the status indicator can be translated, via the mechanical coupling of the direct drive mechanism, to a bolt or latch of the lockset such that the bolt or latch can be moved from a locked position to an unlocked position. Further, the components associated with mechanical coupling of a status indicator to the lockset, such as the components of a direct drive mechanism, can contribute to an increase in the bulk, size, cost, and/or complexity of the lockset.
An aspect of an embodiment of the present application is an apparatus comprising a lever and an activation carrier that can be displaced within the lever between an activated position and an inactivated position. The apparatus can further include a first magnet that is coupled to the activation carrier and an indicator barrel that is rotatable about the lever from a first position to a second position. Further, when in the first position, at least a portion of a first side of the indicator barrel can be viewable through at least an opening in an external surface of the lever. Additionally, when in the second position, at least a portion of a second side of the indicator barrel can be viewable through the opening in the external surface. The apparatus can also include a second magnet that is coupled to the indicator barrel. Further, the displacement of the activation carrier from the inactivated position to the activated position can bring the first magnet within a distance of the second magnet that facilitates, via a magnetic force between the first magnet and the second magnet, the rotation of the indicator barrel from the first position to the second position.
Another aspect of an embodiment of the present application is an apparatus that includes a lever and an activation carrier having a first end, a second end, and an outer wall, the outer wall including a helical grove. Additionally, the first end of the activation carrier can be coupled to a first magnet. The apparatus can also include an actuator having an activation pin, the activation pin positioned to abut the second end of the activation carrier to transmit a pushing force to the activation carrier to displace the activation carrier at least in a first linear direction to an activation position in the lever as the actuator is displaced in the first linear direction. The apparatus can also include a stationary pin that can extend into at least a portion of the helical grove and which can be structured to engage the helical grove to facilitate rotation of the activation carrier at least as the activation carrier is displaced in the first linear direction. The apparatus can also include an indicator barrel that can be rotably coupled to the lever and connected to a second magnet. The indicator barrel can be rotatable from a first position to a second position by a magnetic force between the first magnet and the second magnet when the first magnet is displaced to the activated position.
Additionally, an aspect of an embodiment of the present application is an apparatus that includes an activation carrier having an outer wall that includes a helical grove, and a first magnet that is connected to the activation carrier, and which can have a first pole and a second pole, the first pole having a different polarity than the second pole. The apparatus can further include a stationary pin that can extend into at least a portion of the helical grove. The stationary pin can be structured to engage the helical grove to facilitate rotation of the activation carrier as the activation carrier is linearly displaced to an activation position. Additionally, the apparatus can include a second magnet having a first pole and a second pole, a polarity of the first pole of the second magnet being the same as the polarity of the first pole of the first magnet, and a polarity of the second pole of the second magnet being the same as the polarity of the second pole of the first magnet. An indicator barrel can be connected to the second magnet and can be rotatable from a first position to a second position by a repelling magnetic force generated between the first and second magnets as the first magnet is displaced to the activation position. The first magnet can be oriented relative to the activation carrier for the first pole of the first magnet to be rotably displaced into closer proximity than the second pole of the first magnet to the second magnet when activation carrier is displaced to the activation position. Further, the second magnet can be oriented relative to the indicator barrel so that, when the indicator barrel is in the first position, at least a portion of the first pole of the second magnet is in closer proximity than the second pole of the second magnet to the first magnet.
The description herein makes reference to the accompanying figures wherein like reference numerals refer to like parts throughout the several views.
The foregoing summary, as well as the following detailed description of certain embodiments of the present application, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the application, there is shown in the drawings, certain embodiments. It should be understood, however, that the present application is not limited to the arrangements and instrumentalities shown in the attached drawings. Further, like numbers in the respective figures indicate like or comparable parts.
Certain terminology is used in the foregoing description for convenience and is not intended to be limiting. Words such as “upper,” “lower,” “top,” “bottom,” “first,” and “second” designate directions in the drawings to which reference is made. This terminology includes the words specifically noted above, derivatives thereof, and words of similar import. Additionally, the words “a” and “one” are defined as including one or more of the referenced item unless specifically noted. The phrase “at least one of” followed by a list of two or more items, such as “A, B or C,” means any individual one of A, B or C, as well as any combination thereof.
As shown by at least
The second end 138 of the outer wall 134 is configured and positioned to abut the activation pin 112. Moreover, as discussed below, linear displacement of the activation pin 112 at least in the first direction from the inactivated position to the activated position can provide a force for the linear and rotational displacement of the activation carrier 116 from an inactivated to an activated position. Further, according to the illustrated embodiment, the outer wall 134 at the second end 138 of the activation carrier 116 can include a rear wall 146 that can generally enclose the second end 138 of the activation carrier 116.
According to certain embodiments, the outer wall 134 can include a helical groove 148 along at least a portion of the outer wall 134 of the activation carrier 116 that is sized to receive placement of the stationary pin 120, and moreover which can accommodate at least a portion of the helical grove 148 sliding about the stationary pin 120 during displacement of the activation carrier 116. Moreover, according to the illustrated embodiment, the helical groove 148 and stationary pin 120 are sized to facilitate rotational displacement of the activation carrier 116 as the activation carrier 116 is linearly displaced between inactivated and activated positions. Further, according to certain embodiments, the stationary pin 120 is positioned in a pin hole 150 (
According to the illustrated embodiment, the stationary pin 120 extends through the inner cavity 142 of the activation carrier 116, and thus through opposing sides of the helical groove 148 in outer wall 134 of the activation carrier 116. Accordingly, the biasing element 118, such as, for example, a spring, can be positioned within the inner cavity 142 between the portion of the stationary pin 120 that extends through the inner cavity 142 and the rear wall 146. Thus, as the stationary pin 120 is maintained within the first lever 112 at a generally static position relative to the linear position of the activation carrier 116, when the activation carrier 116 is displaced from inactivated position to the activated position, such as, for example, by displacement of the activation pin 112 in the first direction, the linear distance between the stationary pin 120 and the rear wall 146 in the inner cavity 142 of the activation carrier 116 decreases. Such a decrease in linear distance between the stationary pin 120 and the rear wall 146 can result in an increase in the compression of the biasing element 118 that is positioned therebetween. Accordingly, in the event the force provided by the activation pin 112 is removed, or reduced to a level below that of a biasing force provided by the biasing element 118, the compressed biasing element 118 can provide a force as the biasing element 118 at least partially decompresses that can facilitate the linear displacement, as well as the rotational displacement, of the activation carrier 116 in a second direction that facilitates the return of the activation carrier 116 back to the inactivated position, the second direction being opposite of the first direction. As discussed below, such return of the activation carrier 116 via, at least in part, the biasing force provided by the biasing element 118 can also at least assist in facilitating the return of the activation pin 112 and the associated actuator 114 to their respective inactivated positions.
The first magnet 122 can comprise a diametric magnet having opposing first and second poles. According to the illustrated embodiment, the first magnet 122 is sized to be secured within the inner cavity 142 of the activation carrier 116. For example, according to certain embodiments, the first magnet 122 can have a size and/or shape that is configured to be matingly received in a counter bore 152 (
As shown by at least
According to the illustrated embodiment, the indicator barrel 126 can have a sidewall 162 having generally cylindrical configuration. However, the sidewall 162 of the indicator barrel 126 can have a variety of shapes and configurations, including, for example, a circular, oval, non-circular, triangular, and polygonal cross sectional shape, and combinations thereof, among other shapes and configurations. The indicator barrel 126 can also include at least one or more openings 164 that extend between, or are positioned at, opposing first and second ends 166, 168 of the indicator barrel 126. For example, according to the illustrated embodiment, the opening 164 can extend between the first end 166 and second end 168 of the indicator barrel 126 such that a spindle or axle 170 about which the indicator barrel 126 can rotate, or which the indicator barrel 126 can be rotated with, extends though the indicator barrel 126. According to the illustrated embodiment, opposing ends of the spindle 170 can be each coupled to bearings 172 that can at least assist in the rotation of the spindle 170, and thus rotation of the indicator barrel 126. Alternatively, the opening 164 can be sized or configured to receive separate spindles that extend into opposing ends of the opening 164 and/or the indicator barrel 126, but which do not extend through the entire indicator barrel 126.
As shown by at least
The indicator bezel 128 is configured to be secured to the first lever 102 and positioned about at least a portion of the opening 160 of the barrel chamber 154. According to the illustrated embodiment, the indicator bezel 128 includes a body portion 174 that extends between opposing first and second ends 176, 178 of the indicator bezel 128. The body portion 174 can include an opening 180 through which, when the indicator bezel 128 is at least secured to the first lever 102, can provide at least visual access to indicator symbols on the indicator barrel 126 through the indicator bezel 128. Further, according to the illustrated embodiment, the body portion 174 of the indicator bezel 128 can include a base wall 182, at least a portion of the base wall 182 configured to abut, or be generally adjacent to, the face portion 184 of the handle portion 186 of the first lever 102 when the indicator bezel 128 is secured to the first lever 102. Thus, according to the illustrated embodiment, the base wall 182 can have an outer periphery having a size that is larger than the opening 160 of the barrel chamber 154.
The indicator bezel 128 can further include a first leg 188a and the second leg 188b that extend downwardly from the base wall 182 of the indicator bezel 128. According to the illustrated embodiment, the first leg 188a is inwardly offset from the first end 176 of the indicator bezel 128, while second leg 188b is inwardly offset from the second end 178 of the indicator bezel 128 such that the first and second legs 188a, 188b extend into the barrel chamber 154 when the indicator bezel 128 is secured to the first lever 102. According to certain embodiments, the distance that the first and second legs 188a, 188b are inwardly offset can be based on the distance between opposing end walls 190a, 190b of the barrel chamber 154. For example, according to certain embodiments, the first and second legs 188a, 188b can be inwardly offset from the first end 176 and the second end 178, respectively, of the indicator bezel 128, by a distance that accommodates an outer sidewall of each of the first and second legs 188a, 188b abutting, or being generally adjacent to, the end walls 190a, 190b of the barrel chamber 154 when the indicator bezel 128 is positioned within the barrel chamber 154. Additionally, according to the illustrated embodiment, an opening 192 in each of the first and second legs 188a, 188b can be sized to house a bearing 172 through which the spindle 170 is secured.
The indicator bezel 128 can be secured to the first lever 102 in a number of manners. For example, according to the illustrated embodiment, the indicator bezel 128 includes a skirt 194 that downwardly extends from the base wall 182. Further, according to the illustrated embodiment, the skirt 194 generally extends along the base wall 182 along a portion of the body portion 174 that is generally adjacent, as well as generally parallel, to at least two opposing sides of the opening 180 in the body portion 174 of the indicator bezel 128. Additionally, the skirt 194 can include a plurality of engagement tabs 196. As shown in at least
As shown by at least
According to certain embodiments, the first and second indicator symbols 206, 208 can be formed on and/or with the indicator barrel 126, such as, for example, formed during molding of the indicator barrel 126, among other processes of fabricating the indicator barrel 126. According to other embodiments, the first and second indicator symbols 206, 208 can be formed on a substrate that is configured to be positioned about the indicator barrel 126. Thus, according to certain embodiments, the third zone 214 can provide at least a portion of an area on the substrate at one end of the substrate that can overlap at least another portion of the substrate at an opposing end of the substrate so that the substrate can be positioned in a closed configuration about the indicator barrel 126. Accordingly, the third zone 214 can be sized to receive placement of an adhesive that is used to secure such a substrate in the closed configuration.
The opening 180 of the indicator bezel 128 can be sized and positioned to at least prevent portions of both the first and second zones 210, 212, and the first or second indicator symbols 206, 208, from being simultaneously viewable through the opening 180 of the indicator bezel 128 at least when the activation carrier 116 is at either one of the activated and inactivated positions, and/or the indicator barrel 128 is at one of the first position and the second position. Moreover, the opening 180 in the indicator bezel 128 can have a smaller size than a corresponding size of the region of the sidewall 162 of the indicator barrel 126 that is occupied by the first zone 210 and/or the second zone 212. Such a size difference between the opening 180 in the indicator bezel 128 and the corresponding portions of the sidewall 162 of the indicator barrel 126 that are occupied by the first and second zones 210, 212 can result in only a portion of either the first or second zones 210, 212, and the corresponding first or second indicator symbols 206, 208 positioned thereon, being visible through the opening 180 when the activation carrier 116 is at either one of the activated and inactivated positions. For example, the opening 180 of the indicator bezel 128 can be sized to permit a user to see through the opening 180 an area of the sidewall 162 of the indicator barrel 126 that corresponds to about 150 degrees of the periphery of the sidewall 162 of the indicator barrel 126. If the first and second zones 210, 212 each encircle about 180 degrees of the sidewall 162 of the indicator barrel 126, then each of the first and second zones 210, 212 encompass about thirty degrees of the sidewall 162 of the indicator barrel 126 that is not visible through the opening 180 of the indicator bezel 128 when the activation carrier 116 is at either one of the activated and inactivated positions. Such differences between the size of the opening 180 of the indicator bezel 128 and the size of the areas of the indicator barrel 126 occupied by the first and second zones 210, 212 can alleviate any need for the indicator barrel 126 to be completely rotated in order to prevent at portions of both the first and second zones 210, 212, and associated indicator symbols 206, 208, from being simultaneously viewable through the opening 180. Moreover, in this example, by providing such size differences, the indicator barrel 126 could, for example, be rotated to a position that is up to around 30 degrees short of a complete rotation and still only one, but not both, of the first or second zones, and their corresponding indicator symbols 206, 208, would be viewable through the opening 180 of the indicator bezel 128.
The first latch assembly portion 216 is structured to extend from one of a first and second side of an entryway device, such as, for example, an interior or exterior side of a door. Similarly, the second latch assembly portion 218 extends from the other of the first and second sides of the entryway device. The lock chassis 104 is positioned between, and coupled to, the first and second latch assembly portions 216, 218. Further, according to certain embodiments, at least a portion of the first and second latch assembly portions 216, 218, as well as at least a portion of the lock chassis 104, can extend into, or otherwise be positioned within, a through hole in the entryway device that extends along a thickness of at least a portion of the entryway device between the opposing first and second sides of the entryway device.
According to certain embodiments, the first latch assembly portion 216 can include the first lever 102, a first rose 224, and the first spring cage 106. The first rose 224 can be sized to extend over at least a portion of the first spring cage 106 so that the first rose 224 can be positioned to at least assist in covering or concealing the first spring cage 106, among other components of the lock assembly 100, from view at least when the lock assembly 100 is operably mounted or coupled to the entryway device. Thus, according to certain embodiments, the first rose 224 can provide a decorative plate or cover that can enhance the aesthetics of the lock assembly 100.
According to certain embodiments, the lock chassis 104 includes a first chassis spindle 226 that extends through at least a portion of the first spring cage 106, and which is sized for engagement with at least the first spring cage spindle 108. For example, according to certain embodiments, at least a portion of the first spring cage spindle 108 can receive insertion of the first chassis spindle 226. Further, mating portions of the first chassis spindle 226 and the first spring cage spindle 108 can have non-rounded shapes, and/or be mechanically coupled together, such as, for example, by a mechanical fastener, including, but not limited to, a pin, screw, or key, such that rotational displacement of the first spring cage spindle 108 is translated into rotational displacement of at least the first chassis spindle 226. The first spring cage spindle 108 can also be connected to the first lever 102, such that rotational displacement of the first lever 102 is translated by the first spring cage spindle 108 into rotational displacement of the first chassis spindle 226.
Similarly, the second latch assembly portion 218 can include a second lever 228, a second rose 230, and a second spring cage 232. The second rose 230 can be sized to extend over at least a portion of the second spring cage 232 so that the second rose 230 can be positioned to at least assist in covering or concealing the second spring cage 232 from view at least when the lock assembly 100 is operably mounted or coupled to the entryway device. Thus, according to certain embodiments, the second rose 230 can provide a decorative plate or cover that can enhance the aesthetics of the lock assembly 100.
According to certain embodiments, the lock chassis 104 includes a second chassis spindle 234 that extends through at least a portion of a second spring cage 232, and which is sized for engagement with at least a second spring cage spindle 236. For example, according to certain embodiments, at least a portion of the second spring cage spindle 236 can receive insertion of the second chassis spindle 234. Further, mating portions of the second chassis spindle 234 and the second spring cage spindle 236 can have non-rounded shapes, and/or be mechanically coupled together, such as, for example, by a mechanical fastener, including, but not limited to, a pin, screw, or key, such that rotational displacement of the second spring cage spindle 236 is translated into rotational displacement of at least the second chassis spindle 234. The second spring cage spindle 236 can also be connected to the second lever 228, such that rotational displacement of the second lever 228 is translated by the second spring cage spindle 236 into rotational displacement of the second chassis spindle 234.
According to the illustrated embodiment, the lock chassis 104 can engage the latch assembly 220. Moreover, the lock chassis 104 is configured such that rotation of the first or second chassis spindles 226, 234 can be translated into linear displacement of a latch bolt 238 of the latch assembly 220 between retracted and extended positions.
The push button assembly 222 can include a push button 240, a plunger assembly 242, a release button plunger 244, a locking lug 246, and a push rod 248. Further, the push button assembly 222 can be used in conjunction with the lock chassis 104 and/or latch assembly 220 to lock or unlock the lock assembly 100. Moreover, the push button assembly 222 can be configured to prevent the displacement of the latch bolt 238 of the latch assembly 220 from the extended position at least when the entryway device is in a closed position, and thus prevent displacement of the associated entryway device away from a closed position relative to the associated entryway.
When a user elects to lock the lock assembly 100 via use of the push button assembly 222 such that the latch bolt 238 cannot be retracted using at least the first lever 102, the user may engage, such as, for example, depress, the push button 240 that is positioned in and/or extends from the second lever 228 so that the push button 240 is displaced in the first direction toward the first lever 102. As previously mentioned, although the exemplary embodiment of the subject application discusses use of a push button assembly 222, other types of assemblies, including, for example, a thumb turn assembly, could instead be used. According to certain embodiments, the linear displacement of the push button 240 in the first direction can facilitate the push button 240 pushing a push rod 244 against a plunger assembly 242 to facilitate linear displacement of the plunger assembly 242 in the first direction to a locked position, as shown in
As the plunger assembly 242 is linearly displaced in the first direction in response to displacement of the push button 240, the plunger assembly 242 can push against the locking lug 246, causing the locking lug 246 to also be linearly displaced in the first direction. Such displacement of the locking lug 246 can result in the locking lug 246 pushing against the actuator 114 so that the actuator 114 is also linearly displaced in the first direction and away from the inactivated position of the actuator 114. Additionally, as the activation pin 112 is attached, or otherwise coupled, to the actuator 114, the activation pin 112 is also linearly displaced in the first direction with such displacement of the actuator 114. Further, as previously discussed, according to the illustrated embodiment, such displacement of the activation pin 112 can include the activation pin 112 moving through the elongated slot 132 in the first spring cage spindle 108.
Such movement of the activation pin 112 in the first direction can facilitate the displacement of the activation carrier 116 in the first direction and away from the inactivated position of the activation carrier 116. For example, the displacement of the activation pin 112 in the first direction can facilitate the activation pin 112 providing a pushing force against the rear wall 146 of the activation carrier 116 that causes the activation carrier 116 to also be displaced. However, as previously discussed, such displacement of the activation carrier 116 includes the activation carrier 116 being both displaced in the first linear direction, as well as the activation carrier 116 being rotated via the interaction of the stationary pin 120 with the helical grove 148 in the activation carrier 116. Additionally, as also previously discussed, as the activation carrier 116 is displaced in the first direction, the distance in the inner cavity 142 of the activation carrier 116 between the stationary pin 120 and the rear wall 146 of the activation carrier 116 decreases, thereby causing the biasing element 118 that is positioned therebetween to be further compressed.
According to the illustrated embodiment, the first and second magnets 122, 124 can be arranged such that, as activation carrier 116 approaches and/or arrives at the activation position of the activation carrier 116, as shown in
According to certain embodiments, the first poles of the first and second magnets 122, 124 can be negative poles, while the second poles of the first and second magnets 122, 124 can be positive poles. Additionally, the helical grove 148 in the activation carrier 116 can be configured so that the activation carrier 116 rotates while being displaced from the inactivated position to the activation position. For example, according to certain embodiments, the activation carrier 116 can rotate between around 90 and around 180 degrees via the interaction between the helical grove 148 and the stationary pin 120 as the activation carrier 116 is displaced between the activated and inactivated positions. Additionally, the second magnet 124 can be oriented in the indicator barrel 126 such that, when the indicator barrel 126 is at the first position, as biased by the secondary biasing element 125, the first pole of the second magnet 124 is generally in closer proximity to the activation carrier 116 than the second pole of the second magnet 124. According to such an embodiment, as the activation carrier 116 is displaced toward the activation position, as shown in
According to the illustrated embodiment, the absence of a direct connection between the indicator barrel 126 and the activation carrier 116 and/or the push button assembly 222 prevents unauthorized unlocking of the lock assembly 100 via manipulation of the indicator barrel 126. For example, as there is an absence of a direct mechanical connection between the indicator barrel 126 and the activation carrier 116, the position of the activation carrier 116 is not adjusted by attempts to rotate the indicator barrel 126 from the second position to the first position. To the contrary, when the activation carrier 116 is at the activated position, rotation by an individual of the indicator barrel 126 from the second position and back to the first position merely temporarily adjusts the rotational position of the indicator barrel 126, but does not result in any mechanical related adjustment in the position of the activation carrier 116, actuator 114, or push button assembly 222. Further, any repelling forces between the first poles of the first and second magnets 122, 124 during an attempt to unlock the lock assembly 100 via manual rotation of the indicator barrel 126 back to the first position are insufficient to unlock the push button assembly 222, including insufficient to facilitate movement of the activation carrier 116, actuator 114, locking lug 246, and plunger assembly 242 to positions that can cause the unlocking of the lock assembly 100. Further, in such situations, once the individual has release the indicator barrel 126, the repelling forces between the first poles of the first and second magnets 122, 124 will return the indicator barrel 126 back to the second position, wherein the second pole of the second magnet 124 is again adjacent to the first pole of the first magnet 122.
When the lock assembly 100 is to be unlocked, such as, for example, via turning of the second lever 238 or depression of the release button plunger 244 in the first lever 102, the actuator 114, locking lug 246, plunger assembly 242, push rod 248, and push button 240 may be linearly displaced in a second direction that is opposite of the first direction. Accordingly, the activation pin 112 may no longer provide a force that maintains the activation carrier 116 in the activated position (
While the illustrated embodiment is discussed in terms of the activation carrier 166 being both linearly and rotably displaced between the activated and inactivated positions, according to other embodiments, the activation carrier 166 may instead just be linearly displaced. Such embodiments may therefore eliminate the use of the stationary pin 120 and the helical grove 148. Additionally, according to such embodiments, the first magnet 122 can be positioned in the activation carrier 116, or otherwise coupled to the activation carrier 116, at an orientation such that the first pole of the first magnet 122 is positioned to be adjacent to second magnet 124 when the activation carrier 116 is at the activation position, and generally retains such an orientation relative to the activation carrier 116 when the activation carrier 116 is also at the inactivated position.
As shown by at least
The cam 308 can include a body portion 334 that extends from the hub 324. Additionally, the hub 324 can extend about an opening 313 in the cam 308 that is sized to receive at least a portion of the spindle 326 thumb turn 312, or receive another portion of the thumb turn assembly. The first indicator symbol 328 can be positioned on the first side 336 of the body portion 334. The cam 308 can also be attached to, or otherwise include, a ferromagnetic body 338. For example, according to the embodiment depicted in
The indicator plate 306 can be coupled to the rear case 310 and includes a window 346 through which at least one of the first and second indicator symbols 328, 330 can be seen. Moreover, the window 346, cam 308, and first and second indicator symbols 328, 330 can be configured such that when the thumb turn 312 is at one of the a locked position or an unlocked position, one of the first and second indicator symbols 328, 330 is positioned to be viewed through the window 346. Thus, the cover plate 304, which can be a UL plate, can be positioned adjacent to the indicator plate 306, and can thus be configured to not block at least the window indicator plate 306 from view when the indicator mechanism assembly 300 is assembled. As also illustrated, the cover plate 304 can include a plurality of apertures 348 that can at least assist in the indicator mechanism assembly 300 being horizontally mounted. The escutcheon 302 can also provide an opening through which at least the window 346 of the indicator plate 306, and thus one of the first and second indicator symbols 328, 330, can be viewed.
The magnet 314 and the ferromagnetic body 338 can be configured to prevent the cam 308, and thus the first indicator symbol 328, from being at a position at which portions of both the first and second indicator symbols 328, 330 are simultaneously viewable through the window 346. For example, as indicated by at least
The guide plate 408 is configured to be covered by the cover 402, and can include openings 422, 424 that correspond to openings 426, 428 in the cover 402 that relate to a lock assembly. For example, an opening 422, 426 in each of the guide plate 408 and the cover 402 can correspond to the location of the placement of a portion of the lever, spring cage, and/or other components of the lock assembly, while another opening 424, 428 can correspond to components related to a thumb turn assembly, push button assembly, or lock cylinder, among other components. The guide plate 408 can also include an elongated aperture 430 that can receive placement of at least one of the indicator plate 404 and the rear cover plate 410. According to certain embodiments, the aperture 430 is sized to accommodate and/or guide the linear vertical displacement of the indicator plate 306 between a first position and a second position. The one or more rear cover plate springs 412 can be positioned at least between an outer sidewall of the rear cover plate 410 and the guide plate 408.
The indicator plate 404 can include a first indicator symbol 432 and a second indicator symbol 434 that are vertically offset from each other, and which can each provide a different information or indication. For example, according to the illustrated embodiment, the first indicator symbol 432 can be the term “UNLOCKED”, while the second indicator symbol 434 can be the term “LOCKED”, and can correspond to a locked or unlocked status of the associated lock assembly. Additionally, the cover 402 can include an indicator opening 436 through which one of the first and second indicator symbols 432, 434 is visible from a position external to the indicator mechanism assembly 400.
The cam 406 can extend through an opening 411 in the rear cover plate 410, and can be rotated in a variety of different manners. According to the illustrated embodiment, the cam 406 can include an opening, such as, but not limited to, a square cross sectional shaped opening, that receives the spindle 326 such that rotation of the thumb turn 312 facilitates rotation of the cam 406. As shown in
If the locked latch bolt 238 is subsequently unlocked, such unlocking can facilitate the cam 406 being rotated to a second rotation position that corresponds to the indicator plate 404 being lifted to a position at which the second indicator symbol 434, and not the first indicator symbol 432, is viewable through the indicator opening 436 in the cover 402. For example, as the illustrated embodiment of the indicator plate 404 accommodates bi-directional rotation of the cam 406 to the second rotation position, rotation of the cam 406 in one of a right or left direction from the first rotation position to the second rotation position can result in the protrusion 416 of the cam 406 exerting a generally upward force against an upper wall 438 of either the first or second ramp 420. The force provided by the protrusion 416 against the upper wall 438 can generally vertically displace the indicator plate 404 in an upward direction so that the second indicator symbol 434, in this example the word “UNLOCKED”, is lifted to a positioned to be viewable through the indicator opening 436 in the cover 402.
If the unlocked latch bolt 238 is to be subsequently locked in the extended position, the locking of the latch bolt 238 can facilitate the cam 406 being rotated in a direction that results in the protrusion 416 exerting a generally downward force against a lower wall 440 of one of the first and second ramps 418, 420 that pushes the indicator plate 404 in a generally downward vertical direction. As the protrusion reaches the base portion 442 of the slot 414, the force provided by the protrusion 416 against the lower wall 440 can generally lower the indicator plate 404 so that the first indicator symbol 432, and not the second indicator symbol 434, is viewable through the indicator opening 436 in the cover 402.
The cam 506 can include a protrusion 520 that extends in a direction that is generally orthogonal to a central axis of rotation of the cam 506, and which is positioned in an opening 522 in the indicator plate 504 that is generally defined by an indicator cam wall 524 of the indicator plate 504. As shown, the indicator cam wall 524 includes a base cam wall 526 that is positioned between a pair of opposing cam wall ramps 528. Although the cam wall ramps 528 are illustrated as each having inwardly tapered extensions 530, the cam wall ramps 528 can have a variety of other shapes. Additionally, although the indicator cam wall 524 is illustrated as two cam wall ramps 528, according to certain embodiments, the indicator cam wall 524 can have only one cam wall ramp. Moreover, as discussed below, the inclusion of a cam wall ramp 528 at either end of the base cam wall 526 allows for the option of the cam 506 being rotated in one of two directions to lift, or otherwise upwardly displace, the indicator plate 504.
The rear case 508 includes a cavity 532 that can receive placement of the indicator plate 504. According to certain embodiments, the cavity 532 is sized to accommodate and/or guide the linear vertical displacement of the indicator plate 504 between a first position at which the first indicator symbol 516 on the rear case 508, and not the second indicator symbol 518, is viewable through an indicator opening 514 in the outer cover 501, and a second position at which the second indicator symbol 518 on the indicator plate 504, and not the first indicator symbol 516, is viewable through the indicator opening 514. According to the illustrated embodiment, the first indicator symbol 516 can be the term “UNLOCKED”, while the second indicator symbol 518 can be the term “LOCKED”, and each can correspond to a locked or unlocked status of the associated lock assembly.
The cam 506 can extend through an opening 534 in the rear case 508, and can be rotated in a variety of different manners. According to the illustrated embodiment, the cam 506 can include an opening, such as, but not limited to, a square cross sectional shaped opening, that receives the spindle 326 such that rotation of the thumb turn 312 facilitates rotation of the cam 506. As shown in
If the latch bolt 238 is subsequently locked, such locking can be facilitate the cam 506 being rotated to a second rotation position that corresponds to the indicator plate 504 being generally vertically lifted to a position in which indicator plate 504 does not block the first indicator symbol 516 from view through the indicator opening 514 in the inner cover 502. For example, as in the illustrated embodiment the indicator plate 504 includes a pair of cam wall ramps 528, the indicator plate 504 can accommodate bi-directional rotation of the cam 506. Moreover, rotation of the cam 506 from the first rotation position to a second rotation position can be accomplished via rotation of the cam 506 in either one of a right or left direction from the first rotation position to the second rotation position. As the cam 506 is rotated to the second rotation position, the cam wall ramp 528 is configured for the protrusion 520 of the cam 506 to exert a generally upward force against the cam wall ramp 528 that facilitates the generally upward vertically displacement of the indicator plate 504. Such lifting of the indicator plate 504 moves the second indicator symbol 518 from view and reveals the first indicator symbol 516, which had been behind the indicator plate 504 on the rear case 508.
If the unlocked latch bolt 238 is to be subsequently locked in the extended position, the locking of the latch bolt 238 can facilitate the cam 506 being rotated to a position where the cam 506 exerts a generally downward force at least against the base cam wall 526 that results in the displacement of the indicator plate 504 in a generally downward vertical direction. Such lowering of the indicator plate 504 moves the second indicator symbol 518 into position to be viewed through the indicator opening 514 in the outer cover 501, and results in the indicator plate 504 covering the first indicator symbol 516 so that the first indicator symbol 516 cannot be seen through the indicator opening 514 in the outer cover 501.
The exemplary indicator mechanism assembly 500 shown in
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment(s), but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as permitted under the law. Furthermore it should be understood that while the use of the word preferable, preferably, or preferred in the description above indicates that feature so described may be more desirable, it nonetheless may not be necessary and any embodiment lacking the same may be contemplated as within the scope of the invention, that scope being defined by the claims that follow. In reading the claims it is intended that when words such as “a,” “an,” “at least one” and “at least a portion” are used, there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. Further, when the language “at least a portion” and/or “a portion” is used the item may include a portion and/or the entire item unless specifically stated to the contrary.