Indicia reader for size-limited applications

Information

  • Patent Grant
  • 10789435
  • Patent Number
    10,789,435
  • Date Filed
    Thursday, May 25, 2017
    7 years ago
  • Date Issued
    Tuesday, September 29, 2020
    4 years ago
Abstract
An indicia-reading module is capable of integration into the smallest face of thin-profile smart device. The module employs chip-on-board packaging and a customized sensor enclosure to eliminate the stack-up height found in conventional packaging. The module also employs a customized frame to reduce volume by integrating circuit subassembly circuit boards into a unique architecture and by serving as the lenses for the illuminator and the aimer, thereby eliminating the need for any extra lenses or holders.
Description
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims the benefit of U.S. patent application Ser. No. 14/200,405 for an Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (and published Sep. 10, 2015 as U.S. Patent Publication No. 2015/0254485), now U.S. Pat. No. 9,665,757. Each of the foregoing patent application, patent publication, and patent is hereby incorporated by reference in its entirety.


FIELD OF THE INVENTION

The present invention relates to the field of indicia readers, more specifically, to an imaging barcode reader module suitable for integration into a slim, hand-supportable, mobile device.


BACKGROUND

Over the past forty years, businesses have sought to maximize efficiency by using various devices to automate data entry. In the important area of inventory management, in particular, the symbol reading device (e.g., barcode reader, barcode scanner or RFID reader) has greatly reduced the time and errors inherent to manual data entry. Symbol reading devices are often employed to decode barcodes. A barcode is a machine-readable representation of information in graphic format. Traditionally, a barcode is a series of parallel bars and spaces of varying widths (e.g., a linear barcode or 1D barcode). More recently, there has been an increase in the use of alternatives to the linear barcode, for example matrix codes (e.g., 2D barcodes, QR Code, Aztec Code, and Data Matrix) and Optical Character Recognition (OCR) have enjoyed increasing popularity as the technology advances. As used herein, the terms barcode, indicia, and code-symbol are intended in their broadest sense to include linear barcodes, matrix barcodes, and OCR-enabled labels.


Indicia readers (e.g., barcode readers) tend to fall into one of three categories: wand readers, laser scan engine barcode readers, and image sensor based barcode readers. Wand readers generally include a single light source and single photodetector housed in a pen shaped housing. A user drags the wand reader across a code symbol (e.g., a barcode) and a signal is generated representative of the bar space pattern of the barcode. Laser scan engine-based barcode readers typically include a laser diode assembly generating a laser light beam and a moving mirror for sweeping the laser light beam across a code symbol, wherein a signal is generated corresponding to the code symbol. Image-sensor-based barcode readers typically include multi-element image sensors such as CID, CMOS, or CCD image sensors and an imaging optic for focusing an image onto the image sensor. In the operation of an image-sensor-based barcode reader, an image of a code symbol is focused on an image sensor and a signal is generated corresponding to the code symbol. Image sensor elements may be arrayed in a line or in a rectangular matrix or area. Area image sensors capture a digital picture and use software algorithms to find and decode one or more symbols. Users of laser scanner engine-based barcode readers have been switching in increasing numbers to image sensor based barcode readers. Image sensor based barcode readers offer additional features and functions relative to laser scan engine based barcode readers. These features and functions result from image processing algorithms. The limits of which are typically based on the processing resources available from the device.


Virtually all thin-profile, hand-supportable, smart-devices (e.g., smart-phones) now have integrated cameras. Accordingly, numerous applications capable of utilizing the integrated camera for indicia reading have been developed for these devices. While these applications perform reasonably well for the casual user, they lack the features and functions present in dedicated devices. Illumination, aiming, stabilization, and focusing could all suffer when using a general purpose mobile imaging device for indicia reading. The lack of dedicated resources could slow performance and compromise efficiency in fast paced work environments.


Typical users want to carry only one device and will be reluctant to trade their smart-device for a scanner. A need, therefore, exists for an indicia-reading module with all of the features of a dedicated scanner device that can integrate with a smart-device without being bulky. Such a module could integrate internally or externally. If internal, the module would have dimensions allowing for seamless integration into the smart device and would be easy for the user to operate with one hand. To this end an indicia-reader module that integrates into the smallest area side of the smart device (i.e., narrow-edge integration) would operate much like a hand-held, remote control which most users know well. This integration, however, puts severe limitations on the design of such a dedicated image-based optical scanner module. Unique design approaches and construction methods must be combined to allow for such novel integration.


SUMMARY

Accordingly, in one aspect, the present invention embraces a module for reading indicia, such as barcodes. An exemplary indicia-reading module is configured to facilitate narrow-edge integration into a thin-profile smart device.


The exemplary indicia-reading module includes a sensor module, an illuminator-aimer circuit subassembly, a processing circuit subassembly, and an interface circuit subassembly. The sensor module includes an adjustable imaging lens for imaging the indicia-reading module's field of view onto a sensor circuit, which includes a plurality of pixels. The illuminator-aimer circuit subassembly is configured both to project electromagnetic radiation toward indicia within the indicia-reading module's field of view and to project a sighting pattern that corresponds with the indicia-reading module's field of view. The processing circuit subassembly is configured to render (e.g., decode) indicia information. The interface circuit subassembly is configured to connect the indicia-reading module to a host device (e.g., a computer or smart device).


The sensor module captures the image of indicia. The module is constructed around a sensor integrated circuit die (i.e., sensor IC circuit) that is chip-on-board (COB) packaged to a substrate and wire-bonded to external circuitry and connectors, with care taken to ensure that there is no wire crossover. A filter and an adjustable lens are held in close proximity above the sensor integrated circuit by a housing, which is attached to the substrate. The adjustable imaging lens focuses the indicia-reading module's field of view onto a plurality of pixels that typically include the active area of the sensor IC circuit while a filter removes unwanted electromagnetic radiation. The housing, the filter, and the substrate are joined in such a way as to hermetically seal the sensor integrated circuit from the outside environment.


The illuminator-aimer circuit subassembly has two functions, namely to illuminate the field of view and to help the user aim the module's field of view onto the indicia. The illuminator-aimer module uses two subcircuits to achieve these functions. Each subcircuit uses a light source (e.g., light emitting diode, LED) that projects light through an aperture and a corresponding lens towards a target. The illuminator subcircuit projects a uniform light pattern to highlight the module's field of view and thereby enhance the sensor performance, while the aimer subcircuit projects a sighting pattern that corresponds with the center of the module's field of view and helps the user position the indicia properly for the sensor. This sighting pattern can be a cross hair pattern or simply a dot to indicate the center of the field of view. In addition, the aimer subcircuit can project a highly visible line(s) or framing pattern(s) corresponding to the edges and/or corners of the exact field of view.


The processing circuit subassembly renders the signals from all the sensor circuit's pixels into a composite image (e.g., text image or bitmap), and can then process and/or store the image for barcode decoding. After decoding, the barcode information is passed to the interface circuit subassembly, which helps provide communication with the host device (e.g., a computer).


The sensor module is built on a thermally stable substrate and each circuit subassembly is built onto its own unique circuit board, each composed of thin, rigid-flex board material. The substrate and boards are electrically interconnected with flex cabling and all held into a small volume with a frame. The circuit boards snap into fittings molded into the frame and therefore do not require extra hardware. The frame, which is typically constructed of clear polycarbonate, has lenses molded into its sides so that when the illuminator-aimer circuit subassembly is in position the frame serves as both the illuminator lens and the aimer lens. The small volume of the indicia-reading module allows it to be integrated into the edge of a thin profile device.


In a related aspect, the present invention embraces a smart phone employing the exemplary indicia-reading module. In particular, the smart phone includes a computer, a display, and the indicia-reading module, which is physically integrated (e.g., narrow-edge integrated) within a slim hand-supportable housing. The smart phone typically possesses a substantially rectangular cuboid shape whose thickness is substantially smaller than both its height and its width (e.g., no more than 20 percent of either the length or the width). The indicia-reading module may be integrated to the smart phone with mounting pins and screws to prevent the deformation of the module and keep all components in place under shock and vibration.


The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts an exemplary handheld smart device.



FIG. 2 depicts a block diagram of an exemplary indicia-reader module.



FIGS. 3A and 3B depict exploded views of an exemplary sensor module.



FIG. 4 depicts an exploded view of an exemplary indicia-reading module.



FIG. 5 depicts a first exemplary embodiment of the indicia-reader module with a decoded output.



FIG. 6 depicts a second exemplary embodiment of the indicia-reader module with a non-decoded output.



FIG. 7 depicts an exemplary smart device and exemplary integrated indicia reader showing the scale of the reader relative to the smart device.





DETAILED DESCRIPTION

The present invention embraces an indicia reader integrated into the smallest side (i.e., the narrowest edge) of a hand held smart device (e.g., smart-phone or digital assistant). These devices are ultra-lightweight, pocket-sized devices that are easy to carry and operate with a single hand, which necessarily limits the size of the device.


Smart phones 10, such as shown in FIG. 1, tend to be rectangular cuboids whose thickness is substantially smaller than both its height and its width. For example a smart phone device (neglecting tapers) can have a length dimension 1, a width dimension 2, and a thickness dimension 3 of roughly 115 millimeters×59 millimeters×9 millimeters. These dimensions may vary, but some general rules apply. The length and width determine the display size and are usually driven by user interface requirements. The thickness 3 plays an important role in the ease of handling. Thinner devices are easier to hold and manipulate. Thinner devices, however, make the integration of application specific modules, either internally or externally, most challenging.



FIG. 1 depicts an exemplary embodiment of a scanner that is integrated into a smart phone device. The window 5 of the integrated scanner module, shown in the “narrow edge” 4 of the device, allows for easy one-hand scanning. To achieve such an embodiment requires the integration of space-saving techniques that, when combined, produce an ultra-small integration package.



FIG. 2 shows a general block diagram of the indicia-reader module 1000. The indicia-reader module typically includes a sensor module 1050 including an adjustable imaging lens 200 for imaging the indicia-reader module's field of view 1240 onto a sensor integrated circuit (IC) diced from a wafer of like sensor circuits (i.e., sensor IC die) 1040. The sensor IC die 1040 contains an image capture area (i.e., active area) 1033 that includes a plurality of pixels arranged in rows and columns and sensitive to the light reflected from the target 1250. The sensor IC die 1040 may implement CCD or CMOS technology configured in one of many ways to convert the photonic energy into an electric signal. In one embodiment, an image is focused onto the active area 1033 of the sensor IC die 1040. The active area 1033 is exposed to the imaged light via a physical or electronic shutter. If electronic, the specific kind of shutter (i.e., rolling or global) depends on the image sensor implementation in regards to type (i.e., CMOS or CCD) and readout architecture (i.e., full-frame or interline). During the exposure a charge is created in each pixel; the charge depends on the image intensity in that small region. After the exposure is complete, the charges from the pixels are shifted row by row into a shift register 1034 where they then shift out one-by-one and are amplified via an amplifier 1036 that may be built into the sensor IC die 1040. The exposure, readout, timing, and other operational settings are controlled by the image sensor timing and control circuit 1038. The amplified analog signal is rendered suitable for digital conversion by a processing circuit 1039 and then converted into a digital signal via an analog-to-digital (A/D) converter 1037. The digital image is reconstructed and reformatted from the digitized pixel information by the central processing unit (i.e., CPU) 1060. Different sensor IC die will have different levels of integration. While the basic flow described here remains the same, some block diagram components may be integrated within the sensor IC die in different embodiments.


The image active area 1033 may respond to a variety of optical wavelengths. In cases where color information is desired the active area may be placed under a Bayer filter or other color composite filter and then post-processed to render a color image. In most cases it is also important to include a filter 210 (e.g., infrared (IR) blocking filter) to keep stray light from overloading the active area electronics or changing the perceived color information. In other embodiments, this filter may not be necessary or may be one tuned for different wavelengths (e.g., tri-band-pass filter). In addition, the active area is typically fabricated from silicon but can be made from different materials in order to achieve sensitivity to different optical wavelengths such as infra-red (IR).


The packaging of electronics and optics can affect the integration of devices into small volumes. One method pursued here to reduce the package volume for the sensor module 1050 repackages a sensor IC die 1040 into a custom package so that, in effect, the lens 200 and IR blocking filter 210 become incorporated in the sensor IC package. To accomplish this, the sensor IC die is packaged using a method call chip-on-board (COB). Chip-on-Board, or COB, packaging refers to the semiconductor assembly technology in which the sensor IC die 1040 is directly mounted on and electrically interconnected to its final circuit board instead of undergoing traditional assembly or packaging as an individual IC. The elimination of conventional device packaging from COB assemblies shrinks the final product, as well as improves its performance as a result of the shorter interconnection paths. In addition to these advantages, the COB packaging eliminates the redundant sensor cover glass, thereby reducing light loss, optical aberrations, and related image defects.


Aside from circuit boards used for COBs, various substrates are available for use in this approach. There are, for instance, ceramic and glass ceramic substrates which exhibit excellent thermal properties that are especially important in imaging applications. Organic substrates that weigh and cost less while providing a low dielectric constant also exist. There are also flex substrates that are very thin. These kinds of assemblies have received a number of other names aside from “COB” based on available substrates (e.g., chip-on-glass (COG), chip-on-flex (COF), etc.).


As shown in FIG. 3A and FIG. 3B, the sensor module 1050 is built around the sensor IC die 1040. The die 1040 is first mounted to a substrate 1042 using adhesive. The adhesive application may be in the form of dispensing, stencil printing, or pin transfer. The die placement must be accurate enough to ensure proper orientation and good planarity of the die. After the die is set, a curing process (such as exposure to heat or ultraviolet light) allows the adhesive to attain its final mechanical, thermal, and electrical properties. Any organic contaminants resulting from the curing must be removed either by plasma or solvent cleaning so as not to affect the subsequent wire bonding process.


Wire bonding is used to make the electrical connection between the substrate 1042 and the connectors and electronics of the sensor IC die 1040. The bond wires 1045 may be aluminum, copper, or gold and typically have diameters ranging from 15 microns to 100 microns. The wires are attached at both ends using some combination of heat, pressure, and ultrasonic energy to make a weld. No cross-over of the bond wires assures that there are no short circuits.


The wire-bonded die and substrate are glued with an adhesive gasket 1047 to a housing 1048 that holds the adjustable imaging lens 200 and the IR blocking filter 210. After the adhesive is set, the housing 1048 and substrate 1042 form a hermetic seal, thereby protecting the sensor IC die 1040 and the bond wires 1045.


As noted, the level of sensor module integration varies. For example in a non-decoded output module the image data is delivered directly to the host device for decoding. Because of this, the on-board requirements for processing, power management, and memory are relaxed. Here, the interface may include output image data presented in parallel (8-bit) or serial (SCI2), sync signals, and control signals. The embodiment of the indicia-reader module, as shown in FIG. 2, is known as a decoded output module, because it has the processing and electronics necessary to return a decoded response rather than a raw image. As shown in FIG. 2, a processing circuit subassembly 1100 includes the input and output circuitry for the sensor module 1038, 1039, as well as a central processing unit 1060 and RAM memory 1080 and flash memory 1090 for program and configuration data storage. Here, the central processing unit 1060 performs image processing and decoding. The interface can be either serial (e.g., RS232) or on a bus (e.g., USB) 1500.


In the decoded output configuration, the CPU 1060 decodes the indicia recorded in an image. The indicia can be decoded by processing the image data of a frame corresponding to a line of pixel positions (e.g., a row, a column, or a diagonal set of pixel positions) to determine a spatial pattern of dark and light cells and can convert each light and dark cell pattern determined into a character or character string via table lookup. Where a decodable indicia representation is a 2D bar code symbology, a decode attempt can include the steps of locating a finder pattern using a feature detection algorithm, locating matrix lines intersecting the finder pattern according to a predetermined relationship with the finder pattern, determining a pattern of dark and light cells along the matrix lines, and converting each light pattern into a character or character string via table lookup. CPU 1060, which, as noted, can be operative in performing processing for attempting to decode decodable indicia, can be incorporated in an integrated circuit disposed on circuit board such as a rigid flex in order to obtain the thinnest board for small integration. Flex/rigid flex interconnections are used to electrically connect the processor circuit subassembly to the other subassemblies and modules.


The indicia-reading module 1000 can have an interface circuit subassembly 1300 as shown in FIG. 2. This circuit subassembly is built onto its own board and is connected to the bus 1500, other subassemblies, and modules via flex cabling. The interface circuit 1110 on this board serves to assist in the communication of data to and from the indicia-reader module 1000 and to transition power into the module and to the power circuit 1206 where it is conditioned and distributed within the indicia-reader module 1000.



FIG. 2 shows the interface of the module as a bus 1500. The bus 1500 is considered to be any communication system that transfers data (and power) between components inside the computer or, in this case, the smart hand-held device. The bus may be used to communicate data back and forth between the indicia-reader module 1000 and the host device or peripheral. Power may also be delivered over the bus. A power conditioning circuit, a battery, DC power supply, or any other source for providing power can use the bus to deliver power to the indicia-reading module. Finally diagnostic and programming devices may use the bus to deliver programming information or receive diagnostic information from the indicia-reader module.


As depicted in FIG. 2, the interface circuit subassembly 1300 also includes a power unit 1206 that protects against overloads and distributes power at the right level and at the right time to the various subassemblies and modules within the indicia-reader module. The power unit 1206 can include a charging circuit that is continually charged by a power supply and can be configured to output energy within a range of power levels to accommodate various operation characteristics. The power from this unit can be provided as constant current or constant voltage and is adjustable so that it can serve the constant power needs of the module as well as intermittent service to subsystems for such operations as illumination, exposure, focusing, and aiming.


The illuminator-aimer circuit subassembly 1400 is used to help the user align the indicia 15 within the module's field of view 1240 and to provide light for the sensor module to record with good fidelity. This circuit subassembly is built onto its own board and is connected to other subassemblies and modules via flex cabling.


As shown in FIG. 2, the illuminator-aimer circuit subassembly 1400 has two subsystems that perform similar actions. In general, it can be said that both are projection systems and as such can use a variety of optical technologies and methods (e.g., lenses, lightpipes, or diffractive optics) to achieve the objective of illuminating the scene and providing an aiming image. The illuminator driver circuit 550 and the aimer driver circuit 650 provide power (e.g., a constant current) to the illuminator light source 500 and aimer light source 600, respectively. The illuminator light source 500 and the aimer light source 600 may include an LED or bank of LEDs. Alternatively the aimer light source can be a laser diode to provide highly visible pattern in extra long range and under direct sun light. The illumination light source should provide light of sufficient intensity to allow for the sensor module 1050 to capture an image of low-noise and high dynamic range image with no saturation. The light should be uniform across the field of view for best results and at a wavelength that the sensor IC die 1040 was designed for (e.g., visible wavelength regime). Upon triggering the illuminator, driver circuit 550 causes the illuminator light source 500 to emit light. The light passes through a rectangular illuminator aperture 575. The image of this illuminator aperture 575 is formed on the target 1250 via the illuminator lens 525. Thus, in this embodiment, a rectangular image 1260 of uniform white light would appear on the target 1250.


To help alignment the user may also be provided with a sighting pattern 1242. This pattern is formed like the illumination pattern 1260. The light from the aimer light source 600 passes through an aimer aperture 675 (e.g., crosshair, line, or rectangle) and then is imaged via the aimer lens 625 to form a sighting pattern 1242 on the target 1250. When the user aligns the crosshairs with the center of the indicia, the indicia will image onto the center of the sensor ICs active area 1033. In one embodiment, the CPU 1060 can provide control inputs to all control circuits (e.g., the image sensor timing and control circuit 1038, the illuminator driver circuit 550, and the aimer driver circuit 650) and to the power unit 1206 to coordinate timing between image sensor array controls and illumination subsystem controls.


The imaging lens assembly 200 can be adapted for focusing an image of a decodable barcode 15, which is located within the field of view 1240, onto image sensor array 1033. Working distances should not vary so greatly that they cannot be accommodated by the depth of field and the size of the sensor. In this embodiment the imaging lens has relatively a high f-number (i.e., f/#) and thus a long depth of field to accommodate all normal usage scenarios, thereby precluding the need for active focusing. Active focusing could be used but would typically add complexity, size, and cost.


As depicted in FIG. 1, the window 5 of the indicia-reader module is integrated into a narrow edge of the smart device 4. This serves to seal the smart device and the sensor module to protect it from dust and debris. It also can perform some optical filtering, too, in order to reduce the unwanted stray light that otherwise would enter the device (e.g., possibly affecting performance).


In summary, the indicia-reader module typically includes a (i) a sensor module 1050, (ii) an illuminator-aimer circuit subassembly 1400, (iii) a processing circuit subassembly 1100, and (iv) an interface circuit subassembly 1300. Each of these four modules (or subassemblies) is typically constructed on its own discrete circuit board or substrate and a variety of kinds may be used. Cabling can be used to interconnect the boards and, in this embodiment, flex or rigid-flex interconnections are used. FIG. 4 shows an exploded view of the indicia-reader module 1000 with the major modules and circuit subassemblies.


To fabricate the sensor module, the sensor IC die 1040 is first COB packaged with a substrate 1042, and then integrated with the module housing 1048 and the IR-cutoff filter 210 to form a hermetically sealed assembly. See FIGS. 3A and 3B. A dummy lens is then added to the housing 1048 to allow direct soldering or reflowing with surface mount technology (SMT) of any components on this substrate. After soldering, the real lens is inserted, focused, and secured into place. As depicted in FIG. 4, the sensor module 1050 and all the circuit subassemblies 1100, 1300, 1400 are attached (e.g., snap fit) to the frame 1014. The frame 1014 holds all the circuit boards and modules in place through the use of snap-fittings, which ensures cost and space efficiency. It is within the scope of the invention to employ other, less efficient techniques to attach the boards to the frame. The frame in this embodiment also functions as the lenses 525, 625 for the illuminator-aimer. The frame is typically made from a clear polycarbonate and molded or machined/polished in order to focus the projected illumination and aiming images. Here again, other methods could be used but not as efficiently (i.e., with respect to size and cost). The power and data interconnection between the boards use flex or rigid-flex cables and board connectors. The frame, along with screws and pins, help to secure the module within the smart device 10 in a way that reduces deformation and mitigates shock and vibration effects.


Various components like the imaging lens 200, the sensor IC die 1040, the CPU 1060, the memory 1080, and the interface communication 1110 can be selected to achieve the present invention. For example, different focal-length lenses may be designed to image different fields of view. In another example, the sensor IC die 1040 may be selected to have a different size for capturing different fields of view, and the pixel size and density may be selected to allow for higher resolution imaging. It should be noted that some of these components may be omitted altogether depending on the level of integration with the host smart device 10. In some embodiments, the indicia-reading module 1000 may return decoded information to the host device. In that case the indicia-reading module needs memory and a strong processor. In other embodiments, however, the indicia-reading module may return non-decoded images and rely on the host device to process the images and return the decoded results. In this case neither a dedicated CPU 1060 nor any memory 1080 are needed. A simple micro controller can be included to provide timing and control to the image sensor IC die 1040 and the illuminator-aimer circuit subassembly 1400.



FIG. 5 shows assembled indicia-reader module 1000 with a decoded output, and FIG. 6 shows an exploded view of an indicia-reader module 1000 with a non-decoded output. Both indicia-reading modules 1000 have thickness dimensions of less than about 10 millimeters (e.g., 7 millimeters or less) and can readily integrate into the narrow edge of a smart device that has a thickness dimension of less than about 10 millimeters (e.g., 9 millimeters). Both embodiments utilize the COB packaging of the sensor IC die and integrating the package with the housing 1048, IR cutoff filter 210, and the substrate 1042. The embodiments depicted in FIGS. 5 and 6 also share a similar approach in the subassembly circuits residing on their own boards, with each board being made from a thin rigid-flex material and interconnect with flex cables. These exemplary embodiments share the principal of saving cost and space by using a polycarbonate frame 1014 to hold the boards and to serve both as support and as the optics for the illuminator-aimer circuit subassembly. Finally, both will be integrated into their host device with mounting screws and pins to secure the indicia-reading module and prevent deformation and keep all components in place under shock and vibration.



FIG. 7 illustrates the relative size of the indicia-reader module with respect to the smart device 10. As depicted in FIG. 7, the indicia-reading module 1000 can be oriented by a user with respect to a target (e.g., a package label) bearing decodable indicia 15 so that an illumination pattern 1260 is projected onto decodable indicia 15. In the exemplary embodiment depicted in FIG. 7, a code symbol 15 is provided by a 1D bar code symbol, although a code symbol may also be provided by a 2D bar code symbol or optical character recognition (OCR) characters. The user aligns the aimer pattern 1242 and a takes a frame of image data. The frame that can be captured and subject to decoding can be a full frame (including pixel values corresponding to each pixel of image sensor array active area 1033, a partial frame in which a maximum number of pixels read out from image sensor array 1033 during operation of the indicia-reading module 1000), or a windowed frame that includes pixel values corresponding to less than a full frame of pixels of image sensor array 1033. A picture size of a windowed frame can vary depending on the number of pixels subject to addressing and readout for capture of a windowed frame.


An indicia-reading module 1000 can capture frames of image data at a rate known as a frame rate. A typical frame rate is 60 frames per second (FPS), which translates to a frame time (frame period) of 16.6 milliseconds. Another typical frame rate is 30 frames per second (FPS) which translates to a frame time (frame period) of 33.3 milliseconds per frame. A frame rate of the indicia-reading module 1000 can be increased (and frame time decreased) by decreasing of a frame picture size. After a good image of the indicia is obtained, it is processed, decoded, and sent to the host device the data is conditioned communication by the interface electronics 1110.


To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications: To supplement the present disclosure, this application incorporates entirely by reference the following patents, patent application publications, and patent applications:

  • U.S. Pat. Nos. 6,832,725; 7,128,266;
  • U.S. Pat. Nos. 7,159,783; 7,413,127;
  • U.S. Pat. Nos. 7,726,575; 8,294,969;
  • U.S. Pat. Nos. 8,317,105; 8,322,622;
  • U.S. Pat. Nos. 8,366,005; 8,371,507;
  • U.S. Pat. Nos. 8,376,233; 8,381,979;
  • U.S. Pat. Nos. 8,390,909; 8,408,464;
  • U.S. Pat. Nos. 8,408,468; 8,408,469;
  • U.S. Pat. Nos. 8,424,768; 8,448,863;
  • U.S. Pat. Nos. 8,457,013; 8,459,557;
  • U.S. Pat. Nos. 8,469,272; 8,474,712;
  • U.S. Pat. Nos. 8,479,992; 8,490,877;
  • U.S. Pat. Nos. 8,517,271; 8,523,076;
  • U.S. Pat. Nos. 8,528,819; 8,544,737;
  • U.S. Pat. Nos. 8,548,242; 8,548,420;
  • U.S. Pat. Nos. 8,550,335; 8,550,354;
  • U.S. Pat. Nos. 8,550,357; 8,556,174;
  • U.S. Pat. Nos. 8,556,176; 8,556,177;
  • U.S. Pat. Nos. 8,559,767; 8,559,957;
  • U.S. Pat. Nos. 8,561,895; 8,561,903;
  • U.S. Pat. Nos. 8,561,905; 8,565,107;
  • U.S. Pat. Nos. 8,571,307; 8,579,200;
  • U.S. Pat. Nos. 8,583,924; 8,584,945;
  • U.S. Pat. Nos. 8,587,595; 8,587,697;
  • U.S. Pat. Nos. 8,588,869; 8,590,789;
  • U.S. Pat. Nos. 8,593,539; 8,596,542;
  • U.S. Pat. Nos. 8,596,543; 8,599,271;
  • U.S. Pat. Nos. 8,599,957; 8,600,158;
  • U.S. Pat. Nos. 8,600,167; 8,602,309;
  • U.S. Pat. Nos. 8,608,053; 8,608,071;
  • U.S. Pat. Nos. 8,611,309; 8,615,487;
  • U.S. Pat. Nos. 8,616,454; 8,621,123;
  • U.S. Pat. Nos. 8,622,303; 8,628,013;
  • U.S. Pat. Nos. 8,628,015; 8,628,016;
  • U.S. Pat. Nos. 8,629,926; 8,630,491;
  • U.S. Pat. Nos. 8,635,309; 8,636,200;
  • U.S. Pat. Nos. 8,636,212; 8,636,215;
  • U.S. Pat. Nos. 8,636,224; 8,638,806;
  • U.S. Pat. Nos. 8,640,958; 8,640,960;
  • U.S. Pat. Nos. 8,643,717; 8,646,692;
  • U.S. Pat. No. 8,646,694;
  • International Publication No. 2013/163789;
  • International Publication No. 2013/173985;
  • U.S. Patent Application Publication No. 2009/0134221;
  • U.S. Patent Application Publication No. 2010/0177080;
  • U.S. Patent Application Publication No. 2010/0177076;
  • U.S. Patent Application Publication No. 2010/0177707;
  • U.S. Patent Application Publication No. 2010/0177749;
  • U.S. Patent Application Publication No. 2011/0169999;
  • U.S. Patent Application Publication No. 2011/0202554;
  • U.S. Patent Application Publication No. 2012/0111946;
  • U.S. Patent Application Publication No. 2012/0168511;
  • U.S. Patent Application Publication No. 2012/0168512;
  • U.S. Patent Application Publication No. 2012/0193407;
  • U.S. Patent Application Publication No. 2012/0193423;
  • U.S. Patent Application Publication No. 2012/0203647;
  • U.S. Patent Application Publication No. 2012/0223141;
  • U.S. Patent Application Publication No. 2012/0228382;
  • U.S. Patent Application Publication No. 2012/0248188;
  • U.S. Patent Application Publication No. 2013/0043312;
  • U.S. Patent Application Publication No. 2013/0056285;
  • U.S. Patent Application Publication No. 2013/0068840;
  • U.S. Patent Application Publication No. 2013/0070322;
  • U.S. Patent Application Publication No. 2013/0075168;
  • U.S. Patent Application Publication No. 2013/0082104;
  • U.S. Patent Application Publication No. 2013/0175341
  • U.S. Patent Application Publication No. 2013/0175343;
  • U.S. Patent Application Publication No. 2013/0200158;
  • U.S. Patent Application Publication No. 2013/0256418;
  • U.S. Patent Application Publication No. 2013/0257744;
  • U.S. Patent Application Publication No. 2013/0257759;
  • U.S. Patent Application Publication No. 2013/0270346;
  • U.S. Patent Application Publication No. 2013/0278425;
  • U.S. Patent Application Publication No. 2013/0287258;
  • U.S. Patent Application Publication No. 2013/0292474;
  • U.S. Patent Application Publication No. 2013/0292475;
  • U.S. Patent Application Publication No. 2013/0292477;
  • U.S. Patent Application Publication No. 2013/0293539;
  • U.S. Patent Application Publication No. 2013/0293540;
  • U.S. Patent Application Publication No. 2013/0306728;
  • U.S. Patent Application Publication No. 2013/0306730;
  • U.S. Patent Application Publication No. 2013/0306731;
  • U.S. Patent Application Publication No. 2013/0306734;
  • U.S. Patent Application Publication No. 2013/0307964;
  • U.S. Patent Application Publication No. 2013/0313324;
  • U.S. Patent Application Publication No. 2013/0313325;
  • U.S. Patent Application Publication No. 2013/0313326;
  • U.S. Patent Application Publication No. 2013/0327834;
  • U.S. Patent Application Publication No. 2013/0341399;
  • U.S. Patent Application Publication No. 2013/0342717;
  • U.S. Patent Application Publication No. 2014/0001267;
  • U.S. Patent Application Publication No. 2014/0002828;
  • U.S. Patent Application Publication No. 2014/0008430;
  • U.S. Patent Application Publication No. 2014/0008439;
  • U.S. Patent Application Publication No. 2014/0021256;
  • U.S. Patent Application Publication No. 2014/0025584;
  • U.S. patent application Ser. No. 13/367,978 for a Laser Scanning Module Employing An Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.); U.S. patent application Ser. No. 13/400,748 for a Laser Scanning Bar Code Symbol Reading System Having Intelligent Scan Sweep Angle Adjustment Capabilities Over The Working Range Of The System For Optimized Bar Code Symbol Reading Performance, filed Feb. 21, 2012 (Wilz); U.S. patent application Ser. No. 13/736,139 for an Electronic Device Enclosure, filed Jan. 8, 2013 (Chaney); U.S. patent application Ser. No. 13/750,304 for Measuring Object Dimensions Using Mobile Computer, filed Jan. 25, 2013; U.S. patent application Ser. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson); U.S. patent application Ser. No. 13/780,158 for a Distraction Avoidance System, filed Feb. 28, 2013 (Sauerwein); U.S. patent application Ser. No. 13/780,196 for Android Bound Service Camera Initialization, filed Feb. 28, 2013 (Todeschini et al.); U.S. patent application Ser. No. 13/780,271 for a Vehicle Computer System with Transparent Display, filed Feb. 28, 2013 (Fitch et al.); U.S. patent application Ser. No. 13/780,356 for a Mobile Device Having Object-Identification Interface, filed Feb. 28, 2013 (Samek et al.); U.S. patent application Ser. No. 13/784,933 for an Integrated Dimensioning and Weighing System, filed Mar. 5, 2013 (McCloskey et al.); U.S. patent application Ser. No. 13/785,177 for a Dimensioning System, filed Mar. 5, 2013 (McCloskey et al.); U.S. patent application Ser. No. 13/792,322 for a Replaceable Connector, filed Mar. 11, 2013 (Skvoretz); U.S. patent application Ser. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.); U.S. patent application Ser. No. 13/895,846 for a Method of Programming a Symbol Reading System, filed Apr. 10, 2013 (Corcoran); U.S. patent application Ser. No. 13/902,110 for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Hollifield); U.S. patent application Ser. No. 13/902,144, for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Chamberlin); U.S. patent application Ser. No. 13/902,242 for a System For Providing A Continuous Communication Link With A Symbol Reading Device, filed May 24, 2013 (Smith et al.); U.S. patent application Ser. No. 13/912,262 for a Method of Error Correction for 3D Imaging Device, filed Jun. 7, 2013 (Jovanovski et al.); U.S. patent application Ser. No. 13/912,702 for a System and Method for Reading Code Symbols at Long Range Using Source Power Control, filed Jun. 7, 2013 (Xian et al.); U.S. patent application Ser. No. 13/922,339 for a System and Method for Reading Code Symbols Using a Variable Field of View, filed Jun. 20, 2013 (Xian et al.); U.S. patent application Ser. No. 13/927,398 for a Code Symbol Reading System Having Adaptive Autofocus, filed Jun. 26, 2013 (Todeschini); U.S. patent application Ser. No. 13/930,913 for a Mobile Device Having an Improved User Interface for Reading Code Symbols, filed Jun. 28, 2013 (Gelay et al.); U.S. patent application Ser. No. 13/933,415 for an Electronic Device Case, filed Jul. 2, 2013 (London et al.); U.S. patent application Ser. No. 13/947,296 for a System and Method for Selectively Reading Code Symbols, filed Jul. 22, 2013 (Rueblinger et al.); U.S. patent application Ser. No. 13/950,544 for a Code Symbol Reading System Having Adjustable Object Detection, filed Jul. 25, 2013 (Jiang); U.S. patent application Ser. No. 13/961,408 for a Method for Manufacturing Laser Scanners, filed Aug. 7, 2013 (Saber et al.); U.S. patent application Ser. No. 13/973,315 for a Symbol Reading System Having Predictive Diagnostics, filed Aug. 22, 2013 (Nahill et al.); U.S. patent application Ser. No. 13/973,354 for a Pairing Method for Wireless Scanner via RFID, filed Aug. 22, 2013 (Wu et al.); U.S. patent application Ser. No. 13/974,374 for Authenticating Parcel Consignees with Indicia Decoding Devices, filed Aug. 23, 2013 (Ye et al.); U.S. patent application Ser. No. 14/018,729 for a Method for Operating a Laser Scanner, filed Sep. 5, 2013 (Feng et al.); U.S. patent application Ser. No. 14/019,616 for a Device Having Light Source to Reduce Surface Pathogens, filed Sep. 6, 2013 (Todeschini); U.S. patent application Ser. No. 14/023,762 for a Handheld Indicia Reader Having Locking Endcap, filed Sep. 11, 2013 (Gannon); and U.S. patent application Ser. No. 14/035,474 for Augmented-Reality Signature Capture, filed Sep. 24, 2013 (Todeschini); U.S. patent application Ser. No. 14/047,896 for Terminal Having Illumination and Exposure Control filed Oct. 7, 2013 (Jovanovski et al.) U.S. patent application Ser. No. 14/058,721 for a Terminal Configurable for Use Within an Unknown Regulatory Domain, filed Oct. 21, 2013 (Pease et al.); U.S. patent application Ser. No. 14/035,474 for Augmented-Reality Signature Capture, filed Sep. 24, 2013 (Todeschini); U.S. patent application Ser. No. 14/050,515 for Hybrid-Type Bioptical, filed Oct. 10, 2013 (Edmonds et al.); U.S. patent application Ser. No. 14/053,175 for Imaging Apparatus Having Imaging Assembly, filed Oct. 14, 2013 (Barber) U.S. patent application Ser. No. 14/055,234 for Dimensioning System, filed Oct. 16, 2013 (Fletcher); U.S. patent application Ser. No. 14/055,353 for Dimensioning System, filed Oct. 16, 2013 (Giordano et al.); U.S. patent application Ser. No. 14/055,383 for Dimensioning System, filed Oct. 16, 2013 (Li et al.); U.S. patent application Ser. No. 14/050,675 for Apparatus for Displaying Bar Codes from Light Emitting Display Surfaces, filed Oct. 10, 2013 (Horn et al.); U.S. patent application Ser. No. 14/053,314 for Indicia Reader, filed Oct. 14, 2013 (Huck); U.S. patent application Ser. No. 14/058,762 for Terminal Including Imaging Assembly, filed Oct. 21, 2013 (Gomez et al.); U.S. patent application Ser. No. 14/058,831 for System Operative to Adaptively Select an Image Sensor for Decodable Indicia Reading, filed Oct. 21, 2013 (Sauerwein); U.S. patent application Ser. No. 14/062,239 for Chip on Board Based Highly Integrated Imager, filed Oct. 24, 2013 (Toa et al.); U.S. patent application Ser. No. 14/065,768 for Hybrid System and Method for Reading Indicia, filed Oct. 29, 2013 (Meier et al.); U.S. patent application Ser. No. 14/074,746 for Self-Checkout Shopping System, filed Nov. 8, 2013 (Hejl et al.); U.S. patent application Ser. No. 14/074,787 for Method and System for Configuring Mobile Devices via NFC Technology, filed Nov. 8, 2013 (Smith et al.); U.S. patent application Ser. No. 14/082,379 for Method and Apparatus for Compensating Pixel Values in an Imaging, filed Nov. 18, 2013 (Hussey et al.); U.S. patent application Ser. No. 14/082,468 for Encoded Information Reading Terminal with Wireless Path Selection Capability, filed Nov. 18, 2013 (Wang et al.); U.S. patent application Ser. No. 14/082,551 for Power Management Scheme for Portable Data Collection Devices Utilizing Location and Position Sensors, filed Nov. 18, 2013 (Sauerwein et al.); U.S. patent application Ser. No. 14/087,007 for Scanner with Wake-Up Mode, filed Nov. 22, 2013 (Nahill et al.); U.S. patent application Ser. No. 14/087,190 for Optimal Range Indicators for Bar Code Validation, filed Nov. 22, 2013 (Hejl); U.S. patent application Ser. No. 14/093,484 for System for Capturing a Document in an Image Signal, filed Dec. 1, 2013 (Showering); U.S. patent application Ser. No. 14/093,487 for Method and System Operative to Process Color Image Data, filed Dec. 1, 2013 (Li et al.); U.S. patent application Ser. No. 14/093,490 for Imaging Terminal Having Image Sensor and Lens Assembly, filed Dec. 1, 2013 (Havens et al.); U.S. patent application Ser. No. 14/093,624 for Apparatus Operative for Capture of Image Data, filed Dec. 2, 2013 (Havens et al.); U.S. patent application Ser. No. 14/094,087 for Method and System for Communicating Information in an Digital Signal, filed Dec. 2, 2013 (Peake et al.); U.S. patent application Ser. No. 14/101,965 for High Dynamic-Range Indicia Reading System, filed Dec. 10, 2013 (Xian); U.S. patent application Ser. No. 14/107,048 for Roaming Encoded Information Reading Terminal, filed Dec. 16, 2013 (Wang et al.); U.S. patent application Ser. No. 14/118,400 for Indicia Decoding Device with Security Lock, filed Nov. 18, 2013 (Liu); U.S. patent application Ser. No. 14/138,206 for System and Method to Store and Retrieve Indentifier Associated Information, filed Dec. 23, 2013 (Gomez et al.); U.S. patent application Ser. No. 14/143,399 for Device Management Using Virtual Interfaces, filed Dec. 30, 2013 (Caballero); U.S. patent application Ser. No. 14/147,992 for Decoding Utilizing Image Data, filed Jan. 6, 2014 (Meier et al.); U.S. patent application Ser. No. 14/150,393 for Incicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.); U.S. patent application Ser. No. 14/153,111 for Indicia Reading Terminal Including Frame Quality Evaluation Processing, filed Jan. 13, 2014 (Wang et al.); U.S. patent application Ser. No. 14/153,142 for Imaging Apparatus Comprising Image Sensor Array having Shared Global Shutter Circuitry, filed Jan. 13, 2014 (Wang); U.S. patent application Ser. No. 14/153,182 for System and Method to Manipulate an Image, filed Jan. 13, 2014 (Longacre et al.); U.S. patent application Ser. No. 14/153,213 for Apparatus Comprising Image Sensor Array and Illumination Control, filed Jan. 13, 2014 (Ding); U.S. patent application Ser. No. 14/153,249 for Terminal Operative for Storing Frame of Image Data, filed Jan. 13, 2014 (Winegar); U.S. patent application Ser. No. 14/154,207 for Laser Barcode Scanner, filed Jan. 14, 2014 (Hou et al.); U.S. patent application Ser. No. 14/154,915 for Laser Scanning Module Employing a Laser Scanning Assembly having Elastomeric Wheel Hinges, filed Jan. 14, 2014 (Havens et al.); U.S. patent application Ser. No. 14/158,126 for Methods and Apparatus to Change a Feature Set on Data Collection Devices, filed Jan. 17, 2014 (Berthiaume et al.); U.S. patent application Ser. No. 14/159,074 for Wireless Mesh Point Portable Data Terminal, filed Jan. 20, 2014 (Wang et al.); U.S. patent application Ser. No. 14/159,509 for MMS Text Messaging for Hand Held Indicia Reader, filed Jan. 21, 2014 (Kearney); U.S. patent application Ser. No. 14/159,603 for Decodable Indicia Reading Terminal with Optical Filter, filed Jan. 21, 2014 (Ding et al.); U.S. patent application Ser. No. 14/160,645 for Decodable Indicia Reading Terminal with Indicia Analysis Functionality, filed Jan. 22, 2014 (Nahill et al.); U.S. patent application Ser. No. 14/161,875 for System and Method to Automatically Discriminate Between Different Data Types, filed Jan. 23, 2014 (Wang).


In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims
  • 1. An imaging module, comprising: an illuminator-aimer circuit subassembly for projecting an illumination pattern and a sighting pattern, wherein the illuminator-aimer circuit subassembly is positioned on a first rigid-flex circuit board; anda frame comprising at least two sides, the at least two sides defining a region, wherein the first rigid-flex circuit board is positioned within the region and attached directly to the frame, wherein at least a portion of a first side of the clear frame integrates an illuminator lens and an aimer lens such that when the first side is positioned in front of the illuminator-aimer circuit subassembly, the frame serves as the illuminator lens and the aimer lens for the illuminator-aimer circuit subassembly.
  • 2. The imaging module according to claim 1, wherein the illuminator-aimer circuit subassembly comprises an illuminator light source and an illuminator aperture for projecting the illumination pattern via the frame serving as the illuminator lens toward indicia within a field of view of the imaging module.
  • 3. The imaging module according to claim 1, wherein the illuminator-aimer circuit subassembly comprises an aimer light source and an aimer aperture for projecting the sighting pattern via the frame serving as the aimer lens, the sighting pattern corresponding with a field of view of the imaging module.
  • 4. The imaging module according to claim 1, further comprising a sensor module for imaging field of view of the imaging module, wherein the sensor module comprises a sensor integrated-circuit die which is chip-on-board packaged.
  • 5. The imaging module according to claim 4, wherein the sensor module is positioned on a second rigid-flex circuit board, wherein the second rigid-flex circuit board is positioned within the region and attached directly to the frame.
  • 6. The imaging module according to claim 4, wherein the sensor integrated-circuit die is attached to a substrate, and the sensor integrated-circuit die is hermetically sealed within a structure formed by the substrate, a housing, and a filter.
  • 7. The imaging module according to claim 1, further comprising an interface circuit subassembly for connecting the imaging module to a host device, wherein the interface circuit subassembly is positioned on a third rigid-flex circuit board, the third rigid-flex circuit board positioned within the region and attached directly to the frame.
  • 8. The imaging module according to claim 7, wherein the interface circuit subassembly is configured for receiving programming information and sending out diagnostic information.
  • 9. The imaging module according to claim 1, further comprising a processor circuit subassembly for rendering indicia information, wherein the processor circuit subassembly is positioned on a fourth rigid-flex circuit board, the fourth rigid-flex circuit board positioned within the region and attached directly to the frame.
  • 10. An imaging apparatus, comprising: an imaging module comprising an illuminator-aimer circuit subassembly for projecting of an illumination pattern and a sighting pattern, wherein the illuminator-aimer circuit subassembly is positioned on a first rigid-flex circuit board, the first rigid-flex circuit board positioned within and attached directly to a frame, the frame comprising polycarbonate and at least two sides, the at least two sides defining a region within which the first rigid-flex circuit board is positioned and at least a portion of a first side of the frame positioned in front of the illuminator-aimer circuit subassembly to serve as an illuminator lens and an aimer lens for the illuminator-aimer circuit subassembly.
  • 11. The imaging apparatus according to claim 10, wherein the illuminator-aimer circuit subassembly comprises an illuminator light source and an illuminator aperture for projecting the illumination pattern via the frame serving as the illuminator lens toward indicia within a field of view of the imaging module.
  • 12. The imaging apparatus according to claim 10, wherein the illuminator-aimer circuit subassembly comprises an aimer light source and an aimer aperture for projecting the sighting pattern via the frame serving as the aimer lens, the sighting pattern corresponding with a field of view of the imaging module.
  • 13. The imaging apparatus according to claim 10, wherein the imaging module comprises a sensor module for imaging a field of view of the imaging module, the sensor module positioned on a second rigid-flex circuit board and comprises a sensor integrated-circuit die which is chip-on-board packaged, and wherein the second rigid-flex circuit board is positioned within and attached directly to the frame.
  • 14. The imaging apparatus according to claim 10, wherein the imaging module comprises an interface circuit subassembly for connecting the imaging module to the imaging apparatus, and the interface circuit subassembly is positioned on a third rigid flex-circuit board, the third rigid-flex circuit board positioned within the region and attached directly to the frame.
  • 15. The imaging apparatus according to claim 10, wherein the imaging module comprises a processor circuit subassembly for rendering indicia information, and the processor circuit subassembly is positioned on a fourth rigid-flex circuit board, the fourth rigid-flex circuit board positioned within the region and attached directly to the frame.
  • 16. The imaging apparatus according to claim 10, wherein the frame is integrated to the imaging apparatus with mounting pins and screws to prevent a deformation of the frame.
  • 17. The imaging apparatus according to claim 10, wherein a thickness of the imaging module is no more than 70 percent of the thickness of the imaging apparatus.
  • 18. An imaging module, comprising: an illuminator-aimer circuit subassembly for projecting of an illumination pattern and a sighting pattern, wherein the illuminator-aimer circuit subassembly is positioned on a rigid-flex circuit board; anda clear polycarbonate frame comprising at least two sides, the at least two sides defining a region, wherein the rigid-flex circuit board is positioned within the region and attached directly to the clear polycarbonate frame, wherein at least a portion of a first side of the clear polycarbonate frame is positioned in front of the illuminator-aimer circuit subassembly to serve as an illuminator lens and an aimer lens for the illuminator-aimer circuit subassembly.
  • 19. The imaging module according to claim 18, wherein the clear polycarbonate frame comprises fittings molded into the clear polycarbonate frame, the fittings corresponding to the circuit board.
  • 20. The imaging module according to claim 19, wherein the circuit board is attached directly to the clear polycarbonate frame via snap-fittings.
US Referenced Citations (491)
Number Name Date Kind
5363202 Udagawa et al. Nov 1994 A
6381030 Udagawa et al. Apr 2002 B1
6388767 Udagawa May 2002 B1
6832725 Gardiner et al. Dec 2004 B2
7097101 Kogan et al. Aug 2006 B2
7128266 Zhu et al. Oct 2006 B2
7159783 Walczyk et al. Jan 2007 B2
7270274 Hennick et al. Sep 2007 B2
7279782 Yang et al. Oct 2007 B2
7296751 Barber et al. Nov 2007 B2
7413127 Ehrhart et al. Aug 2008 B2
7500614 Barber et al. Mar 2009 B2
7533824 Hennick et al. May 2009 B2
7726575 Wang et al. Jun 2010 B2
8294969 Plesko Oct 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8322622 Liu Dec 2012 B2
8366005 Kotlarsky et al. Feb 2013 B2
8371507 Haggerty et al. Feb 2013 B2
8376233 Van Horn et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Horn et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van Horn et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8559957 Hunzinger Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein, Jr. et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8593539 Ogawa Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
8736909 Sato et al. May 2014 B2
8740082 Wilz Jun 2014 B2
8740085 Furlong et al. Jun 2014 B2
8743275 Han Jun 2014 B1
8746563 Hennick et al. Jun 2014 B2
8750445 Peake et al. Jun 2014 B2
8752766 Xian et al. Jun 2014 B2
8756059 Braho et al. Jun 2014 B2
8757495 Qu et al. Jun 2014 B2
8760563 Koziol et al. Jun 2014 B2
8763909 Reed et al. Jul 2014 B2
8777108 Coyle Jul 2014 B2
8777109 Oberpriller et al. Jul 2014 B2
8779898 Havens et al. Jul 2014 B2
8781520 Payne et al. Jul 2014 B2
8783573 Havens et al. Jul 2014 B2
8789757 Barten Jul 2014 B2
8789758 Hawley et al. Jul 2014 B2
8789759 Xian et al. Jul 2014 B2
8794520 Wang et al. Aug 2014 B2
8794522 Ehrhart Aug 2014 B2
8794525 Amundsen et al. Aug 2014 B2
8794526 Wang et al. Aug 2014 B2
8798367 Ellis Aug 2014 B2
8807431 Wang et al. Aug 2014 B2
8807432 Van Horn et al. Aug 2014 B2
8820630 Qu et al. Sep 2014 B2
8822848 Meagher Sep 2014 B2
8824692 Sheerin et al. Sep 2014 B2
8824696 Braho Sep 2014 B2
8842849 Wahl et al. Sep 2014 B2
8844822 Kotlarsky et al. Sep 2014 B2
8844823 Fritz et al. Sep 2014 B2
8849019 Li et al. Sep 2014 B2
D716285 Chaney et al. Oct 2014 S
8851383 Yeakley et al. Oct 2014 B2
8854633 Laffargue Oct 2014 B2
8866963 Grunow et al. Oct 2014 B2
8868421 Braho et al. Oct 2014 B2
8868519 Maloy et al. Oct 2014 B2
8868802 Barten Oct 2014 B2
8868803 Caballero Oct 2014 B2
8870074 Gannon Oct 2014 B1
8879639 Sauerwein Nov 2014 B2
8880426 Smith Nov 2014 B2
8881983 Havens et al. Nov 2014 B2
8881987 Wang Nov 2014 B2
8903172 Smith Dec 2014 B2
8908995 Benos et al. Dec 2014 B2
8910870 Li et al. Dec 2014 B2
8910875 Ren et al. Dec 2014 B2
8914290 Hendrickson et al. Dec 2014 B2
8914788 Pettinelli et al. Dec 2014 B2
8915439 Feng et al. Dec 2014 B2
8915444 Havens et al. Dec 2014 B2
8916789 Woodburn Dec 2014 B2
8918250 Hollifield Dec 2014 B2
8918564 Caballero Dec 2014 B2
8925818 Kosecki et al. Jan 2015 B2
8939374 Jovanovski et al. Jan 2015 B2
8942480 Ellis Jan 2015 B2
8944313 Williams et al. Feb 2015 B2
8944327 Meier et al. Feb 2015 B2
8944332 Harding et al. Feb 2015 B2
8950678 Germaine et al. Feb 2015 B2
D723560 Zhou et al. Mar 2015 S
8967468 Gomez et al. Mar 2015 B2
8971346 Sevier Mar 2015 B2
8976030 Cunningham et al. Mar 2015 B2
8976368 Akel et al. Mar 2015 B2
8978981 Guan Mar 2015 B2
8978983 Bremer et al. Mar 2015 B2
8978984 Hennick et al. Mar 2015 B2
8985456 Zhu et al. Mar 2015 B2
8985457 Soule et al. Mar 2015 B2
8985459 Kearney et al. Mar 2015 B2
8985461 Gelay et al. Mar 2015 B2
8988578 Showering Mar 2015 B2
8988590 Gillet et al. Mar 2015 B2
8991704 Hopper et al. Mar 2015 B2
8996194 Davis et al. Mar 2015 B2
8996384 Funyak et al. Mar 2015 B2
8998091 Edmonds et al. Apr 2015 B2
9002641 Showering Apr 2015 B2
9007368 Laffargue et al. Apr 2015 B2
9010641 Qu et al. Apr 2015 B2
9015513 Murawski et al. Apr 2015 B2
9016576 Brady et al. Apr 2015 B2
D730357 Fitch et al. May 2015 S
9022288 Nahill et al. May 2015 B2
9030964 Essinger et al. May 2015 B2
9033240 Smith et al. May 2015 B2
9033242 Gillet et al. May 2015 B2
9036054 Koziol et al. May 2015 B2
9037344 Chamberlin May 2015 B2
9038911 Xian et al. May 2015 B2
9038915 Smith May 2015 B2
D730901 Oberpriller et al. Jun 2015 S
D730902 Fitch et al. Jun 2015 S
D733112 Chaney et al. Jun 2015 S
9047098 Barten Jun 2015 B2
9047359 Caballero et al. Jun 2015 B2
9047420 Caballero Jun 2015 B2
9047525 Barber et al. Jun 2015 B2
9047531 Showering et al. Jun 2015 B2
9049640 Wang et al. Jun 2015 B2
9053055 Caballero Jun 2015 B2
9053378 Hou et al. Jun 2015 B1
9053380 Xian et al. Jun 2015 B2
9057641 Amundsen et al. Jun 2015 B2
9058526 Powilleit Jun 2015 B2
9064165 Havens et al. Jun 2015 B2
9064167 Xian et al. Jun 2015 B2
9064168 Todeschini et al. Jun 2015 B2
9064254 Todeschini et al. Jun 2015 B2
9066032 Wang Jun 2015 B2
9070032 Corcoran Jun 2015 B2
D734339 Zhou et al. Jul 2015 S
D734751 Oberpriller et al. Jul 2015 S
9082023 Feng et al. Jul 2015 B2
9224022 Ackley et al. Dec 2015 B2
9224027 Van Horn et al. Dec 2015 B2
D747321 London et al. Jan 2016 S
9230140 Ackley Jan 2016 B1
9250712 Todeschini Feb 2016 B1
9258033 Showering Feb 2016 B2
9262633 Todeschini et al. Feb 2016 B1
9310609 Rueblinger et al. Apr 2016 B2
D757009 Oberpriller et al. May 2016 S
9342724 McCloskey May 2016 B2
9375945 Bowles Jun 2016 B1
D760719 Zhou et al. Jul 2016 S
9390596 Todeschini Jul 2016 B1
D762604 Fitch et al. Aug 2016 S
D762647 Fitch et al. Aug 2016 S
9412242 Van Horn et al. Aug 2016 B2
9424454 Tao et al. Aug 2016 B2
D766244 Zhou et al. Sep 2016 S
9443123 Hejl Sep 2016 B2
9443222 Singel et al. Sep 2016 B2
9478113 Xie et al. Oct 2016 B2
9665757 Feng et al. May 2017 B2
20010038547 Jigour et al. Nov 2001 A1
20030029917 Hennick et al. Feb 2003 A1
20030089776 Hennick et al. May 2003 A1
20040069855 Patel et al. Apr 2004 A1
20040159703 Kogan et al. Aug 2004 A1
20060038108 Belau Feb 2006 A1
20060202210 Mok et al. Sep 2006 A1
20060274171 Wang Dec 2006 A1
20060285100 Hamatani Dec 2006 A1
20070040034 Hennick et al. Feb 2007 A1
20070045422 Ito Mar 2007 A1
20070063048 Havens et al. Mar 2007 A1
20070085185 Vos Apr 2007 A1
20080135728 Yang et al. Jun 2008 A1
20090044003 Berthiaume Feb 2009 A1
20090059616 Wittenberg et al. Mar 2009 A1
20090088203 Havens et al. Apr 2009 A1
20090134221 Zhu et al. May 2009 A1
20090242641 Blasczak Oct 2009 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20100327067 Drzymala Dec 2010 A1
20110169999 Grunow et al. Jul 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20110309151 Cudzilo Dec 2011 A1
20120111946 Golant May 2012 A1
20120153022 Havens Jun 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120193423 Samek Aug 2012 A1
20120193429 Van Volkinburg et al. Aug 2012 A1
20120193431 Hawley et al. Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120223141 Good et al. Sep 2012 A1
20130043312 Van Horn Feb 2013 A1
20130044257 Chien et al. Feb 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130231157 Chung Sep 2013 A1
20130238140 Malchiondo et al. Sep 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130287258 Kearney Oct 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306731 Pedrao Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308625 Park et al. Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130313325 Wilz et al. Nov 2013 A1
20130342717 Havens et al. Dec 2013 A1
20140001267 Giordano et al. Jan 2014 A1
20140002676 Ning Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140008439 Wang Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140100813 Showering Jan 2014 A1
20140034734 Sauerwein Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140038222 Alt et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140042814 Kather et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078341 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140078345 Showering Mar 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140104414 McCloskey et al. Apr 2014 A1
20140104416 Giordano et al. Apr 2014 A1
20140104451 Todeschini et al. Apr 2014 A1
20140106594 Skvoretz Apr 2014 A1
20140106725 Sauerwein Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Tao et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140124577 Wang et al. May 2014 A1
20140124579 Ding May 2014 A1
20140125842 Winegar May 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131438 Kearney May 2014 A1
20140131441 Nahill et al. May 2014 A1
20140131443 Smith May 2014 A1
20140131444 Wang May 2014 A1
20140131445 Ding et al. May 2014 A1
20140131448 Xian et al. May 2014 A1
20140133379 Wang et al. May 2014 A1
20140136208 Maltseff et al. May 2014 A1
20140140585 Wang May 2014 A1
20140151453 Meier et al. Jun 2014 A1
20140152882 Samek et al. Jun 2014 A1
20140158770 Sevier et al. Jun 2014 A1
20140159869 Lumsteg et al. Jun 2014 A1
20140166755 Liu et al. Jun 2014 A1
20140166757 Smith Jun 2014 A1
20140166759 Liu et al. Jun 2014 A1
20140168787 Wang et al. Jun 2014 A1
20140175165 Havens et al. Jun 2014 A1
20140175172 Jovanovski et al. Jun 2014 A1
20140191644 Chaney Jul 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140197238 Lui et al. Jul 2014 A1
20140197239 Havens et al. Jul 2014 A1
20140197304 Feng et al. Jul 2014 A1
20140203087 Smith et al. Jul 2014 A1
20140204268 Grunow et al. Jul 2014 A1
20140214631 Hansen Jul 2014 A1
20140217166 Berthiaume et al. Aug 2014 A1
20140217180 Liu Aug 2014 A1
20140231500 Ehrhart et al. Aug 2014 A1
20140232930 Anderson Aug 2014 A1
20140247315 Marty et al. Sep 2014 A1
20140263493 Amurgis et al. Sep 2014 A1
20140263645 Smith et al. Sep 2014 A1
20140270196 Braho et al. Sep 2014 A1
20140270229 Braho Sep 2014 A1
20140278387 DiGregorio Sep 2014 A1
20140282210 Bianconi Sep 2014 A1
20140284384 Lu et al. Sep 2014 A1
20140288933 Braho et al. Sep 2014 A1
20140297058 Barker et al. Oct 2014 A1
20140299665 Barber et al. Oct 2014 A1
20140312121 Lu et al. Oct 2014 A1
20140319220 Coyle Oct 2014 A1
20140319221 Oberpriller et al. Oct 2014 A1
20140326787 Barten Nov 2014 A1
20140332590 Wang et al. Nov 2014 A1
20140344943 Todeschini et al. Nov 2014 A1
20140346233 Liu et al. Nov 2014 A1
20140351317 Smith et al. Nov 2014 A1
20140353373 Van Horn et al. Dec 2014 A1
20140361073 Qu et al. Dec 2014 A1
20140361082 Xian et al. Dec 2014 A1
20140362184 Jovanovski et al. Dec 2014 A1
20140363015 Braho Dec 2014 A1
20140369511 Sheerin et al. Dec 2014 A1
20140374483 Lu Dec 2014 A1
20140374485 Xian et al. Dec 2014 A1
20150001301 Ouyang Jan 2015 A1
20150001304 Todeschini Jan 2015 A1
20150003673 Fletcher Jan 2015 A1
20150009338 Laffargue et al. Jan 2015 A1
20150009610 London et al. Jan 2015 A1
20150014416 Kotlarsky et al. Jan 2015 A1
20150021397 Rueblinger et al. Jan 2015 A1
20150028102 Ren et al. Jan 2015 A1
20150028103 Jiang Jan 2015 A1
20150028104 Ma et al. Jan 2015 A1
20150029002 Yeakley et al. Jan 2015 A1
20150032709 Maloy et al. Jan 2015 A1
20150039309 Braho et al. Feb 2015 A1
20150040378 Saber et al. Feb 2015 A1
20150048168 Fritz et al. Feb 2015 A1
20150049347 Laffargue et al. Feb 2015 A1
20150051992 Smith Feb 2015 A1
20150053766 Havens et al. Feb 2015 A1
20150053768 Wang et al. Feb 2015 A1
20150053769 Thuries et al. Feb 2015 A1
20150062366 Liu et al. Mar 2015 A1
20150063215 Wang Mar 2015 A1
20150063676 Lloyd et al. Mar 2015 A1
20150069130 Gannon Mar 2015 A1
20150071819 Todeschini Mar 2015 A1
20150078678 Grandin Mar 2015 A1
20150083800 Li et al. Mar 2015 A1
20150086114 Todeschini Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150096872 Woodburn Apr 2015 A1
20150099557 Pettinelli et al. Apr 2015 A1
20150100196 Hollifield Apr 2015 A1
20150102109 Huck Apr 2015 A1
20150104103 Candelore Apr 2015 A1
20150115035 Meier et al. Apr 2015 A1
20150127791 Kosecki et al. May 2015 A1
20150128116 Chen et al. May 2015 A1
20150129659 Feng et al. May 2015 A1
20150133047 Smith et al. May 2015 A1
20150134470 Hejl et al. May 2015 A1
20150136851 Harding et al. May 2015 A1
20150136854 Lu et al. May 2015 A1
20150142492 Kumar May 2015 A1
20150144692 Hejl May 2015 A1
20150144698 Teng et al. May 2015 A1
20150144701 Xian et al. May 2015 A1
20150149946 Benos et al. May 2015 A1
20150161429 Xian Jun 2015 A1
20150169925 Chen et al. Jun 2015 A1
20150169929 Williams et al. Jun 2015 A1
20150186703 Chen et al. Jul 2015 A1
20150193644 Kearney et al. Jul 2015 A1
20150193645 Colavito et al. Jul 2015 A1
20150199957 Funyak et al. Jul 2015 A1
20150204671 Showering Jul 2015 A1
20150210199 Payne Jul 2015 A1
20150220753 Zhu et al. Aug 2015 A1
20150254485 Feng et al. Sep 2015 A1
20150327012 Bian et al. Nov 2015 A1
20160014251 Hejl Jan 2016 A1
20160040982 Li et al. Feb 2016 A1
20160042241 Todeschini Feb 2016 A1
20160057230 Todeschini et al. Feb 2016 A1
20160109219 Ackley et al. Apr 2016 A1
20160109220 Laffargue Apr 2016 A1
20160109224 Thuries et al. Apr 2016 A1
20160112631 Ackley et al. Apr 2016 A1
20160112643 Laffargue et al. Apr 2016 A1
20160124516 Schoon et al. May 2016 A1
20160125217 Todeschini May 2016 A1
20160125342 Miller et al. May 2016 A1
20160133253 Braho et al. May 2016 A1
20160171720 Todeschini Jun 2016 A1
20160178479 Goldsmith Jun 2016 A1
20160180678 Ackley et al. Jun 2016 A1
20160189087 Morton et al. Jun 2016 A1
20160125873 Braho et al. Jul 2016 A1
20160227912 Oberpriller et al. Aug 2016 A1
20160232891 Pecorari Aug 2016 A1
20160292477 Bidwell Oct 2016 A1
20160294779 Yeakley et al. Oct 2016 A1
20160306769 Kohtz et al. Oct 2016 A1
20160314276 Sewell et al. Oct 2016 A1
20160314294 Kubler et al. Oct 2016 A1
Foreign Referenced Citations (10)
Number Date Country
1391680 Jan 2003 CN
1832212 Sep 2006 CN
101517733 Aug 2009 CN
102682264 Sep 2012 CN
103780847 May 2014 CN
2482226 Aug 2012 EP
2013163789 Nov 2013 WO
2013173985 Nov 2013 WO
2014019130 Feb 2014 WO
2014110495 Jul 2014 WO
Non-Patent Literature Citations (37)
Entry
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned.
U.S. Appl. No. 14/277,337 for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages; now abandoned.
U.S. Appl. No. 14/446,391 for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.); 37 pages; now abandoned.
U.S. Appl. No. 29/516,892 for Table Computer filed Feb. 6, 2015 (Bidwell et al.); 13 pages.
U.S. Appl. No. 29/523,098 for Handle for a Tablet Computer filed Apr. 7, 2015 (Bidwell et al.); 17 pages.
U.S. Appl. No. 29/528,890 for Mobile Computer Housing filed Jun. 2, 2015 (Fitch et al.); 61 pages.
U.S. Appl. No. 29/526,918 for Charging Base filed May 14, 2015 (Fitch et al.); 10 pages.
First Office Action in related Chinese Application No. 201210411590.8 dated Sep. 4, 2017, pp. 1-8 [U.S. Pub. No. 2007/0040034 previously cited.].
English-translation of First Office Action in related Chinese Application No. 201210411590.8 dated Sep. 4, 2017, pp. 1-11.
U.S. Appl. No. 14/715,916 for Evaluating Image Values filed May 19, 2015 (Ackley); 60 pages.
U.S. Appl. No. 29/525,068 for Tablet Computer With Removable Scanning Device filed Apr. 27, 2015 (Schulte et al.); 19 pages.
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages.
U.S. Appl. No. 29/530,600 for Cyclone filed Jun. 18, 2015 (Vargo et al); 16 pages.
U.S. Appl. No. 14/707,123 for Application Independent DEX/UCS Interface filed May 8, 2015 (Pape); 47 pages.
U.S. Appl. No. 14/283,282 for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.); 31 pages; now abandoned.
U.S. Appl. No. 14/705,407 for Method and System to Protect Software-Based Network-Connected Devices From Advanced Persistent Threat filed May 6, 2015 (Hussey et al.); 42 pages.
U.S. Appl. No. 14/704,050 for Intermediate Linear Positioning filed May 5, 2015 (Charpentier et al.); 60 pages.
U.S. Appl. No. 14/705,012 for Hands-Free Human Machine Interface Responsive to a Driver of a Vehicle filed May 6, 2015 (Fitch et al.); 44 pages.
U.S. Appl. No. 14/715,672 for Augumented Reality Enabled Hazard Display filed May 19, 2015 (Venkatesha et al.); 35 pages.
U.S. Appl. No. 14/735,717 for Indicia-Reading Systems Having an Interface With a User's Nervous System filed Jun. 10, 2015 (Todeschini); 39 pages.
U.S. Appl. No. 14/702,110 for System and Method for Regulating Barcode Data Injection Into a Running Application on a Smart Device filed May 1, 2015 (Todeschini et al.); 38 pages.
U.S. Appl. No. 14/747,197 for Optical Pattern Projector filed Jun. 23, 2015 (Thuries et al.); 33 pages.
U.S. Appl. No. 14/702,979 for Tracking Battery Conditions filed May 4, 2015 (Young et al.); 70 pages.
U.S. Appl. No. 29/529,441 for Indicia Reading Device filed Jun. 8, 2015 (Zhou et al.); 14 pages.
U.S. Appl. No. 14/747,490 for Dual-Projector Three-Dimensional Scanner filed Jun. 23, 2015 (Jovanovski et al.); 40 pages.
U.S. Appl. No. 14/740,320 for Tactile Switch Fora Mobile Electronic Device filed Jun. 16, 2015 (Bamdringa); 38 pages.
U.S. Appl. No. 14/740,373 for Calibrating a Volume Dimensioner filed Jun. 16, 2015 (Ackley et al.); 63 pages.
Search Report and Written Opinion in counterpart European Application No. 15156203.0 dated Jul. 8, 2015, pp. 1-7; Previously submitted in Parent Application.
Second Office Action in related Chinese Application No. 201210411590.8 dated Feb. 26, 2018, pp. 1-9.
English-translation of Second Office Action in related Chinese Application No. 201210411590.8 dated Feb. 26, 2018, pp. 1-8.
Advisory Action (PTOL-303) dated Apr. 28, 2016 for U.S. Appl. No. 14/200,405.
Final Rejection dated Feb. 22, 2016 for U.S. Appl. No. 14/200,405.
Non-Final Rejection dated Aug. 31, 2015 for U.S. Appl. No. 14/200,405.
Non-Final Rejection dated Jun. 2, 2016 for U.S. Appl. No. 14/200,405.
Notice of Allowance and Fees Due (PTOL-85) dated Jan. 25, 2017 for U.S. Appl. No. 14/200,405.
Official Communication in related European Application No. 15156203.0 dated Nov. 4, 2019, 5 pages.
Intention to Grant for related European Application No. 15156203.0 dated Apr. 14, 2020, 7 pages.
Related Publications (1)
Number Date Country
20170262677 A1 Sep 2017 US
Continuations (1)
Number Date Country
Parent 14200405 Mar 2014 US
Child 15605312 US