Indicia-reader having unitary-construction

Information

  • Patent Grant
  • 9697403
  • Patent Number
    9,697,403
  • Date Filed
    Friday, June 17, 2016
    8 years ago
  • Date Issued
    Tuesday, July 4, 2017
    7 years ago
Abstract
A hand-held indicia-reading device includes a housing and a cable having a unitary-construction. The indicia-reader has a head portion with an indicia-reading system including a printed circuit board. The entire handle portion of the reader is typically over-molded onto a host-connector cable. The host-connector cable includes a circuit board connector on one end and a connector for connecting to a host at an opposite end extending from a base portion of the handle.
Description
FIELD OF THE INVENTION

The present invention relates to the field of indicia-readers and, more specifically, to hand-held indicia-readers having a unibody handle that surrounds an integrated cable.


BACKGROUND

Hand-held indicia-reading devices such as hand-held mobile computers and bar code scanners are used in numerous environments for various applications (e.g., hospitals, warehouses, delivery vehicles, etc.). For example, a large percentage of retailers, notably grocery stores and general consumer merchandisers, rely on barcode technology to improve the efficiency and reliability of the checkout process.


Many kinds of hand-held indicia-reading devices utilize a traditional gun-shaped design (e.g., form factor). During the retail checkout process, for instance, a gun-style hand-held indicia-reader is generally used by the cashier to provide additional flexibility (e.g., for coupon checking, loyalty card scanning, or shopping cart scanning). The gun-shaped form factor provides an indicia-reader that is easy to handle and use for intensive hand-held scanning.


One of the design challenges of hand-held indicia-readers, including those having a traditional gun-shaped form factor, is that the reader's shape does not lend itself to easily placing all electronics, including connectors, onto a single printed circuit board (PCB). This is because the scanning electronics typically reside in the top portion of the indicia-reader (i.e., the head) while the host connection point is generally located at the bottom of the handle. Accordingly, this kind of design often requires the use of an internal cable that electrically connects the host connector to the PCB containing the electronics.


The requirement of an internal cable to electrically connect the host connector to the PCB results in a number of disadvantages. For instance, the addition of the internal cable adds to the overall cost of the indicia-reader. The internal cable also provides a potential failure point during the life of the product.


Furthermore, the handle of a traditional hand-held indicia-reader is typically a complicated mechanical part that has both plastic and rubber individual components that must be assembled. These individual mechanical parts increase costs associated with designing and manufacturing the indicia-reader. As one example, a mechanical part at the host connection point (i.e., a handle's end cap) is often required to complete the handle assembly.


Manufacturing the handle may also require more complex tooling including a secondary over-mold process. These additional steps likewise increase costs.


Moreover, because host cable may be subjected to high instances of flexing, the cable typically requires a strain relief at the base of the handle.


SUMMARY

Accordingly, in one aspect, the present invention embraces an indicia-reading device that can include an indicia-capturing subsystem for acquiring information about indicia within the indicia-capturing subsystem's field of view and an indicia-decoding subsystem configured for decoding indicia information acquired by the indicia-capturing subsystem. The indicia-reading device can also include a hand-supportable housing having a head portion and an adjacent handle portion, wherein (i) the head portion substantially encloses the indicia-capturing subsystem and the indicia-decoding subsystem, and (ii) the handle is formed as a unitary-construction.


In an exemplary embodiment, the indicia-reading device may include a host-connector cable, the host-connector cable being integrated into and surrounded by the hand-supportable housing's unitary-construction handle.


In another exemplary embodiment, the host-connector cable can have a first end connector at an upper portion of the handle and a second end connector at a base portion of the handle.


In yet another exemplary embodiment, the indicia-capturing subsystem can include a printed circuit board operatively connected to electro-optical components.


In yet another exemplary embodiment, the first end connector can be operatively connected to the printed circuit board.


In yet another exemplary embodiment, the second end connector can be operatively connected to a host.


In yet another exemplary embodiment, the host can be a computer.


In yet another exemplary embodiment, the hand-supportable housing's head portion can be removably connected to the hand-supportable housing's unitary-construction handle.


In yet another exemplary embodiment, the hand-supportable housing's unitary-construction handle can be an injection-molded handle.


In yet another exemplary embodiment, the hand-supportable housing's unitary-construction handle can be a blow-molded handle.


In another aspect, the present invention embraces an indicia-reading device that can include a hand-supportable housing. The hand-supportable housing can include a head portion and an adjacent handle portion. The head portion at least partially encloses an indicia-capturing system. The indicia-capturing system can include (i) an indicia-capturing subsystem for acquiring information about indicia within the indicia-capturing subsystem's field of view, and (ii) an indicia-decoding subsystem configured for decoding indicia information acquired by the indicia-capturing subsystem. The handle portion can physically integrate a host connector cable forming a single part.


In an exemplary embodiment, the host-connector cable can have a first end connector at an upper portion of the handle and a second end connector at a base portion of the handle.


In another exemplary embodiment, the indicia-capturing system can include a printed circuit board operatively connected to electro-optical components


In yet another exemplary embodiment, the first end connector can be operatively connected to the printed circuit board.


In yet another exemplary embodiment, the second end connector can be operatively connected to a host.


In yet another exemplary embodiment, the host can be a handheld computer.


In yet another exemplary embodiment, the head portion can be removably attached to the handle portion.


In yet another exemplary embodiment, the head portion can be removably attached to the handle portion by fasteners.


In another aspect, the present invention embraces a method for reading indicia. The method can include providing an indicia-reading device that includes (i) an indicia-capturing subsystem for acquiring information about indicia within the indicia-capturing subsystem's field of view, (ii) an indicia-decoding subsystem configured for decoding indicia information acquired by the indicia-capturing subsystem, (iii) a hand-supportable housing having a head portion and an adjacent handle portion, wherein the head portion substantially encloses the indicia-capturing subsystem and the indicia-decoding subsystem and the handle is formed as a unitary-construction, and (iv) a host-connector cable, the host-connector cable being integrated into and surrounded by the hand-supportable housing's unitary-construction handle. The method can further include operatively connecting the host-connector cable to a host and using the indicia-reading device to acquire indicia information.


In an exemplary embodiment, the method for reading indicia can further include communicating the indicia information from the indicia-reading device to the host via the host-connector cable.


The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a perspective view of a typical hand-held indicia-reader.



FIG. 2 depicts a perspective exploded view of a typical hand-held indicia-reader.



FIG. 3 depicts the handle portion of an exemplary hand-held indicia-reader according to the present invention.



FIG. 4 depicts an exploded view of an exemplary hand-held indicia-reader according to the present invention.





DETAILED DESCRIPTION

The present invention embraces indicia-readers. In particular, the present invention embraces hand-held indicia-readers having a unibody handle (i.e., the handle is formed as a unitary-construction).


The term indicia as used herein is intended to refer broadly to various types of machine-readable indicia, including barcodes, QR codes, matrix codes, 1D codes, 2D codes, RFID tags, characters, etc. The indicia are typically graphical representations of information (e.g., data) such as product numbers, package tracking numbers, or personnel identification numbers. The use of indicia-readers to input data into a system, rather than manual data entry, results in generally faster and more reliable data entry.


One exemplary type of hand-held indicia-reader that can include a housing that is directly integrated with a cable is a gun-style hand-held indicia-reader. References herein to particular kinds of devices or device environments, however, are not intended to limit the disclosure to particular devices, and those having ordinary skill in the art will recognize that a number of different devices might be employed.


The exemplary hand-held indicia-readers of the present invention provide manufacturing efficiencies and cost savings by eliminating the need for many individual mechanical parts that are typically required when manufacturing indicia-reader housings. The resulting hand-held indicia-readers are simpler and less expensive to make. These advantages are illustrated (below) in comparing a typical hand-held indicia-reader (FIGS. 1 and 2) with an exemplary hand-held indicia-reader of the present invention (FIGS. 3 and 4).


Referring now to the drawings, FIG. 1 depicts a typical hand-held indicia-reader (i.e., a hand-held scanner). Specifically, FIG. 1 depicts a typical gun-style hand-held indicia-reader 100. The indicia-reader 100 includes a hand-supportable housing 102 having a handle portion 102A.


The hand-held scanner's housing 102 has a head portion 102B that includes a light transmission window 103 within the housing's head portion 102B.


An indicia-reading system 107 may be enclosed within the head portion 102B. In some instances, the indicia-reading system 107 may include laser scanning subsystems (i.e., indicia-capturing subsystems) that sweep light beams (e.g., a laser beam) across a scan path (i.e., a field of view) and then receive the optical signals that reflect or scatter off the indicium. Typically, the optical signal is received using a photoreceptor (i.e., photodiode) and is converted into an electrical signal. The electrical signal is an electronic representation of the indicia information (e.g., the data represented by the indicia). When in the form of an electrical signal, this information can be processed (i.e., decoded) by an indicia-decoding subsystem.


In other instances, the indicia-reading system 107 may include imaging subsystems or some combination of imaging subsystems and laser scanning subsystems (i.e., indicia-capturing subsystems). The imaging subsystem captures digital images of objects within the subsystem's field of view. When the indicia information takes the form of a digital image, the indicia information is typically processed by an indicia-decoding subsystem through the use of image-processing software (e.g., optical character recognition (OCR) technology), which can both identify the presence of indicia in the digital image and decode the indicia.


A manually actuated trigger switch 104 may be depressed to activate the indicia-reading system 107 (i.e., the scanning module).


The base structure 102C of the hand-held scanner's housing may include a cable strain relief 109 and an external host connector cable 105B. The external host connector cable 105B (e.g., a USB cable) can be used as a bus for connection, communication, and power supply between the reader 100 and a host 115 (e.g., a computer).



FIG. 2 depicts an exploded view of a typical gun-style indicia-reader 100. The hand-supportable housing 102 includes left and right handle halves 102A1 and 102A2; a foot-like end-cap structure 102C1 that is mounted between the handle halves 102A1 and 102A2; a trigger switch 104 that snap fits within and pivots within a pair of spaced apart apertures provided in the housing halves; a light transmission window panel 103A through which light transmission window 103 is formed and supported within a recess formed by handle halves 102A1 and 102A2; and a top head portion 102B1 enclosing the head portion 102B of the housing.


The head portion 102B of the housing includes a printed circuit board (PCB) 106 operatively connected to the electro-optical components of indicia-reading system 107.


An internal host-connector cable 105A attaches to the reader 100 via a host connector (i.e., a flexible printed circuit) that connects to the PCB 106. When the gun-style reader 100 is assembled, the internal host-connector cable 105A exits through base cap 102C1. A strain relief 109 for the cable is provided where the internal host-connector cable 105A transitions to an external host-connector cable 105B. Strain relief 109 is typically necessary because the region of the cable exiting the base cap 102C is often subject to high instances of flexing. The host-connector cable 105B can be used for communicating with a host 115 (e.g., a computer) and for supplying power.


In contrast with the typical hand-held indicia-reader shown at FIGS. 1 and 2, an exemplary hand-held indicia-reader 200 of the present invention is illustrated in FIGS. 3 and 4. As depicted in FIG. 3, the handle portion 202A of the hand-held indicia-reader 200 has a unitary-construction (i.e., a unibody formed handle), typically over-molded onto the host-connector cable 205 (e.g., a USB cable) by an injection molding process (i.e., a process where one material is molded onto another material). Other processes for forming the unibody handle may also be used (e.g., blow-molding). The cable 205 includes a PCB connector 208 and a connector 209 for connecting to a host (e.g., a computer).


The trigger 204, shown with the handle portion 202A in FIG. 3, may be a separate component from the handle portion 202A. The trigger 204 may be affixed to the handle portion 202A by installing the trigger 204 from the top side of the cable-integrated handle 202A.


The exemplary handle portion 202A has the advantage of significantly reducing the number of parts used in the typical reader assembly 100 as illustrated in FIG. 2. Accordingly, both part costs and manufacturing time are reduced. An additional benefit of cable-integrated handle 202A is a reduced risk that the internal cable will fail during the life of the indicia-reader.



FIG. 4 depicts an exploded view of an exemplary hand-held indicia-reader 200 according to the present invention. When assembled, the exemplary indicia-reader 200 resembles the typical gun-style reader 100 of FIG. 1.


Hand-held reader 200 includes a head portion 202B having a light transmission window 203. An indicia-reading system 207 is enclosed within the head portion 202B. Indicia-reading system 207 may be implemented as described with reference to indicia-reading system 107. Moreover, head portion 202B includes a printed circuit board (PCB) 206 operatively connected to the electro-optical components of indicia-reading system 207.


The head portion 202B may be designed as an assembly that can be removably attached to the handle portion 202A by fasteners 210 (e.g., threaded fasteners, clamps, clips, pins, etc.). In this regard, the handle 202A and trigger 204 portions may attach to the head portion 202B by way of a mating mechanism for any number of scanner head types having various functionalities (e.g., 2D, laser, linear imager, long range, DPM, etc.). Therefore, a user wishing to switch scanner types could choose the appropriate head device for the desired purpose rather than choosing another complete indicia-reader.


To supplement the present disclosure, this application incorporates entirely by reference the following patents, patent application publications, and patent applications: U.S. Pat. No. 6,832,725; U.S. Pat. No. 7,128,266; U.S. Pat. No. 7,159,783; U.S. Pat. No. 7,413,127; U.S. Pat. No. 7,726,575; U.S. Pat. No. 8,294,969; U.S. Pat. No. 8,317,105; U.S. Pat. No. 8,322,622; U.S. Pat. No. 8,366,005; U.S. Pat. No. 8,371,507; U.S. Pat. No. 8,376,233; U.S. Pat. No. 8,381,979; U.S. Pat. No. 8,390,909; U.S. Pat. No. 8,408,464; U.S. Pat. No. 8,408,468; U.S. Pat. No. 8,408,469; U.S. Pat. No. 8,424,768; U.S. Pat. No. 8,448,863; U.S. Pat. No. 8,457,013; U.S. Pat. No. 8,459,557; U.S. Pat. No. 8,469,272; U.S. Pat. No. 8,474,712; U.S. Pat. No. 8,479,992; U.S. Pat. No. 8,490,877; U.S. Pat. No. 8,517,271; U.S. Pat. No. 8,523,076; U.S. Pat. No. 8,528,819; U.S. Pat. No. 8,544,737; U.S. Pat. No. 8,548,242; U.S. Pat. No. 8,548,420; U.S. Pat. No. 8,550,335; U.S. Pat. No. 8,550,354; U.S. Pat. No. 8,550,357; U.S. Pat. No. 8,556,174; U.S. Pat. No. 8,556,176; U.S. Pat. No. 8,556,177; U.S. Pat. No. 8,559,767; U.S. Pat. No. 8,559,957; U.S. Pat. No. 8,561,895; U.S. Pat. No. 8,561,903; U.S. Pat. No. 8,561,905; U.S. Pat. No. 8,565,107; U.S. Pat. No. 8,571,307; U.S. Pat. No. 8,579,200; U.S. Pat. No. 8,583,924; U.S. Pat. No. 8,584,945; U.S. Pat. No. 8,587,595; U.S. Pat. No. 8,587,697; U.S. Pat. No. 8,588,869; U.S. Pat. No. 8,590,789; U.S. Pat. No. 8,593,539; U.S. Pat. No. 8,596,542; U.S. Pat. No. 8,596,543; U.S. Pat. No. 8,599,271; U.S. Pat. No. 8,599,957; U.S. Pat. No. 8,600,158; U.S. Pat. No. 8,600,167; U.S. Pat. No. 8,602,309; U.S. Pat. No. 8,608,053; U.S. Pat. No. 8,608,071; U.S. Pat. No. 8,611,309; U.S. Pat. No. 8,615,487; U.S. Pat. No. 8,616,454; U.S. Pat. No. 8,621,123; U.S. Pat. No. 8,622,303; U.S. Pat. No. 8,628,013; U.S. Pat. No. 8,628,015; U.S. Pat. No. 8,628,016; U.S. Pat. No. 8,629,926; U.S. Pat. No. 8,630,491; U.S. Pat. No. 8,635,309; International Publication No. 2013/163789; International Publication No. 2013/173985; U.S. Patent Application Publication No. 2009/0134221; U.S. Patent Application Publication No. 2010/0177080; U.S. Patent Application Publication No. 2010/0177076; U.S. Patent Application Publication No. 2010/0177707; U.S. Patent Application Publication No. 2010/0177749; U.S. Patent Application Publication No. 2010/0225757; U.S. Patent Application Publication No. 2011/0169999; U.S. Patent Application Publication No. 2011/0202554; U.S. Patent Application Publication No. 2012/0111946; U.S. Patent Application Publication No. 2012/0168511; U.S. Patent Application Publication No. 2012/0168512; U.S. Patent Application Publication No. 2012/0193407; U.S. Patent Application Publication No. 2012/0193423; U.S. Patent Application Publication No. 2012/0203647; U.S. Patent Application Publication No. 2012/0223141; U.S. Patent Application Publication No. 2012/0228382; U.S. Patent Application Publication No. 2012/0248188; U.S. Patent Application Publication No. 2013/0043312; U.S. Patent Application Publication No. 2013/0056285; U.S. Patent Application Publication No. 2013/0068840; U.S. Patent Application Publication No. 2013/0070322; U.S. Patent Application Publication No. 2013/0075168; U.S. Patent Application Publication No. 2013/0082104; U.S. Patent Application Publication No. 2013/0175341 U.S. Patent Application Publication No. 2013/0175343; U.S. Patent Application Publication No. 2013/0200158; U.S. Patent Application Publication No. 2013/0256418; U.S. Patent Application Publication No. 2013/0257744; U.S. Patent Application Publication No. 2013/0257759; U.S. Patent Application Publication No. 2013/0270346; U.S. Patent Application Publication No. 2013/0278425; U.S. Patent Application Publication No. 2013/0287258; U.S. Patent Application Publication No. 2013/0292474; U.S. Patent Application Publication No. 2013/0292475; U.S. Patent Application Publication No. 2013/0292477; U.S. Patent Application Publication No. 2013/0293539; U.S. Patent Application Publication No. 2013/0293540; U.S. Patent Application Publication No. 2013/0306728; U.S. Patent Application Publication No. 2013/0306730; U.S. Patent Application Publication No. 2013/0306731; U.S. Patent Application Publication No. 2013/0306734; U.S. Patent Application Publication No. 2013/0307964; U.S. Patent Application Publication No. 2013/0313324; U.S. Patent Application Publication No. 2013/0313325; U.S. Patent Application Publication No. 2013/0313326; U.S. Patent Application Publication No. 2013/0327834; U.S. Patent Application Publication No. 2013/0341399; U.S. Patent Application Publication No. 2013/0342717; U.S. Patent Application Publication No. 2014/0001267; U.S. Patent Application Publication No. 2014/0002828; U.S. patent application Ser. No. 13/367,978 for a Laser Scanning Module Employing An Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.); U.S. patent application Ser. No. 13/400,748 for a Laser Scanning Bar Code Symbol Reading System Having Intelligent Scan Sweep Angle Adjustment Capabilities Over The Working Range Of The System For Optimized Bar Code Symbol Reading Performance, filed Feb. 21, 2012 (Wilz); U.S. patent application Ser. No. 13/736,139 for an Electronic Device Enclosure, filed Jan. 8, 2013 (Chaney); U.S. patent application Ser. No. 13/750,304 for Measuring Object Dimensions Using Mobile


Computer, filed Jan. 25, 2013; U.S. patent application Ser. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson); U.S. patent application Ser. No. 13/780,158 for a Distraction Avoidance System, filed Feb. 28, 2013 (Sauerwein); U.S. patent application Ser. No. 13/780,196 for Android Bound Service Camera Initialization, filed Feb. 28, 2013 (Todeschini et al.); U.S. patent application Ser. No. 13/780,271 for a Vehicle Computer System with Transparent Display, filed Feb. 28, 2013 (Fitch et al.); U.S. patent application Ser. No. 13/780,356 for a Mobile Device Having Object-Identification Interface, filed Feb. 28, 2013 (Samek et al.); U.S. patent application Ser. No. 13/784,933 for an Integrated Dimensioning and Weighing System, filed Mar. 5, 2013 (McCloskey et al.); U.S. patent application Ser. No. 13/785,177 for a Dimensioning System, filed Mar. 5, 2013 (McCloskey et al.); U.S. patent application Ser. No. 13/792,322 for a Replaceable Connector, filed Mar. 11, 2013 (Skvoretz); U.S. patent application Ser. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.); U.S. patent application Ser. No. 13/885,218 for a Indicia Encoding System with Integrated Purchase and Payment Information, filed Oct. 6, 2013 (Liu et al.); U.S. patent application Ser. No. 13/895,846 for a Method of Programming a Symbol Reading System, filed Apr. 10, 2013 (Corcoran); U.S. patent application Ser. No. 13/902,110 for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Hollifield); U.S. patent application Ser. No. 13/902,144, for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Chamberlin); U.S. patent application Ser. No. 13/902,242 for a System For Providing A Continuous Communication Link With A Symbol Reading Device, filed May 24, 2013 (Smith et al.); U.S. patent application Ser. No. 13/912,262 for a Method of Error Correction for 3D Imaging Device, filed Jun. 7, 2013 (Jovanovski et al.); U.S. patent application Ser. No. 13/912,702 for a System and Method for Reading Code Symbols at Long Range Using Source Power Control, filed Jun. 7, 2013 (Xian et al.); U.S. patent application Ser. No. 13/922,339 for a System and Method for Reading Code Symbols Using a Variable Field of View, filed Jun. 20, 2013 (Xian et al.); U.S. patent application Ser. No. 13/927,398 for a Code Symbol Reading System Having Adaptive Autofocus, filed Jun. 26, 2013 (Todeschini); U.S. patent application Ser. No. 13/930,913 for a Mobile Device Having an Improved User Interface for Reading Code Symbols, filed Jun. 28, 2013 (Gelay et al.); U.S. patent application Ser. No. 13/933,415 for an Electronic Device Case, filed Jul. 2, 2013 (London et al.); U.S. patent application Ser. No. 13/947,296 for a System and Method for Selectively Reading Code Symbols, filed Jul. 22, 2013 (Rueblinger et al.); U.S. patent application Ser. No. 13/950,544 for a Code Symbol Reading System Having Adjustable Object Detection, filed Jul. 25, 2013 (Jiang); U.S. patent application Ser. No. 13/961,408 for a Method for Manufacturing Laser Scanners, filed Aug. 7, 2013 (Saber et al.); U.S. patent application Ser. No. 13/973,315 for a Symbol Reading System Having Predictive Diagnostics, filed Aug. 22, 2013 (Nahill et al.); U.S. patent application Ser. No. 13/973,354 for a Pairing Method for Wireless Scanner via RFID, filed Aug. 22, 2013 (Wu et al.); U.S. patent application Ser. No. 13/974,374 for Authenticating Parcel Consignees with Indicia Decoding Devices, filed Aug. 23, 2013 (Ye et al.); U.S. patent application Ser. No. 14/018,729 for a Method for Operating a Laser Scanner, filed Sep. 5, 2013 (Feng et al.); U.S. patent application Ser. No. 14/019,616 for a Device Having Light Source to Reduce Surface Pathogens, filed Sep. 6, 2013 (Todeschini); U.S. patent application Ser. No. 14/023,762 for a Handheld Indicia Reader Having Locking Endcap, filed Sep. 11, 2013 (Gannon); and U.S. patent application Ser. No. 14/035,474 for Augmented-Reality Signature Capture, filed Sep. 24, 2013 (Todeschini); U.S. patent application Ser. No. 14/047,896 for Terminal Having Illumination and Exposure Control filed Oct. 7, 2013 (Jovanovski et al.) U.S. patent application Ser. No. 14/058,721 for a Terminal Configurable for Use Within an Unknown Regulatory Domain, filed Oct. 21, 2013 (Pease et al.); U.S. patent application Ser. No. 14/035,474 for Augmented-Reality Signature Capture, filed Sep. 24, 2013 (Todeschini); U.S. patent application Ser. No. 14/050,515 for Hybrid-Type Bioptical, filed Oct. 10, 2013 (Edmonds et al.); U.S. patent application Ser. No. 14/053,175 for Imaging Apparatus Having Imaging Assembly, filed Oct. 14, 2013; U.S. patent application Ser. No. 14/055,234 for Dimensioning System, filed Oct. 16, 2013 (Fletcher); U.S. patent application Ser. No. 14/055,353 for Dimensioning System, filed Oct. 16, 2013 (Giordano et al.); U.S. patent application Ser. No. 14/055,383 for Dimensioning System, filed Oct. 16, 2013 (Li et al.); U.S. patent application Ser. No. 14/050,675 for Apparatus for Displaying Bar Codes from Light Emitting Display Surfaces, filed Oct. 10, 2013 (Horn et al.); U.S. patent application Ser. No. 14/053,314 for Indicia Reader, filed Oct. 14, 2013 (Huck); U.S. patent application Ser. No. 14/058,762 for Terminal Including Imaging Assembly, filed Oct. 21, 2013 (Gomez et al.); U.S. patent application Ser. No. 14/058,831 for System Operative to Adaptively Select an Image Sensor for Decodable Indicia Reading, filed Oct. 21, 2013 (Sauerwein); U.S. patent application Ser. No. 14/062,239 for Chip on Board Based Highly Integrated Imager, filed Oct. 24, 2013 (Toa et al.); U.S. patent application Ser. No. 14/065,768 for Hybrid System and Method for Reading Indicia, filed Oct. 29, 2013 (Meier et al.); U.S. patent application Ser. No. 14/074,746 for Self-Checkout Shopping System, filed Nov. 8, 2013 (Hejl et al.); U.S. patent application Ser. No. 14/074,787 for Method and System for Configuring Mobile Devices via NFC Technology, filed Nov. 8, 2013 (Smith et al.); U.S. patent application Ser. No. 14/082,379 for Method and Apparatus for Compensating Pixel Values in an Imaging, filed Nov. 18, 2013 (Hussey et al.); U.S. patent application Ser. No. 14/082,468 for Encoded Information Reading Terminal with Wireless Path Selection Capability, filed Nov. 18, 2013 (Wang et al.); U.S. patent application Ser. No. 14/082,551 for Power Management Scheme for Portable Data Collection Devices Utilizing Location and Position Sensors, filed Nov. 18, 2013 (Sauerwein et al.); U.S. patent application Ser. No. 14/087,007 for Scanner with Wake-Up Mode, filed Nov. 22, 2013 (Nahill et al.); U.S. patent application Ser. No. 14/087,190 for Optimal Range Indicators for Bar Code Validation, filed Nov. 22, 2013 (Hejl); U.S. patent application Ser. No. 14/093,484 for System for Capturing a Document in an Image Signal, filed Dec. 1, 2013 (Showering); U.S. patent application Ser. No. 14/093,487 for Method and System Operative to Process Color Image Data, filed Dec. 1, 2013 (Li et al.); U.S. patent application Ser. No. 14/093,490 for Imaging Terminal Having Image Sensor and Lens Assembly, filed Dec. 1, 2013 (Havens et al.); U.S. patent application Ser. No. 14/093,624 for Apparatus Operative for Capture of Image Data, filed Dec. 2, 2013 (Havens et al.); U.S. patent application Ser. No. 14/094,087 for Method and System for Communicating Information in an Digital Signal, filed Dec. 2, 2013 (Peake et al.); U.S. patent application Ser. No. 14/101,965 for High Dynamic-Range Indicia Reading System, filed Dec. 10, 2013 (Xian); U.S. patent application Ser. No. 14/107,048 for Roaming Encoded Information Reading Terminal, filed Dec. 16, 2013 (Wang et al.); U.S. patent application Ser. No. 14/118,400 for Indicia Decoding Device with Security Lock, filed Nov. 18, 2013 (Liu);U.S. patent application Ser. No. 14/138,206 for System and Method to Store and Retrieve Identifier Associated Information, filed Dec. 23, 2013 (Gomez et al.); U.S. patent application Ser. No. 14/143,399 for Device Management Using Virtual Interfaces, filed Dec. 30, 2013 (Caballero).


In the specification and/or figures, typical embodiments and environments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims
  • 1. An indicia-reading device, comprising: an indicia-capturing subsystem for acquiring information about indicia within the indicia-capturing subsystem's field of view;an indicia-decoding subsystem configured for decoding indicia information acquired by the indicia-capturing subsystem; anda hand-supportable housing comprising a head portion, a handle portion removably attached to the head portion via a mating mechanism, and a host-connector cable having at least one connector end wherein (i) the head portion substantially encloses the indicia-capturing subsystem and the indicia-decoding subsystem, (ii) the handle is formed as a unitary-construction, (iii) the handle integrates and surrounds a portion of the host-connector cable, and (iv) the at least one connector end of the host-connector cable extends from the upper portion of the handle.
  • 2. The indicia-reading device according to claim 1, wherein the mating mechanism comprises fasteners, threaded fasteners, clamps, clips, and/or pins.
  • 3. The indicia-reading device according to claim 1, wherein the host-connector cable has a first end connector at an upper portion of the handle and a second end connector at a base portion of the handle.
  • 4. The indicia-reading device according to claim 3, wherein the indicia-capturing subsystem comprises a printed circuit board operatively connected to electro-optical components.
  • 5. The indicia-reading device according to claim 4, wherein the first end connector is operatively connected to the printed circuit board.
  • 6. The indicia-reading device according to claim 5, wherein the second end connector is operatively connected to a host.
  • 7. The indicia-reading device according to claim 6, wherein the host is a computer.
  • 8. The indicia-reading device according to claim 1, wherein the indicia-capturing subsystem comprises a laser-scanning subsystem and/or an imaging subsystem.
  • 9. The indicia-reading device according to claim 1, wherein the hand-supportable housing's unitary-construction handle is an injection-molded handle.
  • 10. The indicia-reading device according to claim 1, wherein the hand-supportable housing's unitary-construction handle is a blow-molded handle.
  • 11. An indicia-reading device, comprising: a hand-supportable housing, comprising a head portion and a handle portion removably attached to the head portion via a mating mechanism;wherein the head portion at least partially encloses an indicia-capturing system, the indicia-capturing system comprising (i) an indicia-capturing subsystem for acquiring information about indicia within the indicia-capturing subsystem's field of view, and (ii) an indicia-decoding subsystem configured for decoding indicia information acquired by the indicia-capturing subsystem;wherein the handle portion physically integrates and surrounds a portion of a host-connector cable forming a single part, the host-connector cable having at least one connector end; andwherein the at least one connector end of the host-connector cable extends from the upper portion of the handle.
  • 12. The indicia-reading device according to claim 11, wherein the host-connector cable has a first end connector at an upper portion of the handle and a second end connector at a base portion of the handle.
  • 13. The indicia-reading device according to claim 12, wherein the indicia-capturing system comprises a printed circuit board operatively connected to electro-optical components.
  • 14. The indicia-reading device according to claim 13, wherein the first end connector is operatively connected to the printed circuit board.
  • 15. The indicia-reading device according to claim 14, wherein the second end connector is operatively connected to a host.
  • 16. The indicia-reading device according to claim 15, wherein the host is a handheld computer.
  • 17. The indicia-reading device according to claim 11, wherein the mating mechanism comprises fasteners, threaded fasteners, clamps, clips, and/or pins.
  • 18. The indicia-reading device according to claim 11, wherein the indicia-capturing subsystem comprises a laser-scanning subsystem and/or an imaging subsystem.
  • 19. A method for reading indicia, comprising: providing an indicia-reading device that includes (i) an indicia-capturing subsystem for acquiring information about indicia within the indicia-capturing subsystem's field of view, (ii) an indicia-decoding subsystem configured for decoding indicia information acquired by the indicia-capturing subsystem, (iii) a hand-supportable housing having a head portion removably attached to a handle portion, wherein the head portion substantially encloses the indicia-capturing subsystem and the indicia-decoding subsystem and the handle is formed as a unitary-construction, and (iv) a host-connector cable having at least one connector end, a portion of the host-connector cable being integrated into and surrounded by the hand-supportable housing's unitary-construction handle, and the at least one connector end extending from the upper portion of the handle;operatively connecting the host-connector cable to a host; andusing the indicia-reading device to acquire indicia information.
  • 20. The method for reading indicia according to claim 19, comprising communicating the indicia information from the indicia-reading device to the host via the host-connector cable.
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims the benefit of U.S. patent application Ser. No. 14/150,393 for an Indicia-Reader Having Unitary-Construction filed Jan. 8, 2014 (and published Jul. 9, 2015 as U.S. Patent Publication No. 2015/0193645), now U.S. Pat. No. 9,373,018. Each of the foregoing patent application, patent publication, and patent is hereby incorporated by reference in its entirety.

US Referenced Citations (210)
Number Name Date Kind
5396055 Shepard et al. Mar 1995 A
6832725 Gardiner et al. Dec 2004 B2
7128266 Zhu et al. Oct 2006 B2
7159783 Walczyk et al. Jan 2007 B2
7413127 Ehrhart et al. Aug 2008 B2
7673804 Hinson et al. Mar 2010 B1
7726575 Wang et al. Jun 2010 B2
8294969 Plesko Oct 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8322622 Liu Dec 2012 B2
8366005 Kotlarsky et al. Feb 2013 B2
8371507 Haggerty et al. Feb 2013 B2
8376233 Van Horn et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Horn et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van Horn et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
9373018 Colavito et al. Jun 2016 B2
20060093278 Elkins, II et al. May 2006 A1
20070063048 Havens et al. Mar 2007 A1
20080185432 Caballero et al. Aug 2008 A1
20090134221 Zhu et al. May 2009 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20110169999 Grunow et al. Jul 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20120111946 Golant May 2012 A1
20120138685 Qu et al. Jun 2012 A1
20120168511 Kotlarsky et al. Jul 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120193407 Barten Aug 2012 A1
20120193423 Samek Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120223141 Good et al. Sep 2012 A1
20120228382 Havens et al. Sep 2012 A1
20120248188 Kearney Oct 2012 A1
20130043312 Van Horn Feb 2013 A1
20130056285 Meagher Mar 2013 A1
20130070322 Fritz et al. Mar 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130082104 Kearney et al. Apr 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130200158 Feng et al. Aug 2013 A1
20130214048 Wilz Aug 2013 A1
20130256418 Havens et al. Oct 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130278425 Cunningham et al. Oct 2013 A1
20130287258 Kearney Oct 2013 A1
20130292474 Xian et al. Nov 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306730 Brady et al. Nov 2013 A1
20130306731 Pedrao Nov 2013 A1
20130306734 Xian et al. Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308625 Park et al. Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130313325 Wilz et al. Nov 2013 A1
20130313326 Ehrhart Nov 2013 A1
20130327834 Hennick et al. Dec 2013 A1
20130341399 Xian et al. Dec 2013 A1
20130342717 Havens et al. Dec 2013 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140008430 Soule et al. Jan 2014 A1
20140008439 Wang Jan 2014 A1
20140021256 Qu et al. Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140027518 Edmonds et al. Jan 2014 A1
20140034723 Van Horn et al. Feb 2014 A1
20140034734 Sauerwein Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140042814 Kather et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140061305 Nahill et al. Mar 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140061307 Wang et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140075846 Woodburn Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078341 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140078345 Showering Mar 2014 A1
20140084068 Gillet et al. Mar 2014 A1
20140086348 Peake et al. Mar 2014 A1
20140097249 Gomez et al. Apr 2014 A1
20140098284 Oberpriller et al. Apr 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140100813 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140104414 McCloskey et al. Apr 2014 A1
20140104416 Giordano et al. Apr 2014 A1
20140104451 Todeschini et al. Apr 2014 A1
20140106594 Skvoretz Apr 2014 A1
20140106725 Sauerwein Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140124577 Wang et al. May 2014 A1
20140124579 Ding May 2014 A1
20140125842 Winegar May 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131438 Kearney May 2014 A1
20140131441 Nahill et al. May 2014 A1
20140131445 Ding et al. May 2014 A1
20140133379 Wang et al. May 2014 A1
20140140585 Wang May 2014 A1
20140151453 Meier et al. Jun 2014 A1
20140160329 Ren et al. Jun 2014 A1
Foreign Referenced Citations (3)
Number Date Country
2013163789 Nov 2013 WO
2013173985 Nov 2013 WO
2014019130 Feb 2014 WO
Non-Patent Literature Citations (54)
Entry
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned.
U.S. Appl. No. 13/736,139 for an Electronic Device Enclosure, filed Jan. 8, 2013 (Chaney); 40 pages.
U.S. Appl. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson); 26 pages.
U.S. Appl. No. 13/780,356 for a Mobile Device Having Object Identification Interface, filed Feb. 28, 2013 (Samek et al.); 21 pages.
U.S. Appl. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.); 20 pages.
U.S. Appl. No. 13/902,110 for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Hollifield); 29 pages.
U.S. Appl. No. 13/902,144, for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Chamberlin); 23 pages.
U.S. Appl. No. 13/902,242 for a System for Providing a Continuous Communication Link With a Symbol Reading Device, filed May 24, 2013 (Smith et al.); 24 pages.
U.S. Appl. No. 13/912,262 for a Method of Error Correction for 3D Imaging Device, filed Jun. 7, 2013 (Jovanovski et al.); 33 pages.
U.S. Appl. No. 13/912,702 for a System and Method for Reading Code Symbols at Long Range Using Source Power Control, filed Jun. 7, 2013 (Xian et al.); 24 pages.
U.S. Appl. No. 13/922,339 for a System and Method for Reading Code Symbols Using a Variable Field of View, filed Jun. 20, 2013 (Xian et al.); 23 pages.
U.S. Appl. No. 13/927,398 for a Code Symbol Reading System Having Adaptive Autofocus, filed Jun. 26, 2013 (Todeschini); 24 pages.
U.S. Appl. No. 13/930,913 for a Mobile Device Having an Improved User Interface for Reading Code Symbols, filed Jun. 28, 2013 (Gelay et al.); 24 pages.
U.S. Appl. No. 13/933,415 for an Electronic Device Case, filed Jul. 2, 2013 (London et al.); 47 pages.
U.S. Appl. No. 13/947,296 for a System and Method for Selectively Reading Code Symbols, filed Jul. 22, 2013 (Rueblinger et al.); 29 pages.
U.S. Appl. No. 13/950,544 for a Code Symbol Reading System Having Adjustable Object Detection, filed Jul. 25, 2013 (Jiang); 28 pages.
U.S. Appl. No. 13/961,408 for a Method for Manufacturing Laser Scanners, filed Aug. 7, 2013 (Saber et al.); 26 pages.
U.S. Appl. No. 14/018,729 for a Method for Operating a Laser Scanner, filed Sep. 5, 2013 (Feng et al.); 24 pages.
U.S. Appl. No. 14/019,616 for a Device Having Light Source to Reduce Surface Pathogens, filed Sep. 6, 2013 (Todeschini); 23 pages.
U.S. Appl. No. 14/023,762 for a Handheld Indicia Reader Having Locking Endcap, filed Sep. 11, 2013 (Gannon); 31 pages.
U.S. Appl. No. 14/035,474 for Augmented-Reality Signature Capture, filed Sep. 24, 2013 (Todeschini); 33 pages.
U.S. Appl. No. 14/047,896 for Terminal Having Illumination and Exposure Control filed Oct. 7, 2013 (Jovanovski et al.); 32 pages.
U.S. Appl. No. 14/053,175 for Imaging Apparatus Having Imaging Assembly, filed Oct. 14, 2013 (Barber); 39 pages.
U.S. Appl. No. 14/055,234 for Dimensioning System, filed Oct. 16, 2013 (Fletcher); 26 pages.
U.S. Appl. No. 14/053,314 for Indicia Reader, filed Oct. 14, 2013 (Huck); 29 pages.
U.S. Appl. No. 14/065,768 for Hybrid System and Method for Reading Indicia, filed Oct. 29, 2013 (Meier et al.); 22 pages.
U.S. Appl. No. 14/074,746 for Self-Checkout Shopping System, filed Nov. 8, 2013 (Hejl et al.); 26 pages.
U.S. Appl. No. 14/074,787 for Method and System for Configuring Mobile Devices via NFC Technology, filed Nov. 8, 2013 (Smith et al.); 28 pages.
U.S. Appl. No. 14/087,190 for Optimal Range Indicators for Bar Code Validation, filed Nov. 22, 2013 (Hejl); 27 pages.
U.S. Appl. No. 14/345,735 for Optical Indicia Reading Terminal with Combined Illumination filed Mar. 19, 2014 (Ouyang); 19 pages.
U.S. Appl. No. 14/101,965 for High Dynamic-Range Indicia Reading System, filed Dec. 10, 2013 (Xian); 28 pages.
U.S. Appl. No. 14/118,400 for Indicia Decoding Device with Security Lock, filed Nov. 18, 2013 (Liu); 28 pages.
U.S. Appl. No. 14/150,393 for Incicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.); 28 pages.
U.S. Appl. No. 14/154,207 for Laser Barcode Scanner, filed Jan. 14, 2014 (Hou et al.); 26 pages.
U.S. Appl. No. 14/154,915 for Laser Scanning Module Employing a Laser Scanning Assembly having Elastomeric Wheel Hinges, filed Jan. 14, 2014 (Havens et al.); 24 pages.
U.S. Appl. No. 14/158,126 for Methods and Apparatus to Change a Feature Set on Data Collection Devices, filed Jan. 17, 2014 (Berthiaume et al.); 53 pages.
U.S. Appl. No. 14/342,551 for Terminal Having Image Data Format Conversion filed Mar. 4, 2014 (Lui et al.); 25 pages.
U.S. Appl. No. 14/342,544 for Imaging Based Barcode Scanner Engine with Multiple Elements Supported on a Common Printed Circuit Board filed Mar. 4, 2014 (Liu et al.); 27 pages.
U.S. Appl. No. 14/257,174 for Reading Apparatus Having Partial Frame Operating Mode filed Apr. 21, 2014, (Barber et al.), 67 pages.
U.S. Appl. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.); 42 pages.
U.S. Appl. No. 14/166,103 for Indicia Reading Terminal Including Optical Filter filed Jan. 28, 2014 (Lu et al.); 29 pages.
U.S. Appl. No. 14/274,858 for Mobile Printer With Optional Battery Accessory, filed May 12, 2014, (Marty et al.), 26 pages.
U.S. Appl. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014, (Ackley et al.), 39 pages.
U.S. Appl. No. 14/230,322 for Focus Module and Components with Actuator filed Mar. 31, 2014 (Feng et al.); 92 pages.
U.S. Appl. No. 14/222,994 for Method and Apparatus for Reading Optical Indicia Using a Plurality of Data filed Mar. 24, 2014 (Smith et al.); 30 pages.
U.S. Appl. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.); 36 pages.
U.S. Appl. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.); 8 pages.
U.S. Appl. No. 29/436,337 for an Electronic Device, filed Nov. 5, 2012 (Fitch et al.); 19 pages.
U.S. Appl. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.); 22 pages.
U.S. Appl. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.); 21 pages.
U.S. Appl. No. 29/459,681 for an Electronic Device Enclosure, filed Jul. 2, 2013 (Chaney et al.); 14 pages.
U.S. Appl. No. 29/459,785 for a Scanner and Charging Base, filed Jul. 3, 2013 (Fitch et al.); 21 pages.
U.S. Appl. No. 29/459,823 for a Scanner, filed Jul. 3, 2013 (Zhou et al.); 13 pages.
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 14 pages.
Related Publications (1)
Number Date Country
20160292479 A1 Oct 2016 US
Continuations (1)
Number Date Country
Parent 14150393 Jan 2014 US
Child 15185476 US