The present invention relates to the field of indicia readers and, more specifically, to an indicia-reader's imaging engine with a housing having an integrated optical structure.
Generally, indicia readers (e.g., barcode scanners) fall into one of three categories: wand scanners, laser scanners, and imaging barcode readers.
Wand scanners generally include a light source and photodetector housed in a pen-shaped housing. A user drags the wand reader across a code symbol (e.g., a barcode), and a signal is generated that represents the bar-space pattern of the barcode.
Laser scanners typically include a laser diode and lens combination to generate a collimated light beam. The beam is swept back-and-forth across a barcode by a reciprocating mirror. The light reflected from the barcode is collected and sensed by a photodetector. The result is an electronic signal that corresponds to the bar-space pattern of the barcode.
Imaging indicia readers (i.e., barcode readers) include an image sensor (e.g., CCD) and a group of lenses (i.e., lens group) for focusing the image of a target (i.e., barcode) onto the image sensor. The image sensor captures a digital picture of the barcode, and a processor running algorithms detects and decodes the barcode from the image. The optical subsystems (i.e., modules) in an imaging barcode reader responsible for creating a good image of a barcode is known as the imaging engine.
Most thin-profile, hand-held, mobile computing devices (e.g., smart-phones) now have integrated cameras that can be used as the imaging engine for indicia reading, and numerous applications for barcode scanning have been developed for these devices. While these applications perform reasonably well for the casual user, they lack the features, functions, and performance present in dedicated imaging barcode readers. Illumination, alignment, and image quality may all suffer when using a mobile computing device's camera as the imaging engine for barcode scanning.
Because most users want to carry only one mobile computing device, they will be reluctant to trade their mobile device for a dedicated indicia reader. A need, therefore, exists for a dedicated imaging indicia reader that is integrated within a hand-held mobile computing device. This integration, however, puts severe limitations on the imaging indicia reader's design. Unique design approaches and construction methods must be combined to allow for such novel integration. One such approach incorporates an optical structure within the housing of the indicia reading module.
Accordingly, in one aspect, the present invention embraces an imaging engine for an indicia reader. The imaging engine includes three optical modules: (i) an imaging module for capturing an image of the imaging engine's field of view, (ii) an aiming module for projecting a visible aligning pattern onto a target in order to provide information regarding the imaging engine's field of view and to help align the image captured by the imaging module, and (iii) an illuminating module for projecting light onto the target to illuminate the imaging engine's field of view. The modules are held by a housing configured to provide support and alignment. The housing also includes an integrated optical structure.
In an exemplary embodiment, the imaging engine's imaging module includes an image sensor and one or more imaging-module lenses. The housing's integrated optical structure is configured as a housing imaging lens. The combination of the housing imaging lens and one or more imaging-module lenses form a lens group. This lens group is used to render (i.e., focus) an image onto the image sensor.
In another exemplary embodiment, the imaging engine's aiming module includes an aiming-module light source for illuminating an aiming-module aperture positioned in front of the aiming-module light source. The housing's integrated optical structure is configured as a housing aiming lens and is positioned in front of the aiming-module aperture in order to project an image of the aiming-module aperture onto the target.
In another exemplary embodiment, the imaging engine's aiming-module light source is a light emitting diode.
In another exemplary embodiment, the imaging engine's aiming-module light source is a laser diode.
In another exemplary embodiment, the imaging engine's aiming module includes an aiming-module light source positioned behind a housing aiming lens. The housing aiming lens is part of the housing's integrated optical structure and is configured to create a visible aligning pattern on the target.
In another exemplary embodiment, the imaging engine's aiming module includes a laser diode that is positioned behind a housing aiming lens. The housing aiming lens is part of the housing's integrated optical structure and is configured to create a visible aligning pattern on the target.
In another exemplary embodiment, the imaging engine's aiming module includes a light emitting diode that is positioned behind a housing aiming lens. The housing aiming lens is part of the housing's integrated optical structure and is configured to create a visible aligning pattern on the target.
In another exemplary embodiment, the imaging engine's illuminating module includes an illuminating-module light source positioned behind a housing illuminating lens. The housing illuminating lens is part of the housing's integrated optical structure and is configured to provide uniform illumination within the imaging engine's field of view.
In another exemplary embodiment, the imaging engine's illuminating module includes a light emitting diode positioned behind a housing illuminating lens. The housing illuminating lens is part of the housing's integrated optical structure and is configured to provide uniform illumination within the imaging engine's field of view.
In another exemplary embodiment, the imaging engine's housing is an optically transparent material.
In another exemplary embodiment, the imaging engine's optically transparent housing is polycarbonate.
In another exemplary embodiment, the imaging engine's optically transparent housing is polymethyl methacrylate (PMMA).
In yet another exemplary embodiment, the imaging engine's housing is formed of two materials. A first molded material provides structural support for the housing. The first molded material having glass fibers added to improve the structural strength. Pigment is also added to block light and minimize unwanted stray light between optical modules. A second molded optically transparent material forms the housing's integrated optical structure. The second material has high optical clarity and is formed with precise surface profile control.
In another aspect, the present invention embraces an indicia-reading imaging engine including the following: (i) an imaging module, (ii) an aiming module, (iii) an illuminating module, and (iv) a housing. The imaging module captures images of the imaging engine's field of view and includes an image sensor and one or more imaging-module lenses. The aiming module projects a visible aligning pattern onto a target to facilitate alignment of the image captured by the imaging module. The visible aligning pattern corresponds to an aiming-module aperture and provides information regarding the imaging engine's field of view. The illumination module projects light via an illuminating-module light source onto the target to highlight the imaging engine's field of view. The housing is dual purposed. First, it provides support and alignment for the imaging module, the aiming module, and the illuminating module. It also has integrated, optically-transparent optical-structures that correspond to the various modules.
At least one of the housing's integrated, optically-transparent optical-structures is configured as a housing imaging lens. This lens, when combined with the one or more imaging-module lenses, form a lens group to render an image onto the image sensor.
At least one of the housing's integrated optically-transparent optical-structures is configured as a housing aiming lens. This lens is positioned in front of the aiming-module aperture in order to project the aiming-module aperture's image onto the target.
At least one of the housing's integrated, optically-transparent optical-structures is configured as a housing illuminating lens. This lens is positioned in front of the illuminating-module light source in order to provide uniform illumination within the imaging engine's field of view.
In an exemplary embodiment, the indicia-reading imaging engine's housing imaging lens is a meniscus lens.
In another exemplary embodiment, the indicia-reading imaging engine's housing aiming lens is positioned in front of the aiming-module aperture and is a bi-convex lens.
In another exemplary embodiment, the indicia-reading imaging engine's housing illuminating lens is positioned in front of the illuminating-module light source and is a plano-convex lens.
In another exemplary embodiment, the indicia-reading imaging engine's housing illuminating lens is positioned in front of the illuminating-module light source and is a non-rotational aspheric lens.
In yet another exemplary embodiment, the indicia-reading imaging engine's housing includes (i) a first co-molded material to provide support and alignment for the imaging module, the aiming module, and the illuminating module, the housing having glass fiber added to improve the structural strength and pigment added to block light, and (ii) a second co-molded material to provide the integrated, optically-transparent optical-structures with high optical clarity and precise surface profile control.
The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
The present invention embraces an imaging engine for an indicia reader. The imaging engine includes (i) an imaging module, (ii) an aiming module, (iii) an illuminating module, and (iv) a housing. The imaging module captures images of the imaging engine's field of view. The aiming module projects a visible aligning pattern onto a target to provide information regarding the imaging engine's field of view and facilitates alignment of the captured image. The illuminating module projects light onto the target to illuminate the imaging engine's field of view, which helps with imaging. The housing has dual purposes. First, it provides support and alignment for the imaging module, the aiming module, and the illuminating module. Second, it includes an integrated optical structure that aids the modules in their functions.
Mobile computing devices (e.g., a personal data assistant or a portable data terminal) may be integrated with dedicated indicia readers for reading indicia (e.g., barcodes) or for capturing document information (e.g., optical character recognition). Both of these applications require high quality images. Images that are misaligned or poorly illuminated may make decoding more difficult. As a result, an imaging engine for these devices includes several modules that help provide the best possible image of the target.
One module in the imaging engine is the imaging module. The imaging module creates an image of a target (e.g., barcode). A group of lenses (i.e., lens group) in this module creates an image of a target (positioned in front of the lens group) on an image sensor (positioned behind the lens group) mounted to a circuit board. The lens group is designed with an optical power, a depth of field, and a field of view suitable for imaging indicia (e.g., barcodes). Typically, the individual lenses of the lens group are assembled into a barrel suitable for mounting in front of the image sensor. This barrel is installed in a holder in front of the image sensor. This holder itself may be mounted to the same circuit board as the image sensor. The circuit board may be mounted into a housing with other circuit boards that form the indicia reader. This approach, while straightforward, has added size and weight and may be unsuitable for the integration into a small hand-held mobile computing device. The size and weight of the imaging engine may be reduced by eliminating parts through the use of dual purpose housing. That is, a housing with an integrated optical structure.
An integrated optical structure may be formed into the housing if high quality optical materials are used in its construction. For example, a material with high optical transmission and low optical dispersion such as polycarbonate or polymethyl methacrylate (PMMA) may be molded (e.g., injection molded) to form a housing with an optical structure including lenses. Alternatively a co-molding process could be used with two materials. One material, having high optical clarity and precise surface profile control may form the optical structures. The other material, having glass fibers added for structural strength and pigment for light blocking, may have other advantageous properties (e.g., strength) required by the housing. The housing's integrated optical structure may be configured as a housing imaging lens. This lens may replace the first lens in the lens group for the imaging module. In this way, the one or more imaging-module lenses and the housing imaging lens form a lens group that can render an image onto the image sensor. In an exemplary embodiment, this housing imaging lens is a meniscus lens formed into the front wall of the housing. One or two additional lenses between the housing imaging lens and the image sensor are used to achieve the total combined optical power and aberration control necessary to form a good target image with the required resolution for decoding.
The illuminating module uses an illuminating-module light source (e.g., light emitting diode) to highlight the imaging engine's field of view. Without this illumination, the image captured by the image sensor would have low contrast and would be noisy, neither quality being conducive to algorithmic decoding. The light from the illuminating-module light source is focused by a lens formed into the integrated optical structure of the housing. This lens (i.e., housing illuminating lens) is positioned in front of the illumination-module light source in order to provide uniform illumination within the field of view of the imaging engine. The lens may be a plano-convex lens. The convex surface of the lens may be a non-rotational aspheric (i.e., free form) surface to redistribute the light source's light uniformly within the field of view. In some embodiments, an aperture may be used between the illuminating-module light source and the housing illuminating lens in order to limit the extent of the illumination. Again, this aperture can be achieved by co-molding of non-transparent material. The aperture can provide a well-defined illumination pattern edge to improve user experience. The aperture may also reduce the potential for light crosstalk between the imaging module optics.
The aiming module creates a visible aligning pattern on the target. An operator may use this aligning pattern to position the indicia reader with respect to the target. The aligning pattern may be any shape or form that allows proper positioning. For example, the pattern may be a line, a crosshair, a frame, or any combination of these forms. The aligning pattern gives the operator a visual indication of the center, orientation, width, and height of the imaging engine's field of view. In this way, the operator may align the indicia reader with the target (e.g., barcode) to facilitate decoding.
The aiming module may be one of two forms: an LED (i.e., light emitting diode) aimer or a laser aimer. As the name implies, the aiming-module light source is a laser, and the aiming-module light source for the LED aimer is an LED. The type of aimer used depends on the applications. Laser aimers for example typically have more range than LED aimers due to the high intensity of the laser light.
In an exemplary embodiment of the aiming module, a collimating lens is positioned in front of a laser to collimate the laser's light. A diffractive optical element (i.e., DOE) is positioned in front of the collimating lens (i.e., between the source and the target) to form an aligning pattern on the target.
In another embodiment, the aiming-module light source (i.e., LED or laser diode) is positioned behind an aiming-module aperture, the aperture corresponding to the aligning pattern. The housing's integrated optical structure is configured to form a housing aiming lens, and the housing aiming lens is used to project an image of the aiming-module aperture onto the target.
In still another embodiment, no aiming-module aperture is used. The housing aiming lens is used to form an aligning pattern (e.g., line) on the target. Here, the housing aiming lens is a bi-convex lens molded into the front wall of the housing directly in front of the aiming-module light source (i.e., LED or laser diode). The inner convex surface is a rotationally symmetric surface that collimates the light from the LED. The outer convex surface (i.e., target side) is an aspherical toric surface that spreads the collimated light to form a uniform line pattern on the target. Combinations of toric segments with wedges could generate multi-line patterns, frame patterns, or other aligning patterns.
An exemplary housing for an imaging engine is shown in
A housing illuminating lens 1 is a plano-convex lens that redistributes the illuminating-module light source LED into a well-defined area with a uniform illumination level.
A housing aiming lens 2 is a bi-convex lens integrated into the front wall of the housing 10. The inner convex surface is rotationally symmetric and serves to collimate the light from the aiming-module light source. The outer convex surface (i.e., towards the target) is an aspherical toric surface that spreads the collimated light to form a uniform line pattern on the target. This line pattern serves as the visible aligning pattern, allowing the operator to align the imaging engine with the target.
A housing imaging lens 3 is a meniscal lens formed into the front wall of the housing 10 and serves as the first element of the imaging lens assembly. This lens, when combined with one or two more lens elements, achieves the proper optical power and aberration control to form a satisfactory image with the required optical resolution on the image sensor.
As shown in
There are many advantages to the approach of using a housing with an integrated optical structure. This approach reduces part count and improves tolerances as some lenses are integrated within the housing's integrated optical structure. It reduces the difficulty of assembly but simplifies alignment, as well as reducing cost, weight, and complexity.
To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:
In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
6669093 | Meyerson et al. | Dec 2003 | B1 |
6832725 | Gardiner et al. | Dec 2004 | B2 |
7128266 | Marlton et al. | Oct 2006 | B2 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7726575 | Wang et al. | Jun 2010 | B2 |
8061617 | Gillet et al. | Nov 2011 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8322622 | Suzhou et al. | Dec 2012 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8376233 | Van Horn et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Horn et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van Horn et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8632201 | Gilbert et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
9010643 | Madej et al. | Apr 2015 | B2 |
20030080188 | Carlson et al. | May 2003 | A1 |
20060109365 | Lee | May 2006 | A1 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20080185432 | Caballero et al. | Aug 2008 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120138685 | Qu et al. | Jun 2012 | A1 |
20120168511 | Kotlarsky et al. | Jul 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120193407 | Barten | Aug 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20120228382 | Havens et al. | Sep 2012 | A1 |
20120248188 | Kearney | Oct 2012 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130056285 | Meagher | Mar 2013 | A1 |
20130070322 | Fritz et al. | Mar 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130082104 | Kearney et al. | Apr 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130200158 | Feng et al. | Aug 2013 | A1 |
20130214048 | Wilz | Aug 2013 | A1 |
20130256418 | Havens et al. | Oct 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130278425 | Cunningham et al. | Oct 2013 | A1 |
20130287258 | Kearney | Oct 2013 | A1 |
20130292474 | Xian et al. | Nov 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306730 | Brady et al. | Nov 2013 | A1 |
20130306731 | Pedrao | Nov 2013 | A1 |
20130306734 | Xian et al. | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308625 | Corcoran | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130313325 | Wilz et al. | Nov 2013 | A1 |
20130313326 | Ehrhart | Nov 2013 | A1 |
20130327834 | Hennick et al. | Dec 2013 | A1 |
20130334314 | Vinogradov et al. | Dec 2013 | A1 |
20130341399 | Xian et al. | Dec 2013 | A1 |
20130342717 | Havens et al. | Dec 2013 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140008430 | Soule et al. | Jan 2014 | A1 |
20140008439 | Wang | Jan 2014 | A1 |
20140021256 | Qu et al. | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140027518 | Edmonds et al. | Jan 2014 | A1 |
20140034723 | Van Horn et al. | Feb 2014 | A1 |
20140034734 | Sauerwein | Feb 2014 | A1 |
20140036848 | Pease et al. | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140042814 | Kather et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140061305 | Nahill et al. | Mar 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140061307 | Wang et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140075846 | Woodburn | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078341 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140078345 | Showering | Mar 2014 | A1 |
20140084068 | Gillet et al. | Mar 2014 | A1 |
20140086348 | Peake et al. | Mar 2014 | A1 |
20140097249 | Gomez et al. | Apr 2014 | A1 |
20140098284 | Oberpriller et al. | Apr 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140100813 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Li et al. | Apr 2014 | A1 |
20140104451 | Todeschini et al. | Apr 2014 | A1 |
20140106594 | Skvoretz | Apr 2014 | A1 |
20140106725 | Sauerwein | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140121438 | Kearney | May 2014 | A1 |
20140121445 | Ding et al. | May 2014 | A1 |
20140124577 | Wang et al. | May 2014 | A1 |
20140124579 | Ding | May 2014 | A1 |
20140125842 | Winegar | May 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131441 | Nahill et al. | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140151453 | Meier et al. | Jun 2014 | A1 |
20140160329 | Ren et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
2538680 | Dec 2012 | EP |
2013163789 | Nov 2013 | WO |
2013173985 | Nov 2013 | WO |
2014019130 | Feb 2014 | WO |
Entry |
---|
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned. |
U.S. Appl. No. 13/736,139 for an Electronic Device Enclosure, filed Jan. 8, 2013 (Chaney); 40 pages. |
U.S. Appl. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson); 26 pages. |
U.S. Appl. No. 13/780,356 for a Mobile Device Having Object Identification Interface, filed Feb. 28, 2013 (Samek et al.); 21 pages. |
U.S. Appl. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.); 20 pages. |
U.S. Appl. No. 13/902,110 for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Hollifield); 29 pages. |
U.S. Appl. No. 13/902,144, for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Chamberlin); 23 pages. |
U.S. Appl. No. 13/902,242 for a System for Providing a Continuous Communication Link With a Symbol Reading Device, filed May 24, 2013 (Smith et al.); 24 pages. |
U.S. Appl. No. 13/912,262 for a Method of Error Correction for 3D Imaging Device, filed Jun. 7, 2013 (Jovanovski et al.); 33 pages. |
U.S. Appl. No. 13/912,702 for a System and Method for Reading Code Symbols at Long Range Using Source Power Control, filed Jun. 7, 2013 (Xian et al.); 24 pages. |
U.S. Appl. No. 13/922,339 for a System and Method for Reading Code Symbols Using a Variable Field of View, filed Jun. 20, 2013 (Xian et al.); 23 pages. |
U.S. Appl. No. 13/927,398 for a Code Symbol Reading System Having Adaptive Autofocus, filed Jun. 26, 2013 (Todeschini); 24 pages. |
U.S. Appl. No. 13/930,913 for a Mobile Device Having an Improved User Interface for Reading Code Symbols, filed Jun. 28, 2013 (Gelay et al.); 24 pages. |
U.S. Appl. No. 13/933,415 for an Electronic Device Case, filed Jul. 2, 2013 (London et al.); 47 pages. |
U.S. Appl. No. 13/947,296 for a System and Method for Selectively Reading Code Symbols, filed Jul. 22, 2013 (Rueblinger et al.); 29 pages. |
U.S. Appl. No. 13/950,544 for a Code Symbol Reading System Having Adjustable Object Detection, filed Jul. 25, 2013 (Jiang); 28 pages. |
U.S. Appl. No. 13/961,408 for a Method for Manufacturing Laser Scanners, filed Aug. 7, 2013 (Saber et al.); 26 pages. |
U.S. Appl. No. 14/018,729 for a Method for Operating a Laser Scanner, filed Sep. 5, 2013 (Feng et al.); 24 pages. |
U.S. Appl. No. 14/019,616 for a Device Having Light Source to Reduce Surface Pathogens, filed Sep. 6, 2013 (Todeschini); 23 pages. |
U.S. Appl. No. 14/023,762 for a Handheld Indicia Reader Having Locking Endcap, filed Sep. 11, 2013 (Gannon); 31 pages. |
U.S. Appl. No. 14/035,474 for Augmented-Reality Signature Capture, filed Sep. 24, 2013 (Todeschini); 33 pages. |
U.S. Appl. No. 14/047,896 for Terminal Having Illumination and Exposure Control filed Oct. 7, 2013 (Jovanovski et al.); 32 pages. |
U.S. Appl. No. 14/053,175 for Imaging Apparatus Having Imaging Assembly, filed Oct. 14, 2013 (Barber); 39 pages. |
U.S. Appl. No. 14/055,234 for Dimensioning System, filed Oct. 16, 2013 (Fletcher); 26 pages. |
U.S. Appl. No. 14/053,314 for Indicia Reader, filed Oct. 14, 2013 (Huck); 29 pages. |
U.S. Appl. No. 14/065,768 for Hybrid System and Method for Reading Indicia, filed Oct. 29, 2013 (Meier et al.); 22 pages. |
U.S. Appl. No. 14/074,746 for Self-Checkout Shopping System, filed Nov. 8, 2013 (Hejl et al.); 26 pages. |
U.S. Appl. No. 14/074,787 for Method and System for Configuring Mobile Devices via NFC Technology, filed Nov. 8, 2013 (Smith et al.); 28 pages. |
U.S. Appl. No. 14/087,190 for Optimal Range Indicators for Bar Code Validation, filed Nov. 22, 2013 (Hejl); 27 pages. |
U.S. Appl. No. 14/345,735 for Optical Indicia Reading Terminal with Combined Illumination filed Mar. 19, 2014 (Ouyang); 19 pages. |
U.S. Appl. No. 14/101,965 for High Dynamic-Range Indicia Reading System, filed Dec. 10, 2013 (Xian); 28 pages. |
U.S. Appl. No. 14/118,400 for Indicia Decoding Device with Security Lock, filed Nov. 18, 2013 (Liu); 28 pages. |
U.S. Appl. No. 14/150,393 for Incicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.); 28 pages. |
U.S. Appl. No. 14/154,207 for Laser Barcode Scanner, filed Jan. 14, 2014 (Hou et al.); 26 pages. |
U.S. Appl. No. 14/154,915 for Laser Scanning Module Employing a Laser Scanning Assembly having Elastomeric Wheel Hinges, filed Jan. 14, 2014 (Havens et al.); 24 pages. |
U.S. Appl. No. 14/158,126 for Methods and Apparatus to Change a Feature Set on Data Collection Devices, filed Jan. 17, 2014 (Berthiaume et al.); 53 pages. |
U.S. Appl. No. 14/342,551 for Terminal Having Image Data Format Conversion filed Mar. 4, 2014 (Lui et al.); 25 pages. |
U.S. Appl. No. 14/342,544 for Imaging Based Barcode Scanner Engine with Multiple Elements Supported on a Common Printed Circuit Board filed Mar. 4, 2014 (Liu et al.); 27 pages. |
U.S. Appl. No. 14/257,174 for Reading Apparatus Having Partial Frame Operating Mode filed Apr. 21, 2014, (Barber et al.), 67 pages. |
U.S. Appl. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.); 42 pages. |
U.S. Appl. No. 14/166,103 for Indicia Reading Terminal Including Optical Filter filed Jan. 28, 2014 (Lu et al.); 29 pages. |
U.S. Appl. No. 14/274,858 for Mobile Printer With Optional Battery Accessory, filed May 12, 2014, (Marty et al.), 26 pages. |
U.S. Appl. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014, (Ackley et al.), 39 pages. |
U.S. Appl. No. 14/230,322 for Focus Module and Components with Actuator filed Mar. 31, 2014 (Feng et al.); 92 pages. |
U.S. Appl. No. 14/222,994 for Method and Apparatus for Reading Optical Indicia Using a Plurality of Data filed Mar. 24, 2014 (Smith et al.); 30 pages. |
U.S. Appl. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.); 36 pages. |
U.S. Appl. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.); 8 pages. |
U.S. Appl. No. 29/436,337 for an Electronic Device, filed Nov. 5, 2012 (Fitch et al.); 19 pages. |
U.S. Appl. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.); 22 pages. |
U.S. Appl. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.); 21 pages. |
U.S. Appl. No. 29/459,681 for an Electronic Device Enclosure, filed Jul. 2, 2013 (Chaney et al.); 14 pages. |
U.S. Appl. No. 29/459,785 for a Scanner and Charging Base, filed Jul. 3, 2013 (Fitch et al.); 21 pages. |
U.S. Appl. No. 29/459,823 for a Scanner, filed Jul. 3, 2013 (Zhou et al.); 13 pages. |
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages. |
Extended Search Report in counterpart European Application No. 15165284.9 dated Oct. 14, 2015, pp. 1-7. |
Number | Date | Country | |
---|---|---|---|
20150332076 A1 | Nov 2015 | US |