Indirect bonding trays, non-sliding orthodontic appliances, and registration systems for use thereof

Information

  • Patent Grant
  • 11058517
  • Patent Number
    11,058,517
  • Date Filed
    Thursday, April 19, 2018
    6 years ago
  • Date Issued
    Tuesday, July 13, 2021
    3 years ago
Abstract
Non-sliding orthodontic appliances may include an archwire having male fasteners for locking in place with brackets in a non-sliding manner and interproximal loops for exerting forces on the brackets. Appropriate forces may be calculated according to vectors between initial and ideal tooth positions. The brackets may be transferred to a patient's teeth using indirect bonding trays which contain slots for holding and aligning each bracket. The trays may include integrated handles for facilitating handling, may be sectioned into smaller pieces for easier application, and/or may be labeled for facilitating proper registration. Superposition of a digital placement plan and clinical model after bonding may illustrate the accuracy of bracket placement. The archwire may comprise atraumatic ends to avoid patient discomfort. A color registration system can be used to facilitate the attachment of the archwire to the brackets. The archwire may be locked into place with the brackets using crimpable stops.
Description
BACKGROUND
Field of the Invention

The invention relates in some aspects to orthodontic appliances, including brackets, archwires, and bonding trays.


SUMMARY

Disclosed herein is an indirect bonding tray for transferring orthodontic brackets to a patient's teeth. The indirect bonding tray has a tray having a lingual, occlusal and buccal side formed from a moldable material and configured to be seated on at least a portion of the patient's dental arch. The tray includes at least one impression of at least one of the patient's teeth and at least one placeholder slot aligned with the at least one impression configured to hold an orthodontic bracket. The tray has one or more handles extending from the occlusal side of the tray. The one or more handles are configured to be grasped by a tool for insertion into the patient's mouth.


The one or more handles may extend along only a portion of the length of the tray extending along the dental arch. The one or more handles may include a plurality of handles. A first handle of the plurality of handles may be positioned on a left distal side of the tray and a second handle of the plurality of handles may be positioned on a right distal side of the tray. A medial anterior portion of the tray may be free of handles. The one or more handles may have an aperture extending through the handle from the lingual side to the buccal side of the tray. The aperture may be configured to receive a dental tool for grasping the tray. The one or more handles may form a tunnel extending along a length of the handle extending along the dental arch.


The tray can be marked with indicia prescribing treatment information. The treatment information may include information registering portions of the tray to anatomical locations of the patient's teeth. The information may register the tray to the upper or lower mandible. The information may register a portion of the tray to the right or left side of the patient's mouth. The information may register a portion of the tray to a specific tooth. The information may demarcate a suggested position for sectioning the tray into separate pieces. The indicia may be a color. The color may be impregnated into the tray. The indicia may be an ink, an impression, a relief, an adhesive label, and/or an embedded tag. The indicia may indicate the location of the at least one impression. The tray may be configured to be seated on only a partial portion of the patient's dental arch.


Disclosed herein is a kit for transferring orthodontic brackets to a patient's teeth. The kit includes a first indirect bonding tray having a lingual, occlusal and buccal side formed from a moldable material and configured to be seated on a first portion of the patient's dental arch. The first tray includes at least one impression of one of the patient's teeth and at least one placeholder slot aligned with the at least one impression configured to hold an orthodontic bracket. The kit includes a second indirect bonding tray having a lingual, occlusal and buccal side formed from a moldable material and configured to be seated on a second portion of the patient's dental arch. The second tray comprises at least one impression of one of the patient's teeth and at least one placeholder slot aligned with the at least one impression configured to hold an orthodontic bracket.


The first and second indirect bonding trays may each be labeled on a surface of the tray to indicate the proper positioning of the tray within the patient's mouth. The first indirect bonding tray and/or the second indirect bonding tray be or may include any of the features of the indirect bonding trays described elsewhere herein.


Disclosed herein is a system for determining the accuracy of the placement of orthodontic brackets on a patient's teeth. The system includes a digital representation of a planned model comprising the patient's teeth and orthodontic brackets positioned on the patient's teeth in planned positions for orthodontic treatment. The system also includes a digital representation of a clinical model of the patient's teeth comprising the patient's teeth and actual positions of the orthodontic brackets after placement onto the patient's teeth. The system also includes a combined model created by a comparison of the digital representations of the planned model and clinical model, wherein the discrepancies in the planned positions and actual positions of the orthodontic brackets are visually discernible from the combined model.


The combined model can be a superimposition of a volume of the planned model and the clinical model. Different portions of a surface of the combined model may be colored differently to reflect which of the planned model and the clinical model forms the different portions of the surface. The combined model may highlight discrepancies between the models a different color. The combined model may depict discrepancies between surface areas of teeth where brackets are bonded. The combined model may depict discrepancies in three-dimensional volumes of space occupied by brackets. The discrepancies between bracket placements may be the only discrepancies depicted. The system may further include software configured to generate statistics related to the accuracy of bracket placement. The software may be configured to collect statistics over a plurality of patients.


Disclosed herein is a method for determining an appropriate force vector to correct the positioning of a tooth of a patient. The method includes obtaining a digital model of the patient's teeth. The digital model includes coordinates for identifying the initial positioning of a tooth to be moved in three-dimensional space. The method includes adjusting the digital model to reposition the tooth to a corrected positioning and determining a travel distance vector between the initial positioning and the corrected positioning of the tooth. The method includes calculating the force vector based at least in part on the travel distance vector, the estimated resistance of the tooth, and the anatomy of the patient's mouth.


The method may further include deforming an archwire to form an interdental loop configured to exert the force vector on the tooth. The method may include adjusting the digital model to reposition a second tooth to a corrected positioning; determining a second travel distance vector between the initial positioning and the corrected positioning of the second tooth; calculating a second force vector based at least in part on the second travel distance vector, the estimated resistance of the second tooth, and the anatomy of the patient's mouth; and deforming the archwire to form a second interdental loop configured to exert the second force vector on the second tooth. The method may include calculating a plurality of force vectors for a plurality of the patient's teeth. The plurality of force vectors may be configured to move the plurality of teeth into corrected positions after the same duration of treatment time.


The initial positioning of the tooth may represent the position of a tooth after orthodontic treatment. The method may include obtaining a second digital model of the patient's teeth after a period of treatment time. The model may include coordinates for identifying the updated positioning of the tooth after it has been moved in three-dimensional space. The method may include measuring an actual travel distance vector of the tooth and a discrepancy between the actual travel distance vector and the previously determined travel distance vector. The method may include adjusting the digital model to reposition the tooth to a second corrected positioning. The method may include determining a second travel distance vector between the updated positioning and the second corrected positioning of the tooth. The method may include calculating a second force vector based at least in part on the second travel distance vector, the estimated resistance of the tooth, and the anatomy of the patient's mouth, wherein calculating the force vector includes using the measured discrepancy as feedback to improve the calculation. Using the measured discrepancy as feedback may include updating the estimated resistance of the tooth.


Disclosed herein is an orthodontic appliance having a plurality of orthodontic brackets and an archwire. The archwire has a plurality of male fasteners for locking into non-sliding engagement with the plurality of orthodontic brackets and at least one interproximal loop configured to exert a corrective force on one or more of the orthodontic brackets. The archwire has atraumatic terminal ends.


At least one atraumatic terminal end may be formed from a terminal loop at a distal end of the archwire. A distal end of the archwire may be bent in an occlusal and/or dental direction. At least one atraumatic terminal end may be formed from a smooth polymeric bulb positioned at a distal end of the archwire. At least one atraumatic terminal end may be formed by a distal end which is not configured to extend distally beyond the most distal bracket of the plurality of orthodontic brackets. The distal-most orthodontic bracket may have an archwire slot configured to lock the archwire within the distal-most orthodontic bracket. The archwire slot may not extend to a distal side of the distal-most orthodontic bracket.


Disclosed herein is an orthodontic appliance having a plurality of orthodontic brackets and an archwire. The archwire has a plurality of male fasteners for locking into non-sliding engagement with the plurality of orthodontic brackets and at least one interproximal loop configured to exert a corrective force on one or more of the orthodontic brackets. At least some of the plurality of brackets and at least some of the male fasteners and/or interproximal loops are marked with a colors that distinctly identify which of the at least some of the plurality of brackets is intended to be registered with which of the at least some of the male fasteners.


The color markings may be temporary. At least some of the plurality of brackets may be marked with a removable color insert. The removable insert may be configured to occupy at least a portion of the archwire slot. The archwire and/or the at least some of the plurality of brackets may be marked with a biocompatible dye.


Disclosed herein is an orthodontic appliance having an archwire including at least one interproximal loop configured to exert a corrective force an orthodontic bracket and a crimpable stop for engaging with the orthodontic bracket. The crimpable stop is configured to be crimped so as to secure the archwire to the orthodontic bracket.


The crimpable stop may be a tubular member configured to be received over the archwire. Crimping the crimpable stop may prevents the crimpable stop from sliding with respect to the archwire. The crimpable stop may have a closed circumference and the crimpable stop may be configured to be advanced over a distal end of the archwire. The crimpable stop may include a slit along the length of the crimpable stop forming a partially-closed circumference. The crimpable stop may be configured to be inserted over the archwire via the slit. The length of the crimpable stop may correspond to a length of a recess in the orthodontic bracket and the crimpable stop may be configured to prevent a portion of the archwire enclosed within the crimpable stop from sliding mesially or distally beyond the recess. The crimpable stop can be color coded to indicate which orthodontic bracket it is intended to be secured within. The orthodontic appliance may include the orthodontic bracket.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1C illustrate an example indirect bonding trays. FIG. 1A depicts an indirect bonding tray having bilateral handles and which has been labeled and sectioned. FIGS. 1Bi-1Bvii schematically illustrate various configurations of handles to be used with indirect bonding trays. FIGS. 1Bi-1Bvi illustrate examples of handle cross sections and FIG. 1Bvii illustrates a side view of a handle comprising apertures. FIG. 1C depicts an indirect bonding tray section configured to be applied to only a portion of a dental arch.



FIGS. 2A-2B schematically illustrate a system and method for comparing a planned digital model of orthodontic treatment to digital information representing a clinical model after bonding. The model is superimposed with the digital information to allow evaluation of the accuracy of the clinical model relative to the planned treatment. FIG. 2B shows a close-up of the superposition in FIG. 2A.



FIG. 3 illustrates an example of an orthodontic appliance comprising an archwire and a plurality of orthodontic brackets configured for non-sliding mechanics.



FIG. 4 illustrates an example of a superimposed model of a single tooth comprising positions from before and after an orthodontic treatment and demonstrating the actual tooth displacement vector measured by the model.



FIGS. 5A-5B schematically illustrate examples of archwires comprising atraumatic terminal ends. FIG. 5A depicts a distal end of an archwire comprising a terminal loop. FIG. 5B depicts a distal end of an archwire comprising a bulbous cap.



FIGS. 6A-6B schematically illustrate an example of a crimpable stop. FIG. 6A depicts a crimpable stop positioned within an orthodontic bracket. FIG. 6B depicts an example of an archwire comprising a plurality of crimpable stops positioned between interproximal loops.





DETAILED DESCRIPTION

Orthodontic appliances are used to correct malocclusion of the teeth. Orthodontic appliances generally can include brackets bonded to individual teeth and an archwire adjoining the brackets for exerting forces between the teeth to bring them into proper alignment. Non-sliding orthodontic appliances may employ an archwire and brackets that are configured to lock together such that the archwire is unable to slide relative to the brackets. Non-sliding orthodontic appliances can, in some cases, provide better control over the forces applied to correct the positioning of the patient's teeth. Archwires used in non-sliding orthodontic devices can include in some cases male fasteners for locking into brackets in a non-sliding engagement and interproximal structures, e.g., loops positioned between some and/or each and every male fastener for exerting precise corrective forces on adjacent brackets (FIG. 3). Brackets can be applied to a patient's teeth using indirect bonding trays which hold a plurality of brackets in proper alignment relative to the patient's teeth


Disclosed herein are systems, methods, and devices for transferring and applying orthodontic brackets, or other suitable orthodontic appliances, to a patient's teeth using indirect bonding trays. Indirect bonding trays can be custom shaped to fit one or more of an individual patient's teeth. The indirect bonding trays may fit the entire upper or lower dental arch or a portion of the upper or lower dental arch. The indirect bonding tray may be formed from a physical model of the patient's teeth and includes one or more spaces or wells for accommodating the orthodontic brackets to be transferred to the patient's teeth. The physical model may be obtained from a digital representation of the patient's teeth, which can be digitally modified to model the precise placement of the orthodontic brackets on the patient's teeth. The basis of the digital representation can be acquired from a 3D intraoral scan of the patient's teeth, a physical model of the patient's teeth, and/or a negative impression of the patient's teeth. The indirect bonding tray may be formed from polyvinyl siloxane (PVS) or any other suitable elastomeric material, such as those used to form dental impressions. The indirect bonding tray may be entirely or partially molded to a patient's teeth.


The indirect bonding tray may generally comprise a buccal side, a lingual side, and an occlusal side for enclosing the one or more teeth. The indirect bonding tray may have a generally rounded or rectangular outer cross-section. The cross-section of the indirect bonding tray may be uniform along the length of the dental arch or may vary (e.g., change shape or dimensions). In some embodiments, the indirect bonding tray may comprise one or more handles, which can be integrated handles, in some embodiments. FIG. 1A shows an example of an indirect bonding tray 100 comprising two integral handles 102. The handles 102 may be configured to facilitate insertion and/or placement of the indirect bonding tray 100 in a patient's mouth with the use of tool. The handles 102 can allow an orthodontist to insert the indirect bonding tray 100 into the mouth of the patient without use of his or her hands. The one or more handles 102 may extend (e.g., an increased height or other dimension) from the buccal, lingual, and/or occlusal side of the indirect bonding tray 100. The handle 102 may be a flange, bridge forming a tunnel, or other appropriate shape. The handle 102 may extend along a longitudinal axis of the indirect bonding tray 100 defined by the curvature of the dental arch. The handle 102 may extend the entire length of the indirect bonding tray 100 or may extend only along one or more portions of the indirect bonding tray. For example, the handles 102 shown in FIG. 1A extend only along the distal right and left ends of the arch. The one or more handles 102 could be bilateral as shown, or unilateral in other embodiments (e.g., the handle 102 is only disposed on the right or left side of the arch), and render the device symmetric or asymmetric along one, two, or more axes.


The absence of the handle 102 along the anterior portion of the indirect bonding tray 100 may facilitate access to the distal portions of the tray once the tray is inserted into the patient's mouth. A practitioner's hand, fingers, or tools may more readily access the distal portion of the indirect bonding tray 100 and/or the patient's dental arch over the anterior medial portion of the indirect bonding tray 100 when the handle 102 is absent from that portion. The indirect bonding tray 100 may be formed with a variable cross section along the length corresponding to the dental arch. For example, as shown in FIG. 1A, the medial anterior portion of the tray 100 may have a smaller cross-sectional area or general size than the surrounding distal portions. The smaller size of the anterior teeth may allow fabrication of the corresponding section of the indirect bonding tray 100 to be made smaller. The smaller size of the medial anterior portion may, for example, facilitate access to the distal portions of the mouth and tray 100.


The handle 102 may comprise any suitable shape that facilitates grabbing the indirect bonding tray 100 with an instrument. FIGS. 1Bi-1Bvii schematically illustrate various examples of possible configurations of the handle 102. The handles 102 may be attached or integrally joined to the indirect bonding tray 100 along the bottom of the handle 102. FIGS. 1Bi-1Bv schematically illustrate cross-sections of the handles 102 taken along the longitudinal axis aligned with the dental arch. FIG. 1Bvi schematically illustrates a lingual or facial side of a handle 102. In some embodiments, the handle 102 may be a flange. The flange may have a rectangular shape, as shown in FIG. 1A. The flange may have a T-shape (FIG. 1Bi). In some embodiments, the handle 102 may be a flange having an L-shape (FIGS. 1Bii and 1Biii). In some embodiments, the handle 102 may have a U-shape to form a tunnel 103 that the orthodontist can use to grab onto with a tool. The tunnel 103 may be rounded (FIG. 1Biv), squared, rectangular (FIG. 1Bv), triangular (FIG. 1Bvi), etc. In some embodiments, the tunnels 103 may be formed in a substantially lingual-to-facial direction rather than a mesial-to-distal direction. The handle 102 may have one or more apertures 104 disposed through it, extending, for example, from the lingual side to the facial/labial/buccal side of the handle 102, as shown in FIG. 1Bvii. The apertures 104 may allow the insertion of a tool or a portion of a tool, such as tweezers or graspers, through the aperture 104 to grasp the indirect bonding tray 100. The apertures 104 may be round, square, rectangular, oval, oblong, or any other suitable shape. There may be 1, 2, 3, 4, 5, or more than 5 apertures 104 in each handle 102. In some embodiments, the handle 102 may comprise both a tunnel 103 and one or more apertures 104, the one or more apertures extending through the lingual side, the facial side, or both the lingual and facial side of the tunnel 103. The handles 102 may be substantially rigid. The handles 102 may have a degree of flexibility to allow easy bending and manipulation by the insertion tool. In some embodiments, the handle 102 is integrally molded with the indirect bonding tray 100 from the same impression material as the tray 100. In some embodiments, the handle 100 is a solid insert (e.g., plastic or metal) that may be integrated into the tray 100 as it is being molded or inserted into (e.g. pressed into) the tray 100 after the tray has been fabricated. In some embodiments, the handle 102 is attached to the tray 100, such as with a biocompatible adhesive. In some embodiments, the handle 102 is removable from the tray 100, such as with perforations or a frangible portion. In some embodiments, the handle 102 may include a magnet or ferromagnetic material to removably associate with a magnetic or metal portion of a tool.



FIG. 1C, shows an example of an indirect bonding tray section 101 comprising an integral handle 102. The handle 102 of FIG. 1C comprises an aperture 104 forming a bridge along the length of the handle for facilitating grasping by a tool 105. In some embodiments, the indirect bonding tray 100 may be sectioned into one or more pieces or sections 101 (e.g., about or at least about two pieces, three pieces, four pieces, five pieces, etc.) prior to applying the tray 100 to the patient's mouth. In some embodiments, the indirect bonding tray 100 may be fabricated as one or more partial sections 101 corresponding to a patient's dental arch or a portion of a patient's dental arch. Each section 101 may have one or more handles 102, only some of the sections 101 may have one or more handles 102, or none of the sections 101 may have a handle 102. The sections 101 may be inserted into a patient's mouth one after another. The smaller size of the sections 101 may facilitate insertion of the sections 101 into the patient's mouth and/or more accurate seating on the patient's teeth. Anatomical structures may be taken into account in determining where to section an indirect bonding tray 100. For example, one tray could be used to place brackets on the left pre-molar and molar teeth, one on the cuspid and incisor teeth, and one on the right pre-molar and molar teeth. If upper and lower brackets are being applied, the sections 101 for the upper indirect bonding trays may be sectioned the same as or different from the section for the lower indirect bonding trays. FIG. 1A shows an indirect bonding tray which has been sectioned into three pieces.


The partial sections 101 may be configured to extend across distal or posterior teeth, across anterior or medial teeth, across the left teeth, across the right teeth, across the molar teeth, across the biscuspid teeth, across the bicuspid and cuspid teeth, across the incisors, across any adjacent combinations, or across any subset of teeth within those sections. In general, the sections 101 and/or the handles 102 on a tray 100 or section 101 may extend across one tooth, two teeth, three teeth, four teeth, five teeth, six teeth, seven teeth, eight teeth, nine teeth, ten teeth, eleven teeth, twelve teeth, thirteen teeth, fourteen teeth, fifteen teeth, or any portion of the dental arch (16 teeth) or a subset of adjacent teeth. Accordingly, trays 100, corresponding to an entire dental arch or a portion of a dental arch, the third molar, may be sectioned generally between the third molar and the second molar, between the second molar and the first molar, between the first bicuspid and the second bicuspid, between the first bicuspid and the cuspid (canine tooth), between the cuspid and the lateral incisor, between the lateral incisor and the central incisor, or between left and right central incisors.


In some embodiments, pieces of an indirect bonding tray are formed by fabricating a unitary indirect bonding tray and sectioning (e.g., cutting) the unitary tray into several pieces. The unitary indirect bonding tray may be sectioned before or after insertion of the orthodontic brackets into the tray. Some portions of the unitary bonding tray may be sectioned off and discarded where no bracket is to be applied to the corresponding teeth. In some embodiments, portions of the indirect bonding tray corresponding to teeth without any brackets may be retained and used to facilitate seating of the indirect bonding tray in the patient's mouth. In some embodiments, sections of the indirect bonding tray may be fabricated separately rather than sectioned from a unitary tray. In some implementations, separately fabricated sections may be subsequently joined together prior to inserting the indirect bonding tray into the patient's mouth.


Indirect bonding trays may be labeled with one or more indicia or markers. Labeling indirect bonding trays may be especially advantageous for sectioned indirect bonding trays in order to facilitate proper registration between the various pieces of the tray and the teeth for which they are configured. Labeling may prevent confusion as to which piece is to be applied where and promote faster and more efficient transferring of brackets to the teeth. Labeling of the indirect bonding trays may be accomplished by any suitable means. In some embodiments, the tray may be impregnated with a colored dye during its fabrication to create a multi-colored tray. The color may correspond or register to a particular anatomical location per a color-code. This may be especially useful for distinguishing between upper and lower indirect bonding trays. The dye may be used to locally color regions of a single tray. The regions may correspond to pieces which are to be separately sectioned. In some embodiments, identifying information, such as tooth identifiers, may be printed on the surface of the indirect bonding tray. The information may be printed using for example a marker with non-toxic ink, stamped on the tray, or impressed into the tray. FIGS. 1A and 1C demonstrate the use of textual and graphic indicia 106 to visually provide treatment information to the practitioner. The indirect bonding tray 100 shown in FIG. 1A includes identifying information on the surface of the tray, including tooth identifiers on one side, represented by numbers aligned approximately at the corresponding position of the identified tooth within the tray, bracket symbols indicating the medial and occlusal side of each tooth, an indication that the tray is for the lower mandible (“lower”) or the “lower right” portion of the mandible (“LR”), and suggested delineations demarcating where a tray could be sectioned. The delineations may be positioned approximately between teeth so that the tray is not sectioned through a portion corresponding to a tooth. The indirect bonding trays may also be labeled with adhesive labels. The adhesive labels can for example be printed out on a paper that has adhesive on one side. The paper may have a peel-away backing. The labels can be adhered to the surface of the indirect bonding tray. Other information that the trays can be labeled with include details of the orthodontic treatment, such as which teeth are to receive brackets, the total number of brackets, etc. Impressions of the patient's teeth may also facilitate proper registration of the indirect bonding tray. The tray may include impressions for teeth that are not to receive brackets in order to provide increased registration of the tray with the patient's dental arch. In some embodiments, the label could include a barcode, RFID tag, or another identification element.


After bonding one or more brackets or other orthodontic appliances to a patient's teeth, the placement of the brackets can be digitally checked for accuracy. A digital representation of the patient's teeth post-application can be created from a 3D intraoral scan or by other suitable means (e.g., a scan of a model or negative impression). The 3D scan of the patient's teeth can be imported into software that allows digital manipulation and/or analysis of the 3D scan. The digital model of the patient's teeth with applied brackets can be compared to an initial digital plan of the patient's teeth, including proposed placement of the brackets. For example, as illustrated in FIG. 2A, the initial digital plan 200 for applying the brackets 201 (uncolored) and the clinical model 202 after applying (bonding) brackets 203 (shown in dark) can be digitally compared via a model 204, such as by being superimposed, to allow visual evaluation of the discrepancies. FIG. 2B illustrates an image of the superimposed model 204 of FIG. 2A alone. In embodiments, where the comparison comprises a superimposition of the two models 200, 202, the two models may be additively combined to form a single volume having a continuous external surface (model 204). The surface of each constituent model 200, 202 may be visible only where it forms the external surface of the superimposed model 204 (is positioned relatively outside the surface of the other constituent model). The superimposed model 204 or image may be variably colored (or otherwise visually distinguished) across different portions of its external surface according to which constituent model 200, 202 forms the external surface of the respective portion. In some implementations, in which the outer surfaces of the constituent models 202, 204 are negligibly different when superimposed, the color of one of the two constituent models may be selected as a default or a third color may be used.


The software may compare the 3D geometry of the superimposed models 204 and determine areas of discrepancy. In some embodiments, the digital plan 200 and clinical model 202 are superimposed as different colors and the discrepancies are not highlighted, as seen in FIGS. 2A and 2B. The practitioner may evaluate the superimposed model 204, for instance, by visually discerning whether the superimposed brackets 201, 203 are aligned. For example, visual inspection may determine whether the corresponding brackets 201, 203 from the two constituent models 200, 202 substantially overlap forming the volume that would be expected from a single bracket or whether the two constituent brackets 201, 203 are substantially displaced from one another. In some implementations, the software may visually highlight the areas of discrepancy to allow for easy evaluation by the orthodontist. The areas of discrepancy may be marked as the areas on a tooth's surface where the bracket was planned to be bonded but was not actually bonded and/or areas on a tooth's surface where the bracket was actually bonded but not planned to be bonded. These two types of discrepancies may be merged, such as marked by a single color, or distinguished (such as being marked by different colors). The software may highlight only the surface areas of the teeth or may highlight the 3D space where brackets were planned to occupy and/or were not planned to occupy. The software may compare the spaces occupied by the teeth and the brackets. The digital accuracy information, or any portion of the accuracy information, may be visually displayed on the superimposed model 204 or on either of the individual images (the digital plan 200 or the clinical model 202). The orthodontist may use the accuracy information to evaluate the application of the orthodontic brackets and determine whether any corrections need to be made or whether any discrepancies or inaccuracies fall within a suitable range of error and/or are negligible. In some embodiments, the software may highlight areas of overlap rather than discrepancy. In some embodiments, the areas of overlap and discrepancy may be highlighted different colors. In some embodiments, the discrepancies are depicted on either the constituent planned model or the constituent clinical model. The discrepancies may be digitally limited to those in the bracket positions. The anatomical features may be assumed to be identical. Bracket positioning can be determined relative to anatomical landmarks.


The software may generate useful information regarding the accuracy of bracket placement. For example, in some implementations, the software may be programmed to perform an automated evaluation. The automated evaluation may report which brackets (i.e. teeth) were or were not accurately positioned. The software may use thresholds in displacement distances (e.g., distances between centers of brackets or maximum distances between corresponding points on edges of brackets from the two constituent models 200, 202), volumes (e.g., additive volume of brackets 201, 203), or surface areas (e.g., surface area of tooth covered by bracket on the superimposed model 204) to qualify the bracket placements. The software may indicate (e.g. via a color or a box) on one or more of the models which brackets were within a level of tolerance and/or which brackets were outside the level of tolerance. The practitioner may be able to manually set the levels of tolerance and/or they may be set by the software. Statistics regarding the placement of the brackets may be accumulated for one or more patients. Statistical data reflecting the accuracy of bracket placement may be collected based on specific practitioners, teeth, types of brackets, bonding procedure, etc.



FIG. 3 illustrates an example of an orthodontic appliance 301 which uses non-sliding mechanics. The archwire 303 may comprise male loops or male fasteners 304 configured to be inserted into orthodontic brackets 300 in a configuration which prevents sliding of the archwire 303 relative to the orthodontic brackets 300. The archwire 303 may comprise interproximal loops 302, which may be positioned between one or more pairs of adjacent brackets 300. The interproximal loops 302 may be configured to exert forces on the adjacent teeth to which the brackets 300 are bonded. The interproximal loops 302 may be configured to exert precision and/or customized forces on specific teeth. The forces from opposing sides of an orthodontic bracket 300 may be accounted for in providing a net force on each individual tooth.


Disclosed herein are systems and methods for calculating appropriate force application vectors configured to correct malocclusion of the patient's teeth. The system may include software for modeling the force vectors. The vectors may be determined by comparing a digital model of the pre-treatment geometry of the patient's teeth comprising initial tooth positions to a digitally corrected model of the patient's teeth comprising ideal tooth positions. A vector in three-dimensional (3D) space can be calculated for each individual tooth between its initial position (xi) and its final position (xf). Using the travel distance (length of the vector) along with information about the resistance of the teeth (e.g., the resistive force of tissue and the friction of tooth surface rubbing against one another), the tissue (e.g., the health of the gums), the jaw anatomy, and/or other patient factors (e.g., age, sex, etc.) a force vector can be determined for relocating the tooth from its initial position to its final position. The amount of force to be applied may be proportional to the resistance. The resistance of each tooth may be a scalar or may be a vector. The force may be calculated to achieve displacing the tooth across the travel distance over a predetermined treatment time (after which the archwire may be removed or replaced). Alternatively, using this information, the expected treatment time, or time it will take to relocate the tooth from its initial position to its final position, may also be estimated for a given applied force. In some embodiments, the determined treatment plan may comprise a single application of a relatively constant force. In some embodiments, the determined treatment plan may comprise sequential applications of various force vectors to appropriately reposition the tooth. The calculated force vector may be applied to the tooth using an archwire. The software may be able to determine the optimal number of treatments (e.g., archwire replacements). The software may account for the different force/treatment time ratios of teeth within the dental arch in determining appropriate forces to apply to each treated tooth such that the teeth are all moved into expected positions at the end of a definite treatment time. In some implementations, the applied force may not exceed a maximum level of force to ensure patient comfort and/or safety.


As shown in FIG. 3, referenced elsewhere herein, the archwire can be bent between brackets to form interproximal loops 302, which can be biased to expand outward or contract inward applying force against the brackets 300 on adjacent teeth. The interproximal loops 302 may be configured to rotate one or more teeth. The archwire 303 can be twisted around its axis to provide a torsional force on the adjacent bracket or brackets 300. Brackets 300 that employ non-sliding mechanics, wherein the archwire 303 is fixedly secured to each bracket 300 and does not slide relative to the bracket 300, may be ideal for using an archwire 303 to provide custom individualized forces to each tooth. The archwire 303 can comprise a shape memory alloy (e.g., nitinol). The shape-memory archwire 303 may be programmed with a pre-deformed shape that when applied to the ideal tooth positions does not cause the teeth to move. The shape memory archwire 303 may be deformed with interproximal loops 302, each configured such that the transition from the deformed geometry when applied to the initial positioning of teeth to the pre-deformed geometry when applied to the final positioning of teeth supplies the appropriate pre-determined force vector to the adjacent teeth to move the teeth toward their planned final positions. The interproximal loops 302 and/or twisting of the archwire 303 may be configured to be in an unbiased configuration (e.g., a preprogrammed shape memory configuration) in the final position of the teeth and the initial archwire configuration may be configured to exert the calculated force. The precise shape or configuration of the archwire in the initial configuration may control the force vector asserted on the adjacent teeth. More complex treatment plans may be accomplished by changing archwires at different points throughout the treatment process to adjust the force vectors applied on one or more of the patient's teeth.


In some implementations, the actual displacement observed or measured after the application of orthodontic treatment, such as with an archwire comprising interproximal loops 302, may be used to generate feedback, which may improve the modeling of a subsequent archwire and one or more force vectors. Tooth positioning may be obtained by 3D intraoral scans, impressions, or any other suitable method, including those discussed elsewhere herein. FIG. 4 schematically illustrates a 3D model showing the superimposed position of a single tooth before and after orthodontic treatment (i.e. tooth movement). The original position of the tooth is indicated in a 3D coordinate space (an XYZ coordinate grid) as X, Y, and Z (Ψ, θ, Φ). The position of the same tooth after treatment/movement is indicated by X′, Y′, and Z′. The displacement vector between the initial and final positions is indicated by ΔX, ΔY, and ΔZ. The actual displacement vector may be compared to the anticipated or planned displacement vector from which the force vector for the original treatment was calculated. Using this feedback, the algorithm for calculating force vectors configured to displace teeth may be updated to more accurately move the tooth or teeth in the next round of treatment. The difference between the planned displacement and the actual displacement may reflect patient-specific factors that affect how the tooth responds to force. These factors (age, sex, gum health, etc.) may be accounted for in variables such as the tooth resistance, for instance. For example, in a non-limiting embodiment, the resistance variable may be adjusted such that the planned model of the prior treatment more accurately approximates the actual movement observed. The interproximal loops 302 in successive archwires can be continually improved to optimize force delivery via the feedback loop. In some implementations, the system may become progressively smarter (more accurate) as more data is input for a specific patient. Increasing the number of archwire replacements may increase the accuracy of treatment. For instance, the archwire may be replaced 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 28, 29, 30, or more than 30 times during the orthodontic treatment. In some embodiments, the archwire may be replaced approximately once every month, 2 months, 3 months, 4 months, 5 months, 6 months, more than once a month, or less than every 6 months. In some embodiments, the archwire may be replaced more frequently during the initial period of orthodontic treatment so the model learns more effectively early on. In some embodiments, the archwire may be replaced at relatively frequent intervals throughout the entire orthodontic treatment. In some embodiments, the archwire may be replaced more frequently near the end of the orthodontic treatment to closely fine-tune the final positioning. The improved accuracy of treatment from the feedback model may ultimately decrease the time it takes to complete the entire orthodontic treatment, as the archwires will be less likely to overcorrect or under-correct teeth positions and additional corrections will be less needed.


Disclosed herein is an archwire for applying corrective force on a patient's teeth. The archwire may apply force through brackets bonded to the patient's teeth. The archwire may be coupled to each bracket through non-sliding mechanics such that the archwire is fixed relative to each bracket, such as archwire 303. Force may be applied to move the teeth via interproximal loops 302 formed in the archwire adjacent to the brackets, as referenced elsewhere herein. The archwire may be generally curved to match the curvature of the patient's upper or lower dental arch. The archwire generally extends from a right end to a left end of the mouth. The left end of the archwire terminates either within or distal to the distal-most bracket positioned on the left side of the patient's mouth. The right end of the archwire terminates either within or distal to the distal-most bracket positioned on the right side of the patient's mouth. Often, the distal-most brackets will be positioned on a patient's molar teeth. A non-sliding orthodontic appliance is advantageous in that the archwire will not slide relative to the brackets, including the most distal brackets, and therefore will not slide distally relative to the distal-most brackets. In orthodontic appliances that employ sliding-mechanics, the archwire usually slides continually in a distal direction as the treatment progresses. Because the archwire of a non-sliding orthodontic appliance cannot slide distally relative to the distal-most brackets, the right and left ends will not inadvertently slide into and jab the patient's oral tissue causing discomfort or pain, even as treatment progresses.



FIGS. 5A-5B schematically illustrate examples of archwires 500 with modified distal ends. The right and left ends of the archwire may further be configured to form atraumatic terminal ends 502 so as to avoid causing pain or discomfort to the patient during any transient contact with oral tissue of the patient's mouth. Doing so may increase patient tolerance of the orthodontic appliance. In some embodiments, the right and left ends of the archwire 500 may be bent into terminal loops 504 to form atraumatic terminal ends 502. FIG. 5A schematically illustrates a distal end of the archwire 500 comprising a terminal loop 504. The terminal loops 504 may be configured so that the ends of the archwire are bent back on themselves and point toward the most distal brackets, in an occlusal direction away from the patient's oral tissue, in a direction toward the tooth, or in some combination thereof. The terminal loop 504 may be configured to direct the right and left ends of the archwire 500 away from the adjacent lingual or buccal/labial tissue. Any direction which positions the end of the wire 500 away from oral tissue may be employed. The terminal ends of the archwire 500 may be formed by rounded bends in the distal terminal loops which are atraumatic.


In some embodiments, the terminal ends of the archwire 500 are capped with bulbs/bulbous ends 506, enclosing any sharp edges of the archwire 500. The bulbs 506 may be formed of a biocompatible material (e.g., non-toxic). The bulbs 506 may be stable so that they do not degrade over the course of the orthodontic treatment. The bulbs 506 may be formed of a polymeric material. The bulbs 506 may be formed of an adhesive, such as those used to bond brackets to teeth, which may be applied to the right and/or left ends of the archwire. In some embodiments, the bulbs 506 may be formed of a soft elastomeric material (e.g., PVS). The ends of the archwire 500 may be dip-coated with the biocompatible material. The biocompatible material may be injected or painted onto the left and right ends of the archwire 500. In some embodiments, the biocompatible material may be hardened on the ends of the archwire 500 by curing (e.g., heat cured or light cured). Curing may be accomplished through standard dental instruments, such as dental curing lights. In some embodiments, the biocompatible material may hardened by air-drying. The hardened bulb 506 may be shaped during and/or after hardening to form a generally rounded, atraumatic terminal end. For instance, the bulb 506 may be shaped by standard dental tools (e.g., drills, graspers, polishers, etc.) after it has hardened to alter the shape and/or surface of the bulb 506. In some embodiments, the bulb 506 may be prefabricated, for instance from a rubber silicone, and contain a channel for receiving an end of the archwire 500. The right and left ends of the archwire 500 can be inserted into the channel and secured therein. The archwire 500 may be secured by a friction fit and may be removable from the bulb 506 through application of sufficient force. In some embodiments, the end of the archwire 500 may be secured within the channel via a biocompatible adhesive. The bulbous cap 506 may be heated after attaching to the distal end of the archwire 500. Heating may shrink and/or bond the bulbous cap 506 to the archwire 500. The right and/or left ends may be bent to form atraumatic terminal ends 502 in addition to capping the wire end with bulbs 506.


In some embodiments, the right and left ends of the archwire 500 may be secured within the distal-most right and left brackets such that they do not protrude from the brackets. For example, the archwire 500 may contain a plurality of male fasteners where each male fastener secures the archwire to a bracket such that the archwire cannot slide laterally (in a mesial-distal direction) with respect to the bracket. The right and left terminal ends of the archwire 500 may be formed distally to the right and left most distal male fasteners within sufficient proximity to the male fasteners such that they do not extend out of bracket slots configured to receive the archwire. For instance, the archwire may terminate at one its distal ends at or near the point 508 indicated in FIG. 3, with respect to a distal bracket. The interaction of the male fasteners with the brackets prevents the archwire from sliding medially with respect to the brackets such that the archwire 500 remains securely engaged with the brackets. In some implementations, an orthodontic appliance may be configured with brackets specially configured as the distal-most brackets. The distal-most brackets may be configured with archwire slots that are configured to redirect and/or retain the terminal ends of the archwire. The distal-most brackets may have archwire slots that only open to the medial side of the bracket. The archwire slot may form a closed channel which prevents the distal end of the archwire from protruding from the bracket. For instance, the bracket 300 depicted in FIG. 3 may have a distal sidewall 510 which extends (not shown) to occupy the space within the distal archwire slot of the bracket such that the archwire slot does not extend through to the distal side of the bracket. In some embodiments the distal-most brackets may comprise an archwire slot having a medial opening and an opening directed in another direction (e.g., in an occlusal direction) to direct the terminal end of the archwire away from distally positioned oral tissue. The archwire 500 may be bent during fabrication or during introduction into the patient's mouth in order to conform to the modified slot of the distal-most brackets. The embodiments disclosed herein may be combined, such that the right end and left end of an archwire may be made atraumatic through the same or different means.


Disclosed herein are systems, devices, and methods for registering non-sliding archwires with orthodontic brackets. Orthodontic appliances that employ non-sliding mechanics may include an archwire with interproximal loops and/or male fasteners, as referenced elsewhere herein. Each interproximal loop may be positioned between two male fasteners. The interproximal loop may be configured to exert precise forces on two adjacent brackets to correct the positioning of the teeth to which the brackets are bonded. The surrounding male fasteners may be used to secure the archwire to those adjacent brackets in a non-sliding manner. Because the archwire may comprise a plurality of interproximal loops that are specifically configured with correction forces for different sets of teeth and because the archwire locks into a plurality of brackets in a non-sliding manner, the registration of the archwire with the brackets bonded to specific teeth is not trivial, especially compared to orthodontic appliances that rely on sliding mechanics. If the archwire is not properly registered to the respective orthodontic brackets (is misregistered), the proper orthodontic treatment may not be delivered. A system that allows quick and efficient registration may also save time and effort relative to correcting a misregistered orthodontic appliance during delivery to the patient.


In some embodiments, the archwire is registered to the brackets using a color registration system. The color registration system may include placing distinct color markings on the archwire and brackets to which the archwire is to be locked into. The archwire may be marked at or near a male fastener element or other locking element that corresponds to a given bracket. The color may match that of a marking on the corresponding bracket. In some embodiments, each fastener/bracket combination is assigned a distinct color (e.g., red, blue, green, yellow, orange, black, etc.). In some embodiments, the same color may be reused. For instance, adjacent brackets/fasteners may be marked with alternating colors or left and right sides of the mouth may use the same colors for corresponding left and right teeth. In some implementations, an orthodontic appliance is applied to the upper mandible and to the lower mandible. The upper and lower appliances may use distinct colors from each other or the same registration patterns. In some embodiments, color markings may be used not to register the archwire with particular brackets in an orthodontic appliance but to distinguish the upper and lower orthodontic appliances from each other or a color system may be used which performs both.


The color markings may be applied to the archwire and brackets according to any suitable method. The archwire and brackets may be painted with non-toxic dyes that are suitable for coloring metal materials. The archwire and brackets may be subject to chemical reactions, heating, anodization, or other physical reactions that can change the color of the metal without significantly altering the material properties of the archwire or bracket. The coloring of the orthodontic appliances may be relatively permanent or temporary. For instance, the coloring may wash away over time, especially under the presence of water (e.g., saliva). The archwire and brackets may be colored by attaching a colored marking element to the devices. For instance, a colored plastic tube may be configured to attach to the archwire. The tube may have a diameter substantially the same as that of the archwire. The tube may comprise a slit along its circumference that allows the tube to be slipped over the archwire and frictionally retained thereon. The tube may be easily removable from the archwire and can be removed after the orthodontic appliance has been properly registered. Other suitable configurations of color marking elements may be attached as well. Colored ribbons, strings, films, elastic bands, beads, etc. may be attached to the archwire and/or brackets. The color marking elements may be removed upon registration or may be left in place. The brackets may be marked with colored inserts that are configured to be received within (e.g., snap into) a portion of the geometry of the bracket. The inserts may insert into a portion of the bracket's archwire slot or a channel for receiving the male fastener/locking member and be removed just prior to the insertion of the archwire into each bracket. In some embodiments, the insert may be inserted into a residual or non-functional space within the bracket that is visible to the orthodontist and may need not be removed prior to insertion of the archwire. The insert or other color indicator on the bracket may be positioned such that is visible to the practitioner when working in the patient's mouth but not be readily visible to others in daily life. For instance, the color indicator may be relatively small, occluded by the patient's gums, positioned on a distal/mesial side of the bracket, and/or the brackets may be applied to lingual surfaces of the teeth. In such scenarios, it may be more amenable to leave the color indicator in place. The brackets may be designed with custom voids or spaces for receiving a colored insert. For example, the brackets may be fabricated with a bore configured to receive a custom colored peg. The peg may be configured to be inserted into the bore such that it forms a relatively smooth surface with the bracket when fully inserted. The inserts may be permanent or removable. In some embodiments, the inserts are inserted into the bracket after each bracket has been designated to a particular tooth. The inserts or other color indicator may, for example, be inserted after the brackets have been placed in an indirect bonding tray. In some implementations, the insert or other color indicator may be coupled to the brackets after the brackets are bonded to the teeth.


In some embodiments, a colored string, ribbon, or elastic band may be placed around the bracket or a portion of the bracket. The string, ribbon, or elastic band may be removed just prior to registering the archwire in each bracket. The string, ribbon, or elastic band may be cut after registering the archwire with the bracket. In some implementations, the string, ribbon, or elastic band may occupy the space of a tie configured to facilitate securing the archwire to the bracket and may be removed prior to placing the tie. The present disclosure encompasses combinations of the colored marking systems disclosed herein. In some embodiments, each bracket and corresponding fastener (or identifying portion of the archwire) will be color-coded. In some embodiments, only select brackets and corresponding fasteners will be color-coded. Registration of only a portion of the brackets with the archwire may be sufficient to improve the efficiency of registering the archwire with the brackets.


Disclosed herein are system, methods, and devices for fixing an archwire to a plurality of orthodontic brackets to form an orthodontic appliance that employs non-sliding mechanics between the archwire and the brackets. In some embodiments, the bracket and the archwire may be configured to be locked together using a crimpable stop. The archwire may comprise a stop member for engaging with a channel or slot of the bracket. The stop member may be a projection extending laterally from the archwire. The stop may be formed from one or more bends in the archwire to form a male fastener with a loop, such as a U-shaped loop, V-shaped loop, teardrop-shaped loop, etc., or may be formed as an integrated piece of material extending from the archwire. For example, the stop may be a post extending away from the archwire, a thin sheet extending from the archwire, a tube around the axis of the archwire, or a deformable portion of the archwire. The orthodontic bracket may comprise structures configured to engage the stop and fix it in place relative to the bracket, such that it cannot slide. For example, the orthodontic bracket may include a flange, one or more projections, a tube or partial tube, or other locking element which can physically engage the stop. The stop, locking element, or both may be plastically deformable such that the stop and locking element may be crimped together to secure the archwire to the bracket. The plastically deformable portions of the stop and/or locking element may comprise metal that is softer and more malleable than the remainder of the archwire/bracket and/or may be fabricated in sufficiently small dimensions (e.g., thin cross-sections) such that they are readily plastically deformable under the application of sufficient force. The archwire and bracket may be locked together in a non-sliding configuration by inserting the archwire into the slot such that the stop engages the locking member and by applying a physical force to crimp the stop to the locking member. The physical force may be applied via a standard orthodontic tool, such as orthodontic pliers. In some embodiments, more than one crimpable stop may be used to lock the archwire in place with a single bracket. In some embodiments, the stops can be used or modified for use with lower anterior brackets, such as those disclosed in U.S. patent application Ser. No. 15/490,278 to Tong et al., which is hereby incorporated by reference in its entirety.


For example, the crimpable stop may be a male fastener wherein the loop is crimped around a projection of the bracket, such as central projection 306 in FIG. 3. In another example, the archwire is inserted into a partial tube which is then crimped around the archwire or a flange from the bracket is bent around the archwire and crimped to secure the archwire in place. In another example, a post extending from the archwire may be inserted into a tube or partial tube which may be crimped around the post. In yet another example, the archwire comprises a thin flat sheet which may be deformed around a projection extending from the bracket. In some embodiments, the cross-section of the archwire may be plastically deformed where it is locked into place by the bracket, which may prevent the archwire from sliding relative to the bracket and/or from being readily removed from the bracket. In some embodiments, the crimping of the archwire to the bracket may form an orthodontic appliance which lacks some or all torque control around the axis of the archwire.


In some embodiments, the crimpable stop is a tube that is placed around the archwire. The tube may be slid over a distal end of the archwire. In some embodiments, the tube may have a slit along the length of the tube or the tube may only comprise a partial circumference, which may allow the tube to be placed around the archwire without sliding it on from the distal end. Unlike conventional orthodontic stops, the tube may be adapted to the non-sliding archwire and/or may be configured to lock into the bracket configured to receive the non-sliding archwire. For instance, the tube may be non-linear. The tube may be configured along its length or along portions of its length to resemble the shape of the interproximal loop, the male fastener, and/or the archwire slot. The tube may be configured to be received or partially received in the archwire slot. The tube may be crimped before or after the archwire is placed and/or locked into the orthodontic bracket.



FIG. 6A illustrates an example of a crimpable stop 600. The crimpable stop 600 may be a cylindrical tube as described elsewhere herein. In some embodiments, the crimpable stop 600 may comprise a closed circumference and may be advanced over a distal end of an archwire 602. In some embodiments, the crimpable stop 600 may be partially closed (e.g., may comprise a slit along the length of the stop) and may be advanced (e.g., slid) over a distal end or placed directly on the archwire 602 (i.e. the archwire 602 may be inserted into the crimpable stop 600 through the slit). In some embodiments, the crimpable stop may be tubular but may comprise a non-cylindrical shape. For instance, the crimpable stop 600 may have a square, rectangular, triangular, or other polygonal shape, or the crimpable stop may have an oblong cross-section. The crimpable stop 600 may serve as or replace a male fastener element described elsewhere herein for fixing the archwire 602 to an orthodontic bracket 604 in a non-sliding manner. The archwire 602 may be substantially straight or linear along the portion configured to mate with the orthodontic bracket (e.g., between interproximal loops). The archwire slot of the bracket 604 may be substantially linear, extending in a mesial-distal direction. The bracket 604 may comprise a recess 606 configured to at least partially receive the crimpable stop 600 and to prevent or at least partially inhibit the crimpable stop 600 from sliding in a mesial-distal when received in the recess 606. The recess 606 may have a length configured to match or to be slightly larger than the length of the crimpable stop 600 as shown in FIG. 6. The recess 606 may be formed by sidewalls of the bracket 604. The recess 606 may be formed as part of the archwire slot. The recess 606 may have a depth extended beyond that of the archwire slot configured to at least partially receive the crimpable stop 606.


In some embodiments, the crimpable stop 600 may be applied to the archwire 602 prior to insertion of the archwire 602 into the orthodontic bracket 604. The crimpable stop may be crimped, as described elsewhere herein, after it is received within the recess 606. The recess 606 may be sized or otherwise configured to allow at least partial insertion of a crimping tool (e.g., pliers, crimpers, graspers, etc.). Crimping the crimpable stop 600 to the archwire 602 may fixedly secure the stop 600 and archwire 602 together such that the archwire cannot be axially advanced (e.g., slid) through the crimpable stop 600, even under force from interproximal loops. In some embodiments, the crimpable stop 600 may be applied to the archwire 602 after the archwire 602 is inserted into the orthodontic bracket 604. In some embodiments, the crimpable stop 600 may be applied and crimped before the archwire 602 is inserted into the orthodontic bracket 604. If multiple crimpable stops 600 are used, the application and crimping sequence may be the same or different for each stop 600. The crimpable nature of the stop 600 may allow last minute fine-tuning of the fixed position of the archwire within the bracket 604. This embodiment of crimpable stop may be particularly suitable for archwires in which torqueing forces are not needed or not desired to be exerted onto the teeth. In some embodiments, the crimpable stops may be colored. The crimpable stops may serve as the color-coded registration indicators described elsewhere herein for registering the archwire 602 (e.g., adjacent interproximal loops) with the proper orthodontic bracket 605. In some embodiments, the stop may not be crimpable but may be fixed to the archwire 602 in another way, such as molding, such that the stop appears similar to wire insulation.



FIG. 6B illustrates an embodiment of an archwire 602 comprising interproximal loops 603 and several tubular crimpable stops 600 (indicated by enclosing circles) positioned between some of the interproximal loops to fixedly secure the archwire 602 to brackets on the lower anterior teeth.


Various other modifications, adaptations, and alternative designs are of course possible in light of the above teachings. For example, features disclosed in U.S. Pub. No. 2014/0120491 A1 to Khoshnevis et al. can be utilized or modified or use with embodiments as disclosed herein. Therefore, it should be understood at this time that within the scope of the appended claims the invention may be practiced otherwise than as specifically described herein. It is contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments disclosed above may be made and still fall within one or more of the inventions. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with an embodiment can be used in all other embodiments set forth herein. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above. Moreover, while the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “tying a tie onto an orthodontic bracket” includes “instructing the tying of a tie onto an orthodontic bracket.” The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “approximately”, “about”, and “substantially” as used herein include the recited numbers (e.g., about 10%=10%), and also represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.

Claims
  • 1. An indirect bonding tray for transferring orthodontic brackets to a patient's teeth, the indirect bonding tray comprising: a tray having a lingual side, an occlusal side, and a buccal side configured to be seated on at least a portion of the patient's dental arch, wherein the tray comprises at least two impressions of at least two of the patient's teeth and at least one placeholder slot, the at least one placeholder slot aligned with one of the at least two impressions and configured to hold an orthodontic bracket; anda handle extending from the occlusal side and a lateral end of the tray, the handle having a length in a mesial-distal direction that spans the at least two impressions and being configured to be grasped by a tool for insertion into the patient's mouth.
  • 2. The indirect bonding tray of claim 1, wherein the length of the handle extends along only a portion of a length of the tray extending along the at least portion of the patient's dental arch.
  • 3. The indirect bonding tray of claim 2, further comprising a plurality of handles.
  • 4. The indirect bonding tray of claim 3, wherein a first handle of the plurality of handles is positioned on a left distal side of the tray and a second handle of the plurality of handles is positioned on a right distal side of the tray, and wherein a medial anterior portion of the tray is free of handles.
  • 5. The indirect bonding tray of claim 1, wherein the handle comprises an aperture extending through the handle from the lingual side to the buccal side of the tray, the aperture being configured to receive a dental tool for grasping the tray.
  • 6. The indirect bonding tray of claim 1, wherein the handle forms a tunnel extending along the length of the handle.
  • 7. The indirect bonding tray of claim 1, wherein the tray is marked with information demarcating a suggested position for sectioning the tray into separate pieces.
  • 8. The indirect bonding tray of claim 1, wherein the tray is marked with indicia prescribing treatment information.
  • 9. The indirect bonding tray of claim 8, wherein the indicia prescribing treatment information comprises information registering portions of the tray to anatomical locations of the patient's teeth.
  • 10. The indirect bonding tray of claim 9, wherein the indicia comprises a color.
  • 11. The indirect bonding tray of claim 10, wherein the color is impregnated into the tray.
  • 12. The indirect bonding tray of claim 9, wherein the information registers the tray to the upper or lower mandible.
  • 13. The indirect bonding tray of claim 9, wherein the information registers a portion of the tray to a right or a left side of the patient's mouth.
  • 14. The indirect bonding tray of any one of claim 9, wherein the information registers a portion of the tray to a specific tooth.
  • 15. The indirect bonding tray of claim 8, wherein the indicia prescribing treatment information comprises an ink, an impression, a relief, an adhesive label, and/or an embedded tag.
  • 16. The indirect bonding tray of claim 8, wherein the indicia prescribing treatment information indicates locations of the at least two impressions.
  • 17. The indirect bonding tray of claim 1, wherein the tray is configured to be seated on only a partial portion of the patient's dental arch.
  • 18. The indirect bonding tray of claim 1, wherein the handle is offset from at least one of the lingual side or buccal side of the tray.
  • 19. The indirect bonding tray of claim 1, wherein the handle has a thickness in the lingual-buccal direction that is smaller than a thickness of the tray in the lingual-buccal direction.
  • 20. An indirect bonding tray for transferring orthodontic brackets to a patient's teeth, the indirect bonding tray comprising: a tray having a lingual side, an occlusal side, and a buccal side configured to be seated on at least a portion of the patient's dental arch, wherein the tray comprises at least four cavities corresponding to at least four of the patient's teeth and at least one placeholder slot, the at least one placeholder slot aligned with one of the at least four cavities and configured to hold an orthodontic bracket; anda plurality of handles extending from the occlusal side, each of the plurality of handles having a length in a mesial-distal direction that spans at least two cavities of the at least four cavities and each being configured to be grasped by a tool for insertion into the patient's mouth.
REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. § 119(e) as a non-provisional application of U.S. Prov. App. No. 62/488,656 filed on Apr. 21, 2017, which is hereby incorporated by reference in its entirety. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57

US Referenced Citations (474)
Number Name Date Kind
1005131 Angle et al. Oct 1911 A
1307382 Stanton Jun 1919 A
1429749 Maeulen et al. Sep 1922 A
2257069 Peak Sep 1941 A
2495692 Brusse Jan 1950 A
2524763 Brusse Oct 1950 A
2582230 Brusse Jan 1952 A
3256602 Broussard Jun 1966 A
3262207 Kesling Jul 1966 A
3374542 Moylan, Jr. Mar 1968 A
3593421 Brader Jul 1971 A
3600808 Reeve Aug 1971 A
3683502 Wallshein Aug 1972 A
3691635 Wallshein Sep 1972 A
3762050 Dal Pont Oct 1973 A
3765091 Northcutt Oct 1973 A
3878610 Coscina Apr 1975 A
3936938 Northcutt Feb 1976 A
3949477 Cohen et al. Apr 1976 A
3975823 Sosnay Aug 1976 A
4103423 Kessel Aug 1978 A
4192070 Lemchen et al. Mar 1980 A
4193195 Merkel et al. Mar 1980 A
4197643 Burstone et al. Apr 1980 A
4268250 Reeve May 1981 A
4330273 Kesling May 1982 A
4354833 Fujita Oct 1982 A
4354834 Wilson Oct 1982 A
4382781 Grossman May 1983 A
4385890 Klein May 1983 A
4412819 Cannon Nov 1983 A
4424033 Wool Jan 1984 A
4436510 Klein Mar 1984 A
4479779 Wool Oct 1984 A
4483674 Schütz Nov 1984 A
4490112 Tanaka et al. Dec 1984 A
4501554 Hickham Feb 1985 A
4561844 Bates Dec 1985 A
4582487 Creekmore Apr 1986 A
4585414 Kottermann Apr 1986 A
4592725 Goshgarian Jun 1986 A
4634662 Rosenberg Jan 1987 A
4659310 Kottermann Apr 1987 A
4664626 Kesling May 1987 A
4674978 Acevedo Jun 1987 A
4676747 Kesling Jun 1987 A
4725229 Miller Feb 1988 A
4797093 Bergersen Jan 1989 A
4797095 Armstrong et al. Jan 1989 A
4842514 Kesling Jun 1989 A
4872449 Beeuwkes Oct 1989 A
4881896 Bergersen Nov 1989 A
4892479 McKenna Jan 1990 A
4897035 Green Jan 1990 A
4900251 Andreasen Feb 1990 A
4978323 Freedman Dec 1990 A
5011405 Lemchen Apr 1991 A
5044947 Sachdeva et al. Sep 1991 A
5055039 Abbatte et al. Oct 1991 A
5092768 Korn Mar 1992 A
5114339 Guis May 1992 A
5123838 Cannon Jun 1992 A
5127828 Suyama Jul 1992 A
5131843 Hilgers et al. Jul 1992 A
5154606 Wildman Oct 1992 A
5174754 Meritt Dec 1992 A
5176514 Viazis Jan 1993 A
5176618 Freedman Jan 1993 A
5238404 Andreiko Aug 1993 A
5242304 Truax et al. Sep 1993 A
5248257 Cannon Sep 1993 A
5259760 Orikasa Nov 1993 A
5344315 Hanson Sep 1994 A
5368478 Andreiko Nov 1994 A
5380197 Hanson Jan 1995 A
5399087 Arndt Mar 1995 A
5431562 Andreiko Jul 1995 A
5447432 Andreiko Sep 1995 A
5454717 Andreiko Oct 1995 A
RE35169 Lemchen et al. Mar 1996 E
5516284 Wildman May 1996 A
5624258 Wool Apr 1997 A
5630715 Voudouris May 1997 A
5683243 Andreiko Nov 1997 A
5683245 Sachdeva et al. Nov 1997 A
5722827 Allesee Mar 1998 A
5816800 Brehm Oct 1998 A
5820370 Brosius Oct 1998 A
5863198 Doyle Jan 1999 A
5890893 Heiser Apr 1999 A
5975893 Chishti et al. Nov 1999 A
5993208 Jonjic Nov 1999 A
6015289 Andreiko Jan 2000 A
6036489 Brosius Mar 2000 A
6042374 Farzin-Nia et al. Mar 2000 A
6086364 Brunson Jul 2000 A
6089861 Kelly Jul 2000 A
6095809 Kelly et al. Aug 2000 A
6099304 Carter Aug 2000 A
6123544 Cleary Sep 2000 A
6183250 Kanno et al. Feb 2001 B1
6190166 Sasakura Feb 2001 B1
6196839 Ross Mar 2001 B1
6217325 Chishti et al. Apr 2001 B1
6227850 Chishti et al. May 2001 B1
6244861 Andreiko Jun 2001 B1
6250918 Sachdeva et al. Jun 2001 B1
6315553 Sachdeva et al. Nov 2001 B1
6318994 Chishti et al. Nov 2001 B1
6318995 Sachdeva et al. Nov 2001 B1
6334853 Kopelman et al. Jan 2002 B1
6350120 Sachdeva et al. Feb 2002 B1
6358045 Farzin-Nia et al. Mar 2002 B1
6371761 Cheang et al. Apr 2002 B1
6394801 Chishti et al. May 2002 B2
6398548 Muhammad et al. Jun 2002 B1
6413084 Rubbert et al. Jun 2002 B1
6431870 Sachdeva Aug 2002 B1
6450807 Chishti et al. Sep 2002 B1
6464496 Sachdeva et al. Oct 2002 B1
6471511 Chishti et al. Oct 2002 B1
6471512 Sachdeva et al. Oct 2002 B1
6512994 Sachdeva Jan 2003 B1
6514074 Chishti et al. Feb 2003 B1
6532299 Sachdeva et al. Mar 2003 B1
6540512 Sachdeva et al. Apr 2003 B1
6554613 Sachdeva et al. Apr 2003 B1
6572693 Wu et al. Jun 2003 B1
6582226 Jordan et al. Jun 2003 B2
6587828 Sachdeva Jul 2003 B1
6595774 Risse Jul 2003 B1
6554611 Chishti et al. Aug 2003 B2
6602070 Miller et al. Aug 2003 B2
6612143 Butscher et al. Sep 2003 B1
6616444 Andreiko Sep 2003 B2
6626666 Chishti et al. Sep 2003 B2
6629840 Chishti et al. Oct 2003 B2
6632089 Rubbert Oct 2003 B2
6648640 Rubbert Nov 2003 B2
6663385 Tepper Dec 2003 B2
6679700 McGann Jan 2004 B2
6682344 Stockstill Jan 2004 B1
6685469 Chishti et al. Feb 2004 B2
6685470 Chishti et al. Feb 2004 B2
6688885 Sachdeva et al. Feb 2004 B1
6699037 Chishti et al. Mar 2004 B2
6702575 Hilliard Mar 2004 B2
6705863 Phan et al. Mar 2004 B2
6722880 Chishti et al. Apr 2004 B2
6728423 Rubbert et al. Apr 2004 B1
6729876 Chishti et al. May 2004 B2
6732558 Butscher et al. May 2004 B2
6733285 Puttler et al. May 2004 B2
6733287 Wilkerson May 2004 B2
6733288 Vallittu et al. May 2004 B2
6736638 Sachdeva et al. May 2004 B1
6738508 Rubbert et al. May 2004 B1
6739869 Taub et al. May 2004 B1
6744914 Rubbert et al. Jun 2004 B1
6744932 Rubbert et al. Jun 2004 B1
6746241 Townsend-Hansen Jun 2004 B2
6755064 Butscher Jun 2004 B2
6771809 Rubbert et al. Aug 2004 B1
6776614 Wiechmann Aug 2004 B2
6830450 Knopp et al. Dec 2004 B2
6845175 Kopelman et al. Jan 2005 B2
6846179 Chapouland Jan 2005 B2
6851949 Sachdeva et al. Feb 2005 B1
6860132 Butscher Mar 2005 B2
6893257 Kelly May 2005 B2
6928733 Rubbert et al. Aug 2005 B2
6948931 Chishti et al. Sep 2005 B2
6971873 Sachdeva Dec 2005 B2
6988889 Abels Jan 2006 B2
7008221 McGann Mar 2006 B2
7013191 Rubbert Mar 2006 B2
7020963 Cleary et al. Apr 2006 B2
7029275 Rubbert Apr 2006 B2
7033171 Wilkerson Apr 2006 B2
7037107 Yamamoto May 2006 B2
7056115 Phan et al. Jun 2006 B2
7063531 Maijer et al. Jun 2006 B2
7068836 Rubbert et al. Jun 2006 B1
7076980 Butscher Jul 2006 B2
7077646 Hilliard Jul 2006 B2
7077647 Choi et al. Jul 2006 B2
7080979 Rubbert et al. Jul 2006 B2
7092107 Babayoff et al. Aug 2006 B2
7112065 Kopelman et al. Sep 2006 B2
7125248 Phan et al. Oct 2006 B2
7134874 Chishti et al. Nov 2006 B2
7156661 Choi et al. Jan 2007 B2
7160110 Imgrund et al. Jan 2007 B2
7172417 Sporbert et al. Feb 2007 B2
7175428 Nicholson Feb 2007 B2
7186115 Goldberg et al. Mar 2007 B2
7188421 Cleary et al. Mar 2007 B2
7214056 Stockstill May 2007 B2
7229282 Andreiko Jun 2007 B2
7234936 Lai Jun 2007 B2
7234937 Sachdeva et al. Jun 2007 B2
7244121 Brosius Jul 2007 B2
7245977 Simkins Jul 2007 B1
7252506 Lai Aug 2007 B2
7267545 Oda Sep 2007 B2
7283891 Butscher Oct 2007 B2
7296996 Sachdeva Nov 2007 B2
7335021 Nikodem Feb 2008 B2
7347688 Kopelman et al. Mar 2008 B2
7354268 Raby et al. Apr 2008 B2
7357634 Knopp Apr 2008 B2
7361017 Sachdeva Apr 2008 B2
7404714 Cleary Jul 2008 B2
7416408 Farzin-Nia et al. Aug 2008 B2
7442041 Imgrund et al. Oct 2008 B2
7458812 Sporbert et al. Dec 2008 B2
7471821 Rubbert et al. Dec 2008 B2
7578674 Chishti et al. Aug 2009 B2
7585172 Rubbert Sep 2009 B2
7590462 Rubbert Sep 2009 B2
7621743 Bathen Nov 2009 B2
7641473 Sporbert Jan 2010 B2
7674110 Oda Mar 2010 B2
7677887 Nicholson Mar 2010 B2
7704072 Damon Apr 2010 B2
7717708 Sachdeva May 2010 B2
7722354 Dumas May 2010 B1
7726470 Cinader, Jr. et al. Jun 2010 B2
7726968 Raby et al. Jun 2010 B2
7751925 Rubbert Jul 2010 B2
7811087 Wiechmann Oct 2010 B2
7837466 Griffith et al. Nov 2010 B2
7837467 Butscher Nov 2010 B2
7845938 Kim et al. Dec 2010 B2
7850451 Wiechmann Dec 2010 B2
7871267 Griffith et al. Jan 2011 B2
7909603 Oda Mar 2011 B2
8029275 Kesling Oct 2011 B2
8033824 Oda et al. Oct 2011 B2
8038444 Kitching et al. Oct 2011 B2
8047034 Butscher Nov 2011 B2
8057226 Wiechmann Nov 2011 B2
8070487 Chishti et al. Dec 2011 B2
8082769 Butscher Dec 2011 B2
8092215 Stone-collonge et al. Jan 2012 B2
8102538 Babayoff Jan 2012 B2
8113828 Greenfield Feb 2012 B1
8113829 Sachdeva Feb 2012 B2
8121718 Rubbert Feb 2012 B2
8142187 Sporbert Mar 2012 B2
8152519 Dumas et al. Apr 2012 B1
8192197 Sporbert Jun 2012 B2
8194067 Raby Jun 2012 B2
8220195 Maijer et al. Jul 2012 B2
8266940 Riemeir et al. Sep 2012 B2
8297970 Kanomi Oct 2012 B2
8308478 Primus et al. Nov 2012 B2
8313327 Won Nov 2012 B1
8359115 Kopelman et al. Jan 2013 B2
8363228 Babayoff Jan 2013 B2
8366440 Bathen Feb 2013 B2
8376739 Dupray Feb 2013 B2
8382917 Johnson Feb 2013 B2
8393896 Oda Mar 2013 B2
8417366 Getto Apr 2013 B2
8439671 Cinader, Jr. May 2013 B2
8451456 Babayoff May 2013 B2
8454364 Taub et al. Jun 2013 B2
8459988 Dumas Jun 2013 B2
8465279 Bathen Jun 2013 B2
8469704 Oda et al. Jun 2013 B2
8479393 Abels et al. Jul 2013 B2
8485816 Macchi Jul 2013 B2
8500445 Borri Aug 2013 B2
8517727 Raby et al. Aug 2013 B2
8545221 Sonte-collenge et al. Oct 2013 B2
8562337 Kuo et al. Oct 2013 B2
8591225 Wu et al. Nov 2013 B2
8591226 Griffith et al. Nov 2013 B2
8636505 Fornoff Jan 2014 B2
8638447 Babayoff et al. Jan 2014 B2
8638448 Babayoff et al. Jan 2014 B2
8675207 Babayoff Mar 2014 B2
8678818 Dupray Mar 2014 B2
8690568 Chapouland Apr 2014 B2
8708697 Li et al. Apr 2014 B2
8714972 Eichenberg May 2014 B2
8734149 Phan et al. May 2014 B2
8780106 Chishti et al. Jul 2014 B2
8805048 Batesole Aug 2014 B2
8805563 Kopelman et al. Aug 2014 B2
8807995 Kabbani et al. Aug 2014 B2
8827697 Cinader, Jr. et al. Sep 2014 B2
8845330 Taub et al. Sep 2014 B2
8871132 Abels et al. Oct 2014 B2
8931171 Abels et al. Jan 2015 B2
8932054 Rosenberg Jan 2015 B1
8936464 Kopelman Jan 2015 B2
8961172 Dupray Feb 2015 B2
8979528 Macchi Mar 2015 B2
8986004 Dumas Mar 2015 B2
8992215 Chapouland Mar 2015 B2
8998608 Imgrund et al. Apr 2015 B2
9022781 Kuo et al. May 2015 B2
9066775 Bukhary Jun 2015 B2
9089386 Hagelganz Jul 2015 B2
9101433 Babayoff Aug 2015 B2
9119689 Kabbani Sep 2015 B2
9127338 Johnson Sep 2015 B2
9144473 Aldo Sep 2015 B2
9204942 Phan et al. Dec 2015 B2
9299192 Kopelman Mar 2016 B2
9301815 Dumas Apr 2016 B2
9329675 Ojelund et al. May 2016 B2
9339352 Cinader et al. May 2016 B2
9402695 Curiel et al. Aug 2016 B2
9427291 Khoshnevis et al. Aug 2016 B2
9427916 Taub et al. Aug 2016 B2
9439737 Gonzales et al. Sep 2016 B2
9451873 Kopelman et al. Sep 2016 B1
9492246 Lin Nov 2016 B2
9498302 Patel Nov 2016 B1
D774193 Makmel et al. Dec 2016 S
9510757 Kopelman Dec 2016 B2
9517112 Hagelganz et al. Dec 2016 B2
9529970 Andreiko Dec 2016 B2
9539064 Abels et al. Jan 2017 B2
9554875 Gualano Jan 2017 B2
9566132 Stone-collonge et al. Feb 2017 B2
9566134 Hagelganz et al. Feb 2017 B2
9585733 Voudouris Mar 2017 B2
9585734 Lai et al. Mar 2017 B2
9610628 Riemeier Apr 2017 B2
9615901 Babyoff et al. Apr 2017 B2
9622834 Chapouland Apr 2017 B2
9629551 Fisker et al. Apr 2017 B2
9707056 Machata et al. Jul 2017 B2
9814543 Huang et al. Nov 2017 B2
9844420 Cheang Dec 2017 B2
9848958 Matov et al. Dec 2017 B2
9867678 Macchi Jan 2018 B2
9867680 Damon Jan 2018 B2
9872741 Gualano Jan 2018 B2
9877804 Chester Jan 2018 B2
9877805 Abels et al. Jan 2018 B2
9925020 Jo Mar 2018 B2
9937018 Martz et al. Apr 2018 B2
9962244 Esbech et al. May 2018 B2
9975294 Taub et al. May 2018 B2
9987105 Dupray Jun 2018 B2
10045834 Gualano Aug 2018 B2
10058400 Abels et al. Aug 2018 B2
10058401 Tan Aug 2018 B2
10064706 Dickerson Sep 2018 B2
10070943 Fornoff Sep 2018 B2
10076780 Riemeier et al. Sep 2018 B2
10130987 Riemeier et al. Nov 2018 B2
10136966 Reybrouck et al. Nov 2018 B2
10179036 Lee Jan 2019 B2
10368961 Paehl et al. Aug 2019 B2
10383707 Roein Peikar et al. Aug 2019 B2
D859663 Cetta et al. Sep 2019 S
10636522 Katzman et al. Apr 2020 B2
10639130 Blees et al. May 2020 B2
10772706 Schumacher Sep 2020 B2
10828133 Tong et al. Nov 2020 B2
20020098460 Farzin-Nia Jul 2002 A1
20020192617 Phan et al. Dec 2002 A1
20030180689 Arx et al. Sep 2003 A1
20040072120 Lauren Apr 2004 A1
20040166459 Voudouris Aug 2004 A1
20040219471 Cleary et al. Nov 2004 A1
20050043837 Rubbert et al. Feb 2005 A1
20050106529 Abolfathi et al. May 2005 A1
20050191592 Farzin-Nia et al. Sep 2005 A1
20050244780 Abels et al. Nov 2005 A1
20050244781 Abels et al. Nov 2005 A1
20060068354 Jeckel Mar 2006 A1
20060257813 Highland Nov 2006 A1
20070015103 Sorel Jan 2007 A1
20070031773 Scuzzo Feb 2007 A1
20070031775 Andreiko Feb 2007 A1
20070087302 Reising et al. Apr 2007 A1
20070111154 Sampermans May 2007 A1
20070134611 Nicholson Jun 2007 A1
20070141525 Cinader, Jr. Jun 2007 A1
20070154859 Hilliard Jul 2007 A1
20070172788 Hill, II et al. Jul 2007 A1
20070190478 Goldberg et al. Aug 2007 A1
20070231768 Hutchinson Oct 2007 A1
20080032250 Kopelman et al. Feb 2008 A1
20080063995 Farzin-Nia et al. Mar 2008 A1
20080160475 Rojas-Pardini Jul 2008 A1
20080199825 Jahn Aug 2008 A1
20080254403 Hilliard Oct 2008 A1
20080286711 Corcoran et al. Nov 2008 A1
20090042160 Ofir Feb 2009 A1
20090191502 Cao et al. Jul 2009 A1
20090197217 Butscher et al. Aug 2009 A1
20090220907 Suyama Sep 2009 A1
20100092903 Sabilla Apr 2010 A1
20100092905 Martin Apr 2010 A1
20100105000 Scommegna Apr 2010 A1
20100129766 Hilgers May 2010 A1
20100178628 Kim Jul 2010 A1
20100179789 Sachdeva et al. Jul 2010 A1
20100193979 Goldberg et al. Aug 2010 A1
20100279243 Cinader, Jr. Nov 2010 A1
20100304321 Patel Dec 2010 A1
20110008745 McQuillan et al. Jan 2011 A1
20110059414 Hirsch Mar 2011 A1
20110220612 Kim Sep 2011 A1
20110250556 Heiser Oct 2011 A1
20110287376 Walther Nov 2011 A1
20120148972 Lewis Jun 2012 A1
20120208144 Chiaramonte Aug 2012 A1
20120322019 Lewis Dec 2012 A1
20130065193 Curiel et al. Mar 2013 A1
20130196281 Thornton Aug 2013 A1
20130196282 Eichelberger et al. Aug 2013 A1
20140120491 Khoshnevis et al. May 2014 A1
20140154637 Hansen et al. Jun 2014 A1
20140170586 Cantarella Jun 2014 A1
20140255864 Machata Sep 2014 A1
20140287376 Hultgren et al. Sep 2014 A1
20150010879 Kurthy Jan 2015 A1
20150064641 Gardner Mar 2015 A1
20150072299 Alauddin et al. Mar 2015 A1
20150140501 Kim May 2015 A1
20150351872 Jo Dec 2015 A1
20160074139 Machata Mar 2016 A1
20160106522 Kim Apr 2016 A1
20160166357 Portalupi Jun 2016 A1
20160206403 Ouellette et al. Jul 2016 A1
20160228214 Sachdeva Aug 2016 A1
20160242871 Morton et al. Aug 2016 A1
20160270885 Kwon et al. Sep 2016 A1
20160278883 Fasci et al. Sep 2016 A1
20160287354 Viecilli et al. Oct 2016 A1
20160310239 Paehl et al. Oct 2016 A1
20160361141 Tong et al. Dec 2016 A1
20160361142 Tong et al. Dec 2016 A1
20160374780 Carrillo Gonzalez Dec 2016 A1
20170105817 Chun et al. Apr 2017 A1
20170128169 Lai et al. May 2017 A1
20170151037 Lee Jun 2017 A1
20170156823 Roein et al. Jun 2017 A1
20170165532 Khan et al. Jun 2017 A1
20170196660 Lee Jul 2017 A1
20170224444 Viecilli et al. Aug 2017 A1
20170252140 Murphy et al. Sep 2017 A1
20170296304 Tong et al. Oct 2017 A1
20180014916 Cinader, Jr. et al. Jan 2018 A1
20180021108 Cinader, Jr. et al. Jan 2018 A1
20180049847 Oda et al. Feb 2018 A1
20180153651 Tong et al. Jun 2018 A1
20180185120 Wool Jul 2018 A1
20180185121 Pitts et al. Jul 2018 A1
20180214250 Martz Aug 2018 A1
20180221113 Tong et al. Aug 2018 A1
20180338564 Oda et al. Nov 2018 A1
20190001396 Riemeier et al. Jan 2019 A1
20190090989 Jo Mar 2019 A1
20190142551 Dickenson et al. May 2019 A1
20190159871 Chan et al. May 2019 A1
20190163060 Skamser et al. May 2019 A1
20190175304 Morton et al. Jun 2019 A1
20190321138 Peikar et al. Oct 2019 A1
20190350682 Cinader, Jr. et al. Nov 2019 A1
20190365507 Khoshnevis et al. Dec 2019 A1
20200345455 Peikar et al. Nov 2020 A1
20200345460 Peikar et al. Nov 2020 A1
20200390524 Peikar et al. Dec 2020 A1
20210007830 Peikar et al. Jan 2021 A1
Foreign Referenced Citations (43)
Number Date Country
1372872 Oct 2002 CN
102215773 Oct 2011 CN
202365955 Aug 2012 CN
202892116 Apr 2013 CN
103505293 Jan 2014 CN
203506900 Apr 2014 CN
104188728 Dec 2014 CN
204049881 Dec 2014 CN
105596098 May 2016 CN
105662615 Jun 2016 CN
205569100 Sep 2016 CN
106029002 Oct 2016 CN
106137419 Nov 2016 CN
3915807 Nov 1990 DE
1139902 Oct 2001 EP
1276433 Jan 2003 EP
2076207 Jul 2009 EP
2522298 Nov 2012 EP
2617383 Jul 2013 EP
100549294 Jan 2006 KR
100737442 Jul 2007 KR
100925286 May 2009 KR
101723674 Apr 2017 KR
133408 Oct 2013 RU
WO 0180761 Nov 2001 WO
WO 0185047 Nov 2001 WO
WO 03045266 Jun 2003 WO
WO 2005008441 Jan 2005 WO
WO 2007069286 Jun 2007 WO
WO 2008051774 May 2008 WO
WO 2011034522 Mar 2011 WO
WO 2011090502 Jul 2011 WO
WO 2011103669 Sep 2011 WO
WO 2012089735 Jul 2012 WO
WO 2012140021 Oct 2012 WO
WO 2013019398 Feb 2013 WO
WO 2016148961 Sep 2016 WO
WO 2016199972 Dec 2016 WO
WO 2016210402 Dec 2016 WO
WO 2017112004 Jun 2017 WO
WO 2017194478 Nov 2017 WO
WO 2017198640 Nov 2017 WO
WO 2018122862 Jul 2018 WO
Non-Patent Literature Citations (24)
Entry
U.S. Appl. No. 15/249,262, filed Aug. 26, 2016, Tong et al.
Coro, Jorge C. et al., “MEAW Therapy” MEAW Therapy-Orthodontic Products, accessed via http://www.orthodonticproductsonline.com/2012/11/meaw-therapy/ on Mar. 14, 2016, published Nov. 12, 2012 in 6 pages.
ElSheikh, Moaaz Mohamed, et al. “A Forsus Distalizer: A Pilot Typodont Study”. Jul.-Dec. 2004, KDJ, vol. 7, No. 2, pp. 107-115.
EP Search Report dated Jun. 23, 2016 in EP application No. 13850778.5 in 5 pages.
Gilbert, Alfredo. An in-office wire-bending robot for lingual orthodontics. ResearchGate. Article in Journal of clinical orthodontics: JCO, Apr. 2011.
Glauser-Williams Orthodontics: Appliances, http://www.glauserwilliamsorthodontics.com/treatments/orthodontic-appliances.php , accessed Nov. 30, 2015 in 4 pages.
Jiang et al. Bending Process Analysis and Structure Design of Orthodontic Archwire Bending Robot. International Journal of Smart Home. vol. 7, No. 5 (2013), pp. 345-352. http://dx.doi.org/10.14257/ijsh.2013.7.5.33.
Jiang et al. A Review on Robot in Prosthodontics and Orthodontics. Hindawi Publishing Corporation. Advances in Mechanical Engineering. Article ID 198748. 2014. 11 pages.
Mahony, Derek, “How We Got From There to Here and Back”. Dental Learning Hub (Capture of web page dated Jun. 24, 2013 downloaded from http://web.archive.org/web/20130624145806/http://www.dental-learninghub.com/Clinical/Orthodontics.aspx, downloaded Feb. 7, 2014).
Miller, R.J. et al. “Validation of Align Technology's Treat III™ Digital Model Superimposition Tool and Its Case Application”. Orthodontic Craniofacial Res.,2003, vol. 6 (Suppl 1): pp. 143-149.
SureSmile. 2013. About SureSmile. (Capture of web page dated Jun. 21, 2013 downloaded from http://web.archive.org/web/20130621031404/http://suresmile.com/About-SureSmile, downloaded Feb. 7, 2014).
Xia, et al. Development of a Robotic System for Orthodontic Archwire Bending. 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden, May 16-21, 2016. pp. 730-735.
Yang, Won-Sik, et al. “A Study of the Regional Load Deflection Rate of Multiloop Edgewise Arch Wire.” Angle Orthodontist, 2001, vol. 7, No. 2, pp. 103-109.
International Search Report for International Application No. PCT/US2013/067560 dated Feb. 14, 2014.
International Search Report for International Application No. PCT/US2017/028180 dated Aug. 14, 2017.
International Search Report and Written Opinion for International Application No. PCT/US 2017/064021 dated Mar. 6, 2018.
International Search Report for International Application No. PCT/US2018/016293 dated May 10, 2018.
International Search Report for International Application No. PCT/US2018/028437 dated Aug. 9, 2018.
EP Search Report dated May 29, 2020 in EP Application No. 17875658.1.
CN Office Action dated Nov. 11, 2020 in CN Application No. 2018800149154.
EP Search Report dated Aug. 28, 2020 in EP Application No. 18748336.7.
Extended European Search Report dated Nov. 9, 2020 in EP Application No. 18787728.7.
CN Office Action dated Jun. 30, 2020 in CN Application No. 201780033738X.
International Search Report for International Application No. PCT/US2020/020526 dated May 22, 2020.
Related Publications (1)
Number Date Country
20180303583 A1 Oct 2018 US
Provisional Applications (1)
Number Date Country
62488656 Apr 2017 US