Lighting fixtures incorporating solid state light sources are known to be able to provide an efficient output of light. However, retrofitting or replacing light fixtures traditionally having incandescent bulbs may be complicated by a desire and/or need to closely replicate the light output of lighting fixtures that include incandescent bulbs. Some scenarios can be complicated by the fact that some solid state light sources do not produce an output that strictly or closely matches an incandescent bulb to be replaced. For example a white light emitting diode (LED) may not generate light with the same optical spectrum as a warm white incandescent bulb.
Solid state light sources such as a light emitting diode (LED) are more efficient than incandescent bulbs and lamps. Therefore, it would be desirable to provide methods and systems for a LED based incandescent replacement module for a lighting fixture that substantially replicates the light output exhibited by a fixture having a traditional incandescent lamp or bulb.
Features and advantages of some embodiments of the present invention, and the manner in which the same are accomplished, will become more readily apparent upon consideration of the following detailed description of the invention taken in conjunction with the accompanying drawings, wherein:
LED module 100 includes an aperture 102 or opening in an external surface of housing 105. The aperture provides a port or opening through which light generated by light sources within the housing can exit the LED module. In
LED module 100 further includes a printed circuit board 140 within the housing that supports a plurality of solid state light sources 115, 120, 125, 130. The plurality of solid state light sources 115, 120, 125, 130 are configured and oriented to emit light towards a backlit reflector 112. Reflector 112 is shaped and positioned within housing 105 to reflect light emitted from solid state light sources 115, 120, 125, 130 through lens 110 that is located in the aperture in housing 105. Reflector 112 may have the shape of a half-sphere (i.e., semispherical) and is referred to herein at various points as a half-sphere backlit reflector, a semispherical backlit reflector, and simply as a reflector, interchangeably. In some aspects, solid state light sources 115, 120, 125, 130 and reflector 112 are configured and arranged relative to each other to reflect light 135 generated by the solid state light sources through lens 110 positioned in the aperture of housing 105. In some embodiments, light emitted from the solid state light sources is reflected by reflector 112 multiple times before it exits housing 105 through aperture 102. In some embodiments, more than fifty percent (50%) of the light emissions from the solid state light sources is reflected by the reflector multiple times before exiting the housing through the housing.
In some embodiments, lighting fixture 100 may include one or more light sources 115, 120, 125, 130. The light sources may be, in some embodiments, solid state light sources such as, for example, light emitting diodes (LEDs). It will be appreciated by those skilled in the art(s) related hereto that light sources other than those specifically shown in the following discussion and corresponding drawings are within the scope of the present disclosure, to the extent that such light sources are compatible with other aspects of the various embodiments herein.
In some aspects, there may be a desire or requirement for the light emitted from LED module 100 and further reflected through lens 110 to replicate or otherwise exhibit the same or similar optical characteristics as a lighting fixture having an incandescent light source. One reason for this desire or requirement may be to efficiently replace legacy incandescent lighting fixtures with replacement lighting fixtures and modules having solid state light sources where users and other observers of the replacements modules will perceive little to no difference in the light output by the replacement modules. In this manner, a replacement lighting module such as, for example, LED module 100 may be installed and placed in operation with little to no perceptible optical difference being noticed by one observing the LED module. In some embodiments, the LED module may also provide improved reliability and lower operating costs by using solid state light sources.
In some embodiments, housing 105, reflector 112, and lens 110 are configured to define an area or space within the housing between reflector 112 and aperture 102 in the housing, which is covered by lens 110. The space thus defined is referred to herein as a mixing chamber 145. Mixing chamber 145 as configured provides a space within which light emitted from the plurality of solid state light sources 115, 120, 125, 130 interacts and otherwise combines together to yield the resulting light 135 that passes through aperture of housing 105 and lens 110.
In some aspects, mixing chamber 145 is physically and optically isolated from other areas within housing 105. For example, in some embodiments of LED module 100 may have a potting material disposed within at least portions of the housing. The potting material disposed within the housing may comprise a thermally-conductive material that aids in some thermal management aspects of the LED module. Mixing chamber 145 however is physically isolated from including the potting material and other items that could interfere with the light “mixing” that occurs in the mixing chamber when the solid state light sources are operative to emit light towards backlit reflector 112.
In some embodiments, solid state light sources 115, 120, 125, and 130 may comprise a combination of multiple groups of solid state light sources having different colors. In one example, the groups of solid state light sources may include a group of white and a group of colored (i.e., non-white) solid state light sources. For example, solid state light sources 115, 120, 125, and 130 may each be a LED, wherein LED 115 is a white LED emitting white light, LEDs 120 and 125 are blue light emitting LEDs, and LED 130 emits red light. In some embodiments, the combination of white light and non-white light are initially emitted from the solid state light sources 115, 120, 125, 130 towards reflector 112 where light incident upon the inner surface of reflector 112 is reflected about the mixing chamber 145. Other examples include (1) a lighting system including a group of 2700 K (Kelvin) white LEDs and a group of 5500 K white LEDs that combine to produce a white light emission, and (2) a lighting system including a group of red LEDs, a group of green LEDs, and a group of blue LEDs that combine to produce a white light emission. As used herein, a “group” of solid state light sources refers to a set including at least one solid state light source. In some embodiments, the only way for light to escape the mixing chamber is through the aperture in housing 105 that is filled or covered by lens 110.
Prior to exiting the housing via passage through housing aperture 102 and lens 110, the light from the plurality of light source (e.g., solid state light sources 115, 120, 125, and 130) may interact or combine together in the mixing chamber. Furthermore, the combined light may exit the housing by passing through lens 110 in the housing's aperture.
As mentioned earlier, a desire or function of LED module 100 may be to produce a light output having the same or substantially similar light spectrum as a warm white light incandescent lighting fixture. It is noted that the spectral output of a white LED may not match or be sufficiently close to the spectral output of a white incandescent light source. However, the present disclosure provides mechanisms for achieving a desired function of replicating light produced by a white incandescent lighting fixture using solid state light source(s) by combining, in some embodiments, multiple groups of solid state light sources having different colors, where the plurality of solid state light sources additively contribute to each other to produce a light output that is a combination of the plurality of solid state light sources' emissions that can substantially replicate light produced by a white incandescent lighting fixture. In some embodiments, the plurality of solid state light sources' light combines with each other in the mixing chamber in systems and apparatuses herein to produce an output light having a spectral density similar to a white incandescent light source. In some embodiments, the light from the plurality of solid state light sources combines with each other to, in effect, produce a light output having substantially uniform optical characteristics across or over the aperture in the housing when exiting therethrough.
Applicants hereof have realized a LED module that uses one or more (i.e., multiple) solid state light sources such as, for example, a LED. Herein, a solid state light source may include one or more LEDs or chip-on-board (COB) LED arrays that appear white or some other specific, predetermined color. As used herein, an array of single or multiple LEDs that appear white or “substantially white” will be referred to as a “white LED device” for convenience sake and an array of single or multiple LEDs that appear to be colored (e.g., red, yellow, cyan, etc.) will be referred to as a specific color (e.g., red, yellow, cyan, etc.) LED for convenience sake. In accordance with some aspects herein, a solid state light source including an array of warm white or white light LEDs has a color temperature of about less than 2800K. As used herein, the different colors for the multiple groups of solid state light sources herein refers to different values for optical characteristics for the light emitted by the plurality of solid state light sources. For example, the multiple groups of solid state light sources may produce light having wavelengths of different values.
Lens 110 may be clear or colored and is disposed adjacent to an aperture in housing 105 to allow passage of light combined in mixing chamber 145 to exit the housing. In some embodiments, lens 110 is designed to cast a certain color or hue to the light passing therethrough. The particular color may be selected based on a particular application, use or application for LED module 100. In some embodiments, the light that is emitted from solid state light sources 115, 120, 125, 130, reflected from reflector 112, combined in mixing chamber 145, and transmitted through lens 110 effectively and efficiently replicates the spectrum of light transmitted by a conventional incandescent bulb having a color temperature of about less than 2800K and/or a monochromatic LED or other solid state light source product. In some aspects, an area or surface (e.g., a plane) including the aperture is within a surface including the solid state light sources, as shown in
It is noted that railway wayside signals and other lighting fixtures have traditionally used warm white incandescent bulbs (i.e., a color temperature <2800K) in order to maintain sufficient brightness for red signals. Applicants hereof have recognized that it may be important to perform any LED retrofit of an existing incandescent-illuminated railroad wayside signal (and other types of lighting applications) in such a way that any change in the lighting system or device system does not materially alter or change the expected (in some instances, required) appearance of the signal presented to a train driver, safety personnel, and other relevant observers and entities.
In an effort to efficiently and effectively replicate a railroad wayside signal and other types of lighting fixtures, devices, and systems having an incandescent bulb, the combination of white and non-white solid state light sources selected in some embodiments herein may generally have characteristics that approximate the color temperature and light intensity of an incandescent counterpart railroad wayside signal and other types of lighting fixtures.
It is noted that there may be a difference in the radiometric spectrum of light emitted from a warm white incandescent bulb and a white LED device herein with both having a color temperature of about less than 2800K (e.g., about 2700K), even though they may have a similar color temperature and photometric brightness.
In some aspects, the non-white solid state light sources herein provide a quantity of light with an intensity and spectrum that can be combined with the white solid state light source herein in a mixing chamber to replicate, in a controlled and repeatable manner, the light generate by an incandescent lighting fixture.
It is noted that in the instance the optical intensity spectrum of white LED devices varies from an incandescent bulb, including bulbs of a similar color temperature, chromaticity of the resultant light transmitted from a LED module disclosed herein may compensate for that variance by combining light from one or more groups of solid state light source(s) with different colors to achieve a required and/or at least desired chromaticity requirement. Applicants hereof have realized that the variance between the optical intensity spectrum of white LED devices and incandescent bulbs can be compensated for by combining light from multiple groups of solid state light sources having different colors in a mixing chamber within the housing of a lighting fixture.
The array of LEDs are assembled on a printed circuit board (PCB) 205 that provides a mechanical support and an electrically conductive conduit between the solid state light sources and at least a power supply unit (e.g.,
In some embodiments, group “1” and group “2” are operated separately of each other. That is, when the solid state light sources of group “1” are energized and operated to emit light (i.e., “on”), the solid stated light sources of group “2” are not energized or operated to emit light (i.e., the group is “off”). In some embodiments, a first group of solid state light sources (e.g., group “1”) may be designated a primary group and be powered by power supply 150, as shown in
In an example use-case, the solid state light sources of group “1” may normally be energized and operated to emit light from lighting fixture 100. However, in the instance that one or more of the solid state light sources fails and/or the mains power system fails, then lighting fixture 100 may switch to powering the solid state light sources of group “2” by battery backup power supply 160. In accordance with some aspects herein, only one of the groups of solid state light sources (i.e., either group “1” or group “2”) are operated to emit light therefrom at any given time. In the present example, when one or more of the LEDs of group 1 and/or the power supply 150 fails, then the lighting fixture switches over to energizing the LEDs of group 2 via power supply 160.
In some embodiments, a lighting fixture herein (e.g., 100) including the power supplies 150 and 160 may be configured and functional to provide a signal or indication that a group of solid state light sources therein (e.g., a second group) are being operated by a secondary or backup power supply in response to the lighting fixture switching to power the solid state light sources of a second or alternate group of solid state light sources (e.g., group “2”) by a battery backup power supply 160. In this manner, an entity (e.g., administrator, manager, monitoring center/system, etc.) may be notified when a change in operational groups occurs in an effort to, for example, maintain and/or improve device and system reliability, safety, and other considerations.
In accordance with some aspects herein, the combined light emissions exiting the housing 105 through the aperture 102 has the same optical color output for each of the plurality of groups of solid state light sources (e.g., group “1” and group “2”). That is, the appearance of the light emissions from lighting fixture 100 is the same whether produced by the group “1” LEDs or the group “2” LEDs since the optical characteristics for each group is the same. The optical properties of the individual solid state light sources comprising each of the different plurality of groups of solid sate light sources may or may not be the same so long as the combined light emissions exiting the housing 105 through the aperture 102 has the same optical color output for each of the plurality of groups of solid state light sources, in accordance with some embodiments herein.
The array of LEDs of
In some embodiments, the red (“R”), green (“G”), and yellow (“Y”) groups may be operated separately and exclusively of each other. That is, when the solid stated light sources of the red group are energized (i.e., “on”) and operated to emit red light, then the solid state light sources of the green and yellow groups are not energized to emit green and yellow light, respectively. Likewise, the other groups are not operated to emit light when the green group and yellow group are individually and separately energized to emit light.
In some embodiments, the operation of the solid state light sources of
In some instances, the solid state light sources of the “R” group, “G” group, and “Y” group may alternately and selectively be energized and operated to emit, respectively, red, green, and yellow light from lighting fixture 100. By alternately and selectively be operated to emit either red, green, or yellow, the lighting fixture or module 100 may effectively and efficiently function as a signaling device. In accordance with some aspects herein, the optical output of the lighting fixture will be the same or similar for the lighting fixture 100 whether the color of the light emitted is red, green, or yellow so that the intensity and/or source of the light appears to be the same or similar notwithstanding the particular color being emitted from the device.
In some aspects herein, reflector 400 is positioned and shaped to direct light reflecting from the inner surface 410 thereof towards the lens covering or occupying an aperture in the module's housing. In some embodiments, the reflected light may be focused by reflector 400 towards the lens covering or occupying the aperture in the module's housing aperture. In some embodiments, reflector 400 may be disposed on the lighting module's housing. In some embodiments, reflector 400 may be integral to the housing such that, for example, the outer surface of 405 forms a portion of the housing's outer surface.
In some embodiments, a diameter for a half-sphere configuration of a reflector herein may include diameters having the following values: 0.5 inch, 1.0 inch, 1.5 inch, 2.0 inch, and 2.5 inch. It should be appreciated however that ore dimensions are within the scope of the present disclosure as the examples provided herein are net intended to be exhaustive.
In some embodiments herein, the colors of the solid state light sources that may be used in a lighting module herein may include (1) red+mint, (2) red+yellow+and cyan, (3) warm white+cyan+red, (4) mint+blue+orange+far red, and (5) cool white+red. It is noted however that these are illustrative examples and other combinations of a plurality of solid state light sources may be implemented in accordance with various aspects of the present disclosure. In some aspects, the number of solid state light sources of a particular color may also be used to adjust or balance the light emitted from a LED module herein. It should be appreciated that the specific number of the specific colors of solid state light sources included in a particular embodiment herein may be varied depending on a desire output and/or application or use-case.
Although embodiments have been described with respect to certain contexts, some embodiments may be associated with other types of devices, systems, and configurations, either in part or whole, without any loss of generality.
Embodiments have been described herein solely for the purpose of illustration. Persons skilled in the art will recognize from this description that embodiments are not limited to those described, but may be practiced with modifications and alterations limited only by the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6149283 | Conway et al. | Nov 2000 | A |
6238073 | Ito et al. | May 2001 | B1 |
6280054 | Cassarly | Aug 2001 | B1 |
6682211 | English | Jan 2004 | B2 |
6840652 | Hymer | Jan 2005 | B1 |
6995355 | Rains, Jr. | Feb 2006 | B2 |
7145125 | May | Dec 2006 | B2 |
7246921 | Jacobson et al. | Jul 2007 | B2 |
7520636 | Van Der Poel | Apr 2009 | B2 |
7980728 | Ramer | Jul 2011 | B2 |
8172415 | Wegh | May 2012 | B2 |
8920009 | Park | Dec 2014 | B2 |
20070045524 | Rains, Jr. | Mar 2007 | A1 |
20080131836 | Rueggeberg | Jun 2008 | A1 |
20110019408 | Jang | Jan 2011 | A1 |
20120039073 | Tong | Feb 2012 | A1 |
20130293379 | Rains, Jr. | Nov 2013 | A1 |
20130293877 | Ramer et al. | Nov 2013 | A1 |
20140055994 | Kang | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
1857729 | Nov 2007 | EP |
2320128 | May 2011 | EP |
2007080533 | Mar 2007 | JP |
2012136572 | Oct 2012 | WO |
2013072885 | May 2013 | WO |
Entry |
---|
European Search Report and Opinion issued in connection with corresponding EP Application No. 16193689.3 dated Dec. 13, 2016. |
Office Action issued in connection with corresponding EP Application No. 16193689.3 dated Mar. 23, 2018. |
Number | Date | Country | |
---|---|---|---|
20170108178 A1 | Apr 2017 | US |