This invention relates in some aspects to indirect orthodontic bonding systems and methods, including indirect orthodontic bonding trays.
Indirect orthodontic bonding (IDB) trays can be used by orthodontists to place one or more brackets on a patient's teeth in predetermined locations. The IDB tray can be custom made for a patient's dental arch. The IDB tray can include one or more wells to receive an orthodontic bracket therein. The orthodontist can place an orthodontic bracket in a well with a bonding surface facing outward. An adhesive can be applied to a bonding surface of the orthodontic bracket. The IDB tray can be placed over a dental arch of the patient to apply the bonding surface of the orthodontic brackets to the patient's teeth. The adhesive can bond the bonding surfaces of the orthodontic brackets to the surfaces of the patient's teeth, securing the orthodontic brackets in predetermined locations on the patient's teeth. Loading one or more orthodontic brackets into the one or more wells of the IDB tray can be a time intensive process. Additionally, orthodontic brackets may be dropped on a contaminated surface during the loading process, requiring the orthodontic brackets to be cleaned—prolonging the administration of orthodontic care. Inadequate or excessive adhesive may be applied to the bonding surfaces, decreasing bonding reliability.
The IDB systems (e.g., kits) and methods described herein solve at least the foregoing problems. The IDB systems and methods described herein can advance the ease of use of IDB trays and minimize errors during bracket bonding. The IDB trays can be custom designed and formed for a particular patient's dental arch or segment of a dental arch segment based on images (e.g., scans) of a patient's mouth. The IDB tray can be formed by an IDB tray manufacturer. The IDB tray can include one or more wells shaped to receive an orthodontic bracket. The IDB tray manufacturer can load an orthodontic bracket into each of the one or more wells of the IDB tray with a bonding surface of the orthodontic bracket facing out of the well. The IDB tray manufacturer can apply an adhesive to the bonding surface of the orthodontic brackets in the one or more wells. The IDB tray manufacturer can select the quantity and type of adhesive used, which can improve bonding reliability. The loaded IDB tray (e.g., the IDB tray with the preloaded brackets and bonding surfaces with uncured pre-pasted adhesive) can be placed in a container to prevent curing of the adhesive. The loaded IDB tray, also referred to as an preloaded or preassembled IDB system or preloaded IDB tray, within the container can be shipped to an orthodontist's office for use. When ready for use, the orthodontist can remove the loaded IDB tray from the container and/or another controlled environment and place the loaded IDB tray over the dental arch of the patient to bond the one or more orthodontic brackets to the patient's teeth.
In some variants, a kit for bonding one or more orthodontic brackets to a dental arch of a patient is disclosed. The kit can include a preloaded indirect orthodontic bonding (IDB) tray. The preloaded IDB tray can include an IDB tray with one or more wells. The preloaded IDB tray can include one or more orthodontic brackets placed within the one or more wells. A bonding surface of the one or more orthodontic brackets can face out of the one or more wells. The preloaded IDB tray can include an adhesive applied onto the bonding surface of the one or more orthodontic brackets. The kit can include a container for housing the preloaded IDB tray during shipment. The container can prevent the adhesive from curing.
In some variants, the preloaded IDB tray can include a primer applied to the bonding surface of the one or more orthodontic brackets.
In some variants, the kit can include one or more archforms that can couple to the one or more orthodontic brackets when bonded to a patient's teeth. The one or more archforms can move the patient's teeth.
In some variants, the kit can include a tool that can facilitate coupling an archform of the one or more archforms to the one or more orthodontic brackets when bonded to a patient's teeth.
In some variants, the IBD tray can be in separate segments corresponding to portions of a patient's dental arch.
In some variants, a method of producing a loaded indirect orthodontic bonding (IDB) tray for distribution is disclosed herein. The method can include forming the IDB tray with one or more wells. The method can include placing an orthodontic bracket into the one or more wells such that a bonding surface of the orthodontic bracket can face out of the one or more wells. The method can include applying an adhesive to the bonding surface of the orthodontic bracket. The method can include placing the IDB tray preloaded with the orthodontic bracket and pre-pasted adhesive into a container for distribution. The container can prevent the adhesive from curing.
In some variants, the method can include applying a primer to the bonding surface of the orthodontic bracket.
In some variants, forming the IDB tray with the one or more wells can include 3D printing the IDB tray based on a digital model of at least a portion of a patient's dental arch.
In some variants, forming the IDB tray with the one or more wells can include molding over a 3D model of a patient's dental arch or portion thereof with one or more features positioned to form the one or more wells.
In some variants, a preloaded indirect orthodontic bonding (IDB) tray for distribution is disclosed herein. The preloaded IDB tray can include an IDB tray with one or more wells. The preloaded IDB tray can include one or more orthodontic brackets placed within the one or more wells. A bonding surface of the one or more orthodontic brackets can face out of the one or more wells. The preloaded IDB tray can include a primer applied to the bonding surface of the one or more orthodontic brackets. The preloaded IDB tray can include an adhesive pasted onto the bonding surface of the one or more orthodontic brackets.
In some variants, the preloaded IDB tray can be distributed to an orthodontist in a container that can prevent the adhesive from curing such that the preloaded IDB tray is ready for placement on a dental arch of a patient upon receipt by the orthodontist.
In some variants, the IDB tray can include a channel and the archform can be disposed in the channel.
In some variants, the preloaded IDB tray can include an archform disposed in the IDB tray.
In some variants, the archform can be coupled to the one or more orthodontic brackets.
In some variants, a preloaded indirect bonding (IDB) tray for distribution is disclosed herein. The preloaded IDB tray can include an indirect bonding (IDB) tray with a plurality of wells. Each of the plurality of wells can hold an adhesive therein. The preloaded IDB tray can include a retainer that can be adhered to the surfaces of a patient's teeth. The retainer can be disposed in the IDB tray and through the adhesive disposed in the plurality of wells.
In some variants, the retainer can be bonded to lingual surfaces of a patient's teeth.
In some variants, the retainer can be a braided stainless steel wire.
In some variants, the IDB tray can include a channel holding the retainer.
The channel can extend through the plurality of wells.
In some variants, the channel can span between adjacent wells of the plurality of wells.
In some variants, a kit for bonding a retainer to surfaces of a patient's teeth is disclosed herein. The kit can include a preloaded IDB tray, such as any disclosed herein. The kit can include a container for housing the preloaded IDB tray. The container can prevent the adhesive from curing.
In some variants, a method of bonding a retainer to surfaces of a patient's teeth is disclosed herein. The method can include placing a retainer into an indirect bonding (IDB) tray. The retainer can be flexible. The retainer can conform to contours of the IDB tray. The method can include flowing adhesive into wells of the IDB tray. The method can include positioning the IDB tray over the patient's teeth. The method can include curing the adhesive to bond the retainer to the surfaces of the patient's teeth and to form rounded mounds of cured adhesive on the surfaces of the patient's teeth. Portions of the retainer extending between rounded mounds of cured adhesive can be rigid. The method can include removing the IDB tray.
In some variants, curing the adhesive can include exposing the adhesive to UV light.
In some variants, the method can include forming the IDB tray.
In some variants, the forming the IDB tray can include 3D printing the IDB tray.
In some variants, the retainer can be a braided stainless steel wire.
In some variants, the placing the retainer into the IDB tray can include placing the retainer into a channel of the IDB tray. The channel can be disposed in a surface of the IDB tray that can face lingual surfaces of the patient's teeth when the IDB tray is positioned over the patient's teeth.
These drawings are illustrative embodiments and do not present all possible embodiments of this invention. The illustrated embodiments are intended to illustrate, but not to limit, the scope of protection. Various features of the different disclosed embodiments can be combined to form further embodiments, which are part of this disclosure.
It can be difficult and/or time consuming to properly position one or more orthodontic brackets on a patient's teeth for bonding when administering a treatment plan to move the patient's teeth from maloccluded positions to predetermined positions. An indirect orthodontic bonding (IDB) tray can be used to assist an orthodontist or other individual attending to a patient to properly position the one or more orthodontic brackets on a patient's teeth in predetermined locations for bonding. The IDB tray can be used, in some variants, to position a plurality of orthodontic brackets simultaneously on a patient's teeth for bonding. Once the one or more orthodontic brackets are bonded to the patient's teeth, an archform can be coupled to the one or more orthodontic brackets to move the patient's teeth using sliding or non-sliding mechanics.
Disclosed herein are IDB systems (e.g., kits) and methods to advance the ease of use of IDB trays and minimize errors during bracket bonding. Preloaded IDB trays can include custom formed IDB trays with preloaded brackets with uncured pre-pasted adhesive applied thereto. The preloaded IDB trays can be produced by an IDB tray manufacturer and distributed to orthodontists in a container that prevents curing of the adhesive. In some variants, the container can be air tight, temperature controlled, and/or light blocking. The preloaded IDB trays can remain in the container or be removed from the container and placed in a controlled environment until the orthodontist or other individual is ready to bond the orthodontic brackets to the teeth of the patient.
In some variants, the IDB tray 100 can be formed of a soluble material, such as melted/dried (caramelized) sugar and/or cellulose. The soluble material can be structurally stiff when dry but dissolve when wet. Accordingly, the IDB tray 100, when formed of soluble material, can be used to place one or more orthodontic brackets on a patient's teeth and, after placement (e.g., bonding), the patient's mouth can be rinsed with water or another liquid—dissolving the IDB tray 100 made of soluble material.
The indirect bonding tray 100 can correspond to a patient's upper or lower dental arch. The IDB tray 100 can correspond to a section of a patient's upper or lower dental arch (e.g., 1, 2, 3, 4, or more teeth). The IDB tray 100 can include cavities to receive the patient's teeth. The indirect bonding tray 100 can include one or more wells for receiving orthodontic brackets, bite turbos, auxiliaries, temporary anchoring devices, archform, buttons, etc. to be transferred to the teeth of a patient. The one or more wells can be disposed in the portion (e.g., walls) of the IDB tray 100 defining a cavity to receive a tooth of the patient. The indirect bonding tray 100 can include one or more lingual orthodontic bracket wells 102. The indirect bonding tray 100 can include one or more buccal orthodontic button wells 104. The indirect bonding tray 100 can include one or more occlusal orthodontic bracket wells 106. The illustrated indirect bonding tray 100 includes lingual orthodontic bracket wells 102 for each tooth, occlusal bite turbo wells 106 on the first molars, and buccal orthodontic button wells 104 on the second molars. Other locations for the wells are contemplated. In some variants, a well is positioned to place an orthodontic bracket on one or more teeth of the patient's upper or lower dental arch. In some variants, a well is positioned to place an orthodontic bracket on each tooth of a patient's upper or lower dental arch. In some variants, the IDB tray 100 can include wells to receive orthodontic brackets and channel(s), slot(s), hook(s), and/or other feature(s) to receive an archform (e.g., archwire). The IDB tray 100 can receive the archform in the channel(s), slot(s), hook(s), and/or other feature(s). In some variants, the IDB tray 100 can include pins, rods, brackets, hooks, or the like that can be coupled with the IDB tray 100 to retain the archform within the channel or the like of the IDB tray 100. The orthodontic brackets can be loaded into the wells and couple with the archform. In some variants, the brackets can include a spring that facilitates the archform to be secured to the brackets. Adhesive can be applied to the bonding surfaces of the orthodontic brackets and the loaded IDB tray placed over the dental arch of the patient. The adhesive can be cured (e.g., exposure to UV light, air, and/or chemical(s)) to bond the orthodontic brackets to the patient's teeth (lingual, buccal, and/or occlusal surfaces). The IDB tray 100 can be removed, leaving the orthodontic brackets and archform installed in the patient's mouth to move the patient's teeth.
As described herein, the IDB tray 100 can be pre-loaded with one or more pre-pasted brackets before distribution to an orthodontist. Brackets can be loaded into wells of an IDB tray with a bonding surface facing out of the well, a primer can be applied to the bonding surface, and/or an adhesive can be applied to the primer before distribution to an orthodontist for use. In some variants, adhesive can be applied directly to the bonding surface without a primer.
The IDB trays and/or other components referenced herein may, in some variants, be made with and/or used with the methods and/or include features described in U.S. patent application Ser. No. 16/804,734, filed Feb. 28, 2020, entitled Indirect Bonding Trays With Bite Turbo and Orthodontic Auxiliary Integration, and published as U.S. Pub. No. 2020/0275996, which is incorporated by reference herein in its entirety. The IDB trays and/or other components referenced herein may, in some variants, be made with and/or used with the methods and/or include features described in U.S. patent application Ser. No. 17/084,383, filed Oct. 29, 2020, entitled Indirect Orthodontic Bonding Systems and Methods, and published as U.S. Pub. No. 2021/0128275, which is incorporated by reference herein in its entirety. The IDB trays and/or other components referenced herein may, in some variants, be made with and/or used with the methods and/or features (e.g., brackets, archforms, etc.) described in U.S. patent application Ser. No. 17/303,860, filed Jun. 9, 2021, entitled Orthodontic Appliance with Non-Sliding Archform, and published as U.S. Pub. No. 2021/0401548, which is incorporated by reference herein in its entirety. The IDB trays and/or other components referenced herein may, in some variants, be made with and/or used with the methods and/or features (e.g., brackets, archforms, etc.) described in U.S. patent application Ser. No. 14/067,690, filed Oct. 30, 2013, entitled Orthodontic Appliance with Snap Fitted, Non-Sliding Archwire, and published as U.S. Pub. No. 2014/0120491, which is incorporated by reference herein in its entirety.
The bracket 109 is positioned within a well of the IDB tray 100. The bracket 109 is illustrated with a primer 112 disposed over the bonding surface 116. The primer 112 can be applied in preparation for the application of an adhesive. In some variants, no primer 112 is applied.
The bracket 110 is positioned within a well of the IDB tray 100. The bracket 110 is illustrated with an uncured adhesive 114 applied to the cured primer 112 disposed on the bonding surface 116 of bracket 110. In some variants, adhesive 114 is applied to the bonding surface 116 without primer 112. With an adhesive applied, the IDB tray 100 can be positioned over the patient's dental arch such that the bonding surface 116 is bonded to the surface of a patient's tooth via the adhesive 114. In some variants, the adhesive 114 cures from exposure to air, UV light, high temperatures, chemical(s), low temperatures, and/or other curing methods. As described herein, the pre-loaded IDB tray 200 (e.g., IDB tray with preloaded brackets that are pre-pasted with uncured adhesive), also referred to as the preassembled IDB system 200, can be placed within a container that prevents or delays curing of the adhesive 114 for distribution. The orthodontists can remove the pre-loaded IDB tray 200 from the container or another controlled environment for application of the preloaded IDB tray 200 on the dental arch of the patient. The adhesive 114 can cure, bonding the one or more orthodontic brackets to the patient's teeth. The IDB tray 200 can be removed from the patient's dental arch. An archform can be coupled to the one or more orthodontic brackets to move the patient's teeth according to a treatment plan. In some variants, the pre-loaded IDB tray 200 can hold an archform coupled to the one or more orthodontic brackets such that an orthodontist can omit the step of coupling an archform to the one or more brackets and install the one or more orthodontic brackets and archform in the same step.
At block 302, an IDB tray manufacturer can form an IDB tray 100. As described herein, the IDB tray 100 can be formed for a patient's dental arch (e.g., section of or entire dental arch). The IDB tray 100 can be custom formed based on digital data from images (e.g., scans) of a patient's teeth which can be captured via using a variety of techniques, which can include a digital intra-oral scanner, a cone-beam computed tomography (CBCT) X-ray scanner, and/or others. In some variants, the patient may capture images of the patient's own teeth with a portable device (e.g., smartphone, tablet, laptop, desktop, and/or a device connected to one or more of the foregoing).
The IDB tray 100 can be formed via a variety of techniques. In some variants, the IDB tray 100 can be 3-D printed. The IDB tray 100 can be 3-D printed with a variety of materials, which can include one or more resins. In some variants, the IDB tray 100 can be formed via molding over a 3D model of a patient's dental arch with features (e.g., functional or non-functional brackets) positioned to create wells to receive the brackets that will be transferred to the patient's teeth. In some variants, the IDB tray 100 can be formed using a soluble material, as described herein. The IDB tray 100 can be formed with one or wells to receive one or more orthodontic brackets to transfer the one or more orthodontic brackets to a patient's teeth. As described herein, the IDB tray 100 can be formed with wells and/or a channel or slot to receive bite turbos, auxiliaries, temporary anchoring devices, an archform, buttons, etc. to be transferred to the teeth of a patient.
At block 304, the IDB tray manufacturer can place an orthodontic bracket in the one or more wells of the IDB tray 100. The orthodontic brackets can be placed into the wells with a bonding surface facing out of the well. The bonding surface, as described herein, can include one or more features to improve bonding to a tooth using an adhesive. In some variants, the IDB tray 100 can include one or more features to help retain the orthodontic brackets in the wells until placement on a patient's teeth. In some variants, an archform (e.g., archwire) can be loaded into a channel or slot in the IDB tray 100 before the orthodontic brackets are placed in the wells. When the orthodontic brackets are placed in the wells, the orthodontic brackets can couple with the archform. In some variants, the orthodontic brackets may include springs to secure the orthodontic brackets to the archform.
At block 306, the IDB tray manufacturer can optionally apply a primer to the bonding surfaces of the orthodontic brackets placed in the one or more wells of the IDB tray 100. The primer can improve adhesion of the adhesive to the bonding surface of the orthodontic brackets. The IDB tray manufacturer can elect the type and quantity of primer and ensure proper application.
At block 308, the IDB tray manufacturer can apply an adhesive to the bonding surfaces of the orthodontic brackets. When primer is applied to the bonding surfaces, the IDB tray manufacturer can apply the adhesive to the primer. In some variants, the primer can be cured before application of an adhesive. The IDB tray manufacturer can elect the type and quantity of adhesive and ensure proper application.
At block 310, the IDB tray manufacturer can place the loaded IDB tray with the preloaded brackets with pre-pasted uncured adhesive into a container. The container can help to prevent the adhesive from curing during shipping. In some variants, the container can be airtight to prevent the adhesive from curing or slow the curing of the adhesive. In some variants, the container can be opaque to reduce and/or prevent the transmission of light through the container to prevent the adhesive from curing or slow the curing of the adhesive. In some variants, the container can be thermally insulated to prevent the adhesive from curing or slow the curing of the adhesive.
At block 312, the IDB tray manufacturer can distribute the container with the loaded IDB tray to the orthodontist, which can include providing the container to a distributor.
The orthodontist can receive the container with the loaded IDB tray. In some variants, the orthodontist can leave the loaded IDB tray in the container until a patient is ready for treatment to prevent the adhesive from curing or slow curing. In some variants, the orthodontists can remove the loaded IDB tray from the container and place the loaded IDB tray into a controlled environment that will prevent the adhesive from curing or slow curing. When a patient is ready for treatment, the orthodontists can remove the IDB tray from the container and/or controlled environment and place the loaded IDB tray over the dental arch of the patient. The adhesive can bond the bonding surfaces of the orthodontic brackets to the patient's teeth. The IDB tray can be removed from the patient's dental arch. An archform can be coupled to the orthodontic brackets to move the patient's teeth using sliding or non-sliding mechanics. As described herein, in some variants, the archform can be transferred with the orthodontic brackets by way of the IDB tray to the teeth of the patient. As described herein, in some variants, bite turbos, auxiliaries, temporary anchoring devices, buttons, etc. can be transferred with the IDB tray, which can include being transferred with one or more orthodontic brackets and/or archform.
The IDB tray manufacturer, in some variants, can supply a kit and/or system to orthodontists. For example, in some variants, a kit and/or system can include a preloaded IDB tray (e.g., an IDB tray with preloaded brackets with uncured pre-pasted adhesive), one or more archforms (e.g., two, three, four, or more), a tool for handling and/or installing archforms, primer, and/or an adhesive (e.g., bonding agent) for attaching the plurality of brackets to the teeth of the patient in the event that more is needed. In some variants, the kit and/or system can include the components to install an orthodontic appliance (e.g., brackets and archform) in the mouth of the patient. In some variants, one archform can be loaded in the IDB tray and coupled to the preloaded brackets.
As shown, the bracket 500 can include lateral extensions or wings 508, 509 that extend in the medial-distal direction when the bracket 500 is bonded to a tooth. In some variants, the bracket 500 may not include lateral extensions or wings 508, 509. The lateral extensions or wings 508, 509 can improve rotational control of a tooth.
The bracket 500 can include a contact or bonding surface 514 that is configured to be bonded to the surface of a tooth of the patient. Accordingly, primer and/or adhesive can be applied to the contact or bonding surface 514 to facilitate bonding to a surface (e.g., lingual or buccal) of a tooth of the patient. The contact or bonding surface 514 can include grooves, slots, etc. that can receive primer and/or adhesive. As illustrated, the lateral extensions 508, 509 increase the size of the contact surface 514, which can further increase the strength of the bond between the bracket 500 and the surface of the tooth. The bonding surface 514 can be exposed when the orthodontic brackets are disposed in the wells of the IDB tray, which can facilitate the bonding surfaces 514 being bonded, respectively, to the surfaces of the teeth of the patient during curing.
The bracket 500 can include a variety of features that facilitate coupling to an archform. The bracket 500 can include a slot 502, which can extend in the medial-distal direction, disposed between a retainer 504 and stops 506, 507. The slot 502 can receive a bracket connector of an archform therein such that the archform does not slide with respect to the bracket 500. The retainer 504 and the stops 506, 507 can at least prevent movement of the bracket connector relative to the bracket 500 in the gingival-occlusal direction. The bracket 500 can include a spring 510 (e.g., C-spring) that can lock the bracket connector within the slot 502. The spring 510 can be disposed in the retainer 504 and push the connector against the stops 506, 507 to lock the connector within the slot 502. The spring 510 can be disposed in a hole or cavity 516 of the bracket 500. In some variants, the bracket 500 does not include a spring 510. A gap 512 can space apart the stops 506, 507 and receive a portion of the bracket connector therein such that the stops 506, 507 impede medial-distal movement of the bracket connector relative to the bracket 500.
The archform 700 can have a polygonal (e.g., square, rectangular), circular, and/or other shaped cross-section. The archform 700 can be cut from a sheet of material, such as shape memory material (e.g., nickel titanium). The archform 700 can include a plurality of bracket connectors or connector portions 704 that can be coupled to orthodontic brackets to install the archform 700 in the mouth of a patient. The connectors 704 can include one or more features (e.g., tongue, arms, etc.) to facilitate locking the connectors 704 within an orthodontic bracket.
The archform 700 can include a plurality of interproximal segments 702. The interproximal segments 702 can be disposed between adjacent connectors 204. The interproximal segment 702 can include loops. The loops can extend in a gingival direction when the archform 200 is installed in the mouth, which can improve aesthetics and/or facilitate flossing. The loops can open to move adjacent teeth apart from each other. The loops can close to move adjacent teeth closer together.
As shown, the archform 700 is a two-dimensional shape. The archform 700 can be set in a custom nonplanar shape using a fixture based on a digital model of a patient's teeth in second positions, which may be an expected final alignment of the teeth. The archform 700 can be held in the custom nonplanar shape by the fixture and set by exposure to heat such that the custom nonplanar shape is the default or memorized position of the archform 700. The archform 700 can follow the entire upper or lower dental arch of a patient or a segment thereof. The archform 700 can be deflected from the memorized custom nonplanar shape and coupled to orthodontic brackets (e.g., coupling the connectors 704 to orthodontic brackets). The archform 700 can exert forces on the brackets and/or directly on the patient's teeth, causing the teeth to move toward second positions (e.g., an expected planned alignment) planned in the digital model.
The retainer 408 (e.g., permanent retainer) can be bonded to the lingual or buccal surfaces of the patient's teeth to maintain the alignment of the patient's teeth. The retainer 408 can be cut to a length to span the dental arch of the patient or a section of the dental arch. The retainer 408 can be made of a variety of materials, which can include stainless steel wire, lightweight braided stainless steel wire, and/or others. The retainer 408 can be disposed in a channel 410, which can also be referred to as a slot or groove, in the IDB tray 400 when transferring the retainer 408 to the teeth of the patient. The channel 410 can be formed in the walls of the IDB tray 400 that face the buccal or lingual surfaces of the patient's teeth when disposed on the dental arch of the patient. The retainer 408 can be flexible, allowing the retainer 408 to confirm to the contours of the IDB tray 400. In some variants, the retainer 408 can be made of nickel titanium (e.g., Nitinol) and custom-shaped to correspond to the alignment of the patient's teeth. In some variants, the IDB tray 400 does not have a channel 410. The retainer 408 can be disposed against the inner surface of the IDB tray 400 that is positioned proximate the lingual surfaces of the patient's teeth when the IDB tray 400 is positioned on the patient's teeth.
The IDB tray 400 can include one or more wells 404, which can be disposed in the portion (e.g., walls) of the IDB tray 400 forming the cavities 402. The one or more wells 404 can be positioned to be open to the lingual surfaces of the patient's teeth. In some variants, the one or more wells 404 can be positioned to be open to the buccal surfaces of the patient's teeth. The channel 410 can span several of the wells 404 such that the retainer 408, when placed in the channel 410, extends through the wells 404. The one or more wells 404 can receive adhesive 406 or the like therein. The one or more wells 404 can include a contoured profile, which can include rounded, smooth, and/or curved surfaces. The one or more wells 404 can be shaped to form rounded mounds, bumps, beads, or the like with cured adhesive 406 on the surfaces (buccal or lingual) of the patient's teeth. The surfaces of the IDB tray 400 forming the one or more wells 404 can be smooth such that the surfaces of the adhesive 406, once cured, can be smooth to reduce adhesive cleanup for a clinician and/or avoid irritating the soft tissue and/or tongue of the patient. The adhesive 406, once cured, can bond the retainer 408 to the surfaces of the patient's teeth. The adhesive 406 can cure from exposure to light (e.g., UV light), air, temperature (high or low), chemicals, and/or other influences. The adhesive 406 can be clear or colored. In some variants, the IDB tray 400 does not have a channel 410 and the retainer 408 is disposed against the inner surface of the IDB tray 400 that is positioned proximate the lingual surfaces of the patient's teeth when the IDB tray 400 is positioned on the patient's teeth and the retainer 408 is disposed through the adhesive 406 in the wells 404.
At block 602, an IDB tray manufacturer can form an IDB tray 400. As described herein, the IDB tray 400 can be formed for a patient's dental arch (e.g., section of or entire upper or lower dental arch). The IDB tray 400 can be custom formed based on digital data from images (e.g., scans) of a patient's teeth, which can be captured via using a variety of techniques, which can include a digital intra-oral scanner, a cone-beam computed tomography (CBCT) X-ray scanner, and/or others. In some variants, the patient may capture images of the patient's own teeth with a portable device (e.g., smartphone, tablet, laptop, desktop, and/or a device connected to one or more of the foregoing). The IDB tray 400 can include one or more wells 404 to receive adhesive as described herein. The IDB tray 400 can include a channel 410 to receive a retainer 408 as described herein.
The IDB tray 400 can be formed via a variety of techniques. In some variants, the IDB tray 400 can be 3-D printed. The IDB tray 400 can be 3-D printed with a variety of materials, which can include one or more resins. In some variants, the IDB tray 400 can be formed via molding over a 3D model of a patient's dental arch with features (e.g., mounds, bumps, ridges, protrusions, etc.) thereon to form the wells 404 and channel 410. In some variants, the IDB tray 400 can be formed without a channel 410. In some variants, the IDB tray 400 can be formed using a soluble material, as described herein.
At block 604, the retainer 408 can be disposed in the IDB tray 400. In some variants, the retainer 408 can be disposed in the channel 410 of the IDB tray 400. In some variants, the IDB manufacturer or clinician can cut the retainer 408 to a length corresponding to the portion of the dental arch to be retained. The IDB manufacturer or clinician can place the retainer 408 in the channel 410. In some variants, the IDB tray manufacturer can ship the IDB tray 400 with the retainer 408 loaded therein to the clinician. As described herein, the retainer can be flexible and conform to the surfaces of the IDB tray 400.
At block 606, adhesive 406 can be flowed (e.g., disposed) into the wells 404. In some variants, adhesive 406 can be flowed into the wells 404 by a clinician immediately before placing the IDB tray 400 on the patient's dental arch. In some variants, adhesive 406 can be flowed into the wells 404 by the IDB tray manufacturer and the loaded IDB tray 400 can be shipped to the clinician in a container that prevents or slows the curing of the adhesive 406, as described herein. The adhesive 406 can flow around the portions of the retainer 408 extending through the wells 404.
At block 608, the IDB tray 400 with the adhesive 406 and retainer 408 can be placed over the lower or upper dental arch or a portion thereof of the patient. The adhesive 406 can contact the surfaces (buccal or lingual) of the patient's teeth.
At block 610, the adhesive 406 can be cured to bond the retainer 408 to the surfaces (lingual or buccal) of the patient's teeth. The adhesive 406 can be cured via a variety of techniques, which can at least include exposure to light (e.g., UV light), air, temperature (high or low), chemicals, and/or other influences. Due to the shape of the wells 404, the cured adhesive 406 can form beads, mounds, or the like on the surfaces of the patient's teeth. The cured adhesive 406 can have contours that are smooth and/or curved to reduce irritation to the tongue and/or tissue of the patient. In some variants, the walls of the IDB tray 400 forming the wells 404 can be smooth such that the cured adhesive 406 has smooth surfaces.
At block 612, the IDB tray 400 can be removed from the dental arch of the patient. In some variants, the adhesive 406 can be cured, in addition to the curing performed at block 610, after removal of the IDB tray 400. In some variants, the IDB tray 400 is removed before curing at block 610.
In some variants, the IDB tray 400 loaded with a retainer 408 or a retainer 408 and adhesive 406 can be incorporated into a kit, which can be distributed to a clinician.
It is intended that the scope of this present invention herein disclosed should not be limited by the particular disclosed embodiments described above. This invention is susceptible to various modifications and alternative forms, and specific examples have been shown in the drawings and are herein described in detail. This invention is not limited to the detailed forms or methods disclosed, but rather covers all equivalents, modifications, and alternatives falling within the scope and spirit of the various embodiments described and the appended claims.
Various other modifications, adaptations, and alternative designs are of course possible in light of the above teachings. Therefore, it should be understood at this time that within the scope of the appended claims the invention may be practiced otherwise than as specifically described herein. It is contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments disclosed above may be made and still fall within one or more of the inventions. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with an embodiment can be used in all other embodiments set forth herein. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above. Moreover, while the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “tying a tie onto an orthodontic bracket” includes “instructing the tying of a tie onto an orthodontic bracket.” The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “approximately”, “about”, and “substantially” as used herein include the recited numbers (e.g., about 10%=10%), and also represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.
This application claims priority to U.S. Provisional Patent Application No. 63/160,166, filed Mar. 12, 2021, which is incorporated herein by reference in its entirety. Any and all applications, if any, for which a foreign or domestic priority claim is identified in the Application Data Sheet of the present application is hereby incorporated by reference under 37 CFR 1.57.
Number | Name | Date | Kind |
---|---|---|---|
1005131 | Angle et al. | Oct 1911 | A |
1108493 | Federspiel | Aug 1914 | A |
1307382 | Stanton | Jun 1919 | A |
1323141 | Young | Nov 1919 | A |
1429749 | Maeulen et al. | Sep 1922 | A |
1638006 | Aderer | Feb 1926 | A |
2257069 | Peak | Sep 1941 | A |
2495692 | Brusse | Jan 1950 | A |
2524763 | Brusse | Oct 1950 | A |
2582230 | Brusse | Jan 1952 | A |
3256602 | Broussard | Jun 1966 | A |
3262207 | Kesling | Jul 1966 | A |
3374542 | Moylan, Jr. | Mar 1968 | A |
3464113 | Silverman et al. | Sep 1969 | A |
3593421 | Brader | Jul 1971 | A |
3600808 | Reeve | Aug 1971 | A |
3683502 | Wallshein | Aug 1972 | A |
3691635 | Wallshein | Sep 1972 | A |
3762050 | Dal Pont | Oct 1973 | A |
3765091 | Northcutt | Oct 1973 | A |
3878610 | Coscina | Apr 1975 | A |
3936938 | Northcutt | Feb 1976 | A |
3946488 | Miller et al. | Mar 1976 | A |
3949477 | Cohen et al. | Apr 1976 | A |
3975823 | Sosnay | Aug 1976 | A |
4103423 | Kessel | Aug 1978 | A |
4171568 | Forster | Oct 1979 | A |
4192070 | Lemchen et al. | Mar 1980 | A |
4193195 | Merkel et al. | Mar 1980 | A |
4197643 | Burstone et al. | Apr 1980 | A |
4268250 | Reeve | May 1981 | A |
4330273 | Kesling | May 1982 | A |
4354833 | Fujita | Oct 1982 | A |
4354834 | Wilson | Oct 1982 | A |
4382781 | Grossman | May 1983 | A |
4385890 | Klein | May 1983 | A |
4412819 | Cannon | Nov 1983 | A |
4424033 | Wool | Jan 1984 | A |
4436510 | Klein | Mar 1984 | A |
4479779 | Wool | Oct 1984 | A |
4483674 | Schütz | Nov 1984 | A |
4490112 | Tanaka et al. | Dec 1984 | A |
4501554 | Hickham | Feb 1985 | A |
4516938 | Hall | May 1985 | A |
4533320 | Piekarsky | Aug 1985 | A |
4561844 | Bates | Dec 1985 | A |
4580976 | O'Meara | Apr 1986 | A |
4582487 | Creekmore | Apr 1986 | A |
4585414 | Kottermann | Apr 1986 | A |
4592725 | Goshgarian | Jun 1986 | A |
4634662 | Rosenberg | Jan 1987 | A |
4656860 | Orthuber et al. | Apr 1987 | A |
4659310 | Kottermann | Apr 1987 | A |
4664626 | Kesling | May 1987 | A |
4674978 | Acevedo | Jun 1987 | A |
4676747 | Kesling | Jun 1987 | A |
4725229 | Miller | Feb 1988 | A |
4797093 | Bergersen | Jan 1989 | A |
4797095 | Armstrong et al. | Jan 1989 | A |
4838787 | Lerner | Jun 1989 | A |
4842514 | Kesling | Jun 1989 | A |
4872449 | Beeuwkes | Oct 1989 | A |
4881896 | Bergersen | Nov 1989 | A |
4892479 | McKenna | Jan 1990 | A |
4897035 | Green | Jan 1990 | A |
4900251 | Andreasen | Feb 1990 | A |
4978323 | Freedman | Dec 1990 | A |
5011405 | Lemchen | Apr 1991 | A |
5017133 | Miura | May 1991 | A |
5044947 | Sachdeva et al. | Sep 1991 | A |
5055039 | Abbatte et al. | Oct 1991 | A |
5092768 | Korn | Mar 1992 | A |
5114339 | Guis | May 1992 | A |
5123838 | Cannon | Jun 1992 | A |
5127828 | Suyama | Jul 1992 | A |
5131843 | Hilgers et al. | Jul 1992 | A |
5154606 | Wildman | Oct 1992 | A |
5174754 | Meritt | Dec 1992 | A |
5176514 | Viazis | Jan 1993 | A |
5176618 | Freedman | Jan 1993 | A |
5238404 | Andreiko | Aug 1993 | A |
5242304 | Truax et al. | Sep 1993 | A |
5248257 | Cannon | Sep 1993 | A |
5259760 | Orikasa | Nov 1993 | A |
5312247 | Sachdeva et al. | May 1994 | A |
5344315 | Hanson | Sep 1994 | A |
5368478 | Andreiko | Nov 1994 | A |
5380197 | Hanson | Jan 1995 | A |
5399087 | Arndt | Mar 1995 | A |
5431562 | Andreiko | Jul 1995 | A |
5447432 | Andreiko | Sep 1995 | A |
5454717 | Andreiko | Oct 1995 | A |
RE35169 | Lemchen et al. | Mar 1996 | E |
5516284 | Wildman | May 1996 | A |
5556277 | Yawata et al. | Sep 1996 | A |
5624258 | Wool | Apr 1997 | A |
5630715 | Voudouris | May 1997 | A |
5683243 | Andreiko | Nov 1997 | A |
5683245 | Sachdeva et al. | Nov 1997 | A |
5722827 | Allesee | Mar 1998 | A |
5727941 | Kesling | Mar 1998 | A |
5816800 | Brehm | Oct 1998 | A |
5820370 | Brosius | Oct 1998 | A |
5863198 | Doyle | Jan 1999 | A |
5890893 | Heiser | Apr 1999 | A |
5971754 | Sondhi et al. | Oct 1999 | A |
5975893 | Chishti et al. | Nov 1999 | A |
5993208 | Jonjic | Nov 1999 | A |
6015289 | Andreiko | Jan 2000 | A |
6036489 | Brosius | Mar 2000 | A |
6042374 | Farzin-Nia et al. | Mar 2000 | A |
6086364 | Brunson | Jul 2000 | A |
6089861 | Kelly | Jul 2000 | A |
6095809 | Kelly et al. | Aug 2000 | A |
6099304 | Carter | Aug 2000 | A |
6123544 | Cleary | Sep 2000 | A |
6183250 | Kanno et al. | Feb 2001 | B1 |
6190166 | Sasakura | Feb 2001 | B1 |
6196839 | Ross | Mar 2001 | B1 |
6213767 | Dixon et al. | Apr 2001 | B1 |
6217325 | Chishti et al. | Apr 2001 | B1 |
6227850 | Chishti et al. | May 2001 | B1 |
6244861 | Andreiko | Jun 2001 | B1 |
6250918 | Sachdeva et al. | Jun 2001 | B1 |
6258118 | Baum et al. | Jul 2001 | B1 |
6315553 | Sachdeva et al. | Nov 2001 | B1 |
6318994 | Chishti et al. | Nov 2001 | B1 |
6318995 | Sachdeva et al. | Nov 2001 | B1 |
6334853 | Kopelman et al. | Jan 2002 | B1 |
6350120 | Sachdeva et al. | Feb 2002 | B1 |
6358045 | Farzin-Nia et al. | Mar 2002 | B1 |
6371761 | Cheang et al. | Apr 2002 | B1 |
6375458 | Moorleghem et al. | Apr 2002 | B1 |
6394801 | Chishti et al. | May 2002 | B2 |
6398548 | Muhammad et al. | Jun 2002 | B1 |
6413084 | Rubbert et al. | Jun 2002 | B1 |
6431870 | Sachdeva | Aug 2002 | B1 |
6450807 | Chishti et al. | Sep 2002 | B1 |
6464495 | Voudouris | Oct 2002 | B1 |
6464496 | Sachdeva et al. | Oct 2002 | B1 |
6471511 | Chishti et al. | Oct 2002 | B1 |
6471512 | Sachdeva et al. | Oct 2002 | B1 |
6512994 | Sachdeva | Jan 2003 | B1 |
6514074 | Chishti et al. | Feb 2003 | B1 |
6532299 | Sachdeva et al. | Mar 2003 | B1 |
6540512 | Sachdeva et al. | Apr 2003 | B1 |
6554613 | Sachdeva et al. | Apr 2003 | B1 |
6572693 | Wu et al. | Jun 2003 | B1 |
6582226 | Jordan et al. | Jun 2003 | B2 |
6587828 | Sachdeva | Jul 2003 | B1 |
6595774 | Risse | Jul 2003 | B1 |
6554611 | Chishti et al. | Aug 2003 | B2 |
6602070 | Miller et al. | Aug 2003 | B2 |
6612143 | Butscher et al. | Sep 2003 | B1 |
6616444 | Andreiko | Sep 2003 | B2 |
6626666 | Chishti et al. | Sep 2003 | B2 |
6629840 | Chishti et al. | Oct 2003 | B2 |
6632089 | Rubbert | Oct 2003 | B2 |
6648640 | Rubbert | Nov 2003 | B2 |
6663385 | Tepper | Dec 2003 | B2 |
6679700 | McGann | Jan 2004 | B2 |
6682344 | Stockstill | Jan 2004 | B1 |
6685469 | Chishti et al. | Feb 2004 | B2 |
6685470 | Chishti et al. | Feb 2004 | B2 |
6688885 | Sachdeva et al. | Feb 2004 | B1 |
6699037 | Chishti et al. | Mar 2004 | B2 |
6702575 | Hilliard | Mar 2004 | B2 |
6705863 | Phan et al. | Mar 2004 | B2 |
6722878 | Graham | Apr 2004 | B2 |
6722880 | Chishti et al. | Apr 2004 | B2 |
6728423 | Rubbert et al. | Apr 2004 | B1 |
6729876 | Chishti et al. | May 2004 | B2 |
6732558 | Butscher et al. | May 2004 | B2 |
6733285 | Puttler et al. | May 2004 | B2 |
6733287 | Wilkerson | May 2004 | B2 |
6733288 | Vallittu et al. | May 2004 | B2 |
6736638 | Sachdeva et al. | May 2004 | B1 |
6738508 | Rubbert et al. | May 2004 | B1 |
6739869 | Taub et al. | May 2004 | B1 |
6744914 | Rubbert et al. | Jun 2004 | B1 |
6744932 | Rubbert et al. | Jun 2004 | B1 |
6746241 | Townsend-Hansen | Jun 2004 | B2 |
6755064 | Butscher | Jun 2004 | B2 |
6771809 | Rubbert et al. | Aug 2004 | B1 |
6776614 | Wiechmann | Aug 2004 | B2 |
6811397 | Wool | Nov 2004 | B2 |
6830450 | Knopp et al. | Dec 2004 | B2 |
6845175 | Kopelman et al. | Jan 2005 | B2 |
6846179 | Chapouland | Jan 2005 | B2 |
6851949 | Sachdeva et al. | Feb 2005 | B1 |
6860132 | Butscher | Mar 2005 | B2 |
6893257 | Kelly | May 2005 | B2 |
6928733 | Rubbert et al. | Aug 2005 | B2 |
6948931 | Chishti et al. | Sep 2005 | B2 |
6960079 | Brennan et al. | Nov 2005 | B2 |
6971873 | Sachdeva | Dec 2005 | B2 |
6976627 | Culp et al. | Dec 2005 | B1 |
6988889 | Abels | Jan 2006 | B2 |
6996452 | Erichsen et al. | Feb 2006 | B2 |
7008221 | McGann | Mar 2006 | B2 |
7013191 | Rubbert | Mar 2006 | B2 |
7020963 | Cleary et al. | Apr 2006 | B2 |
7029275 | Rubbert | Apr 2006 | B2 |
7033171 | Wilkerson | Apr 2006 | B2 |
7037107 | Yamamoto | May 2006 | B2 |
7056115 | Phan et al. | Jun 2006 | B2 |
7063531 | Maijer et al. | Jun 2006 | B2 |
7068836 | Rubbert et al. | Jun 2006 | B1 |
7076980 | Butscher | Jul 2006 | B2 |
7077646 | Hilliard | Jul 2006 | B2 |
7077647 | Choi et al. | Jul 2006 | B2 |
7080979 | Rubbert et al. | Jul 2006 | B2 |
7092107 | Babayoff et al. | Aug 2006 | B2 |
7094053 | Andreiko | Aug 2006 | B2 |
7112065 | Kopelman et al. | Sep 2006 | B2 |
7125248 | Phan et al. | Oct 2006 | B2 |
7134874 | Chishti et al. | Nov 2006 | B2 |
7137812 | Cleary et al. | Nov 2006 | B2 |
7155373 | Jordan et al. | Dec 2006 | B2 |
7156661 | Choi et al. | Jan 2007 | B2 |
7160110 | Imgrund et al. | Jan 2007 | B2 |
7168950 | Cinader, Jr. et al. | Jan 2007 | B2 |
7172417 | Sporbert et al. | Feb 2007 | B2 |
7175428 | Nicholson | Feb 2007 | B2 |
7186115 | Goldberg et al. | Mar 2007 | B2 |
7188421 | Cleary et al. | Mar 2007 | B2 |
7201574 | Wiley | Apr 2007 | B1 |
7204690 | Hanson et al. | Apr 2007 | B2 |
7214056 | Stockstill | May 2007 | B2 |
7229282 | Andreiko | Jun 2007 | B2 |
7234934 | Rosenberg | Jun 2007 | B2 |
7234936 | Lai | Jun 2007 | B2 |
7234937 | Sachdeva et al. | Jun 2007 | B2 |
7240528 | Weise et al. | Jul 2007 | B2 |
7244121 | Brosius | Jul 2007 | B2 |
7245977 | Simkins | Jul 2007 | B1 |
7252506 | Lai | Aug 2007 | B2 |
7267545 | Oda | Sep 2007 | B2 |
7283891 | Butscher | Oct 2007 | B2 |
7296996 | Sachdeva | Nov 2007 | B2 |
7335021 | Nikodem | Feb 2008 | B2 |
7347688 | Kopelman et al. | Mar 2008 | B2 |
7354268 | Raby et al. | Apr 2008 | B2 |
7357634 | Knopp | Apr 2008 | B2 |
7361017 | Sachdeva | Apr 2008 | B2 |
7364428 | Cinader, Jr. et al. | Apr 2008 | B2 |
7404714 | Cleary et al. | Jul 2008 | B2 |
7410357 | Cleary et al. | Aug 2008 | B2 |
7416408 | Farzin-Nia et al. | Aug 2008 | B2 |
7442041 | Imgrund et al. | Oct 2008 | B2 |
7452205 | Cinader, Jr. et al. | Nov 2008 | B2 |
7458812 | Sporbert et al. | Dec 2008 | B2 |
7469783 | Rose, Sr. | Dec 2008 | B2 |
7471821 | Rubbert et al. | Dec 2008 | B2 |
7473097 | Raby et al. | Jan 2009 | B2 |
7556496 | Cinader, Jr. et al. | Jul 2009 | B2 |
7578673 | Wen et al. | Aug 2009 | B2 |
7578674 | Chishti et al. | Aug 2009 | B2 |
7585172 | Rubbert | Sep 2009 | B2 |
7590462 | Rubbert | Sep 2009 | B2 |
7604181 | Culp et al. | Oct 2009 | B2 |
7621743 | Bathen | Nov 2009 | B2 |
7641473 | Sporbert | Jan 2010 | B2 |
7674110 | Oda | Mar 2010 | B2 |
7677887 | Nicholson | Mar 2010 | B2 |
7699606 | Sachdeva et al. | Apr 2010 | B2 |
7704072 | Damon | Apr 2010 | B2 |
7717708 | Sachdeva | May 2010 | B2 |
7722354 | Dumas | May 2010 | B1 |
7726470 | Cinader, Jr. et al. | Jun 2010 | B2 |
7726968 | Raby et al. | Jun 2010 | B2 |
7751925 | Rubbert | Jul 2010 | B2 |
7762815 | Cinader, Jr. et al. | Jul 2010 | B2 |
7811087 | Wiechmann | Oct 2010 | B2 |
7837464 | Marshall | Nov 2010 | B2 |
7837466 | Griffith et al. | Nov 2010 | B2 |
7837467 | Butscher | Nov 2010 | B2 |
7845938 | Kim et al. | Dec 2010 | B2 |
7850451 | Wiechmann | Dec 2010 | B2 |
7871267 | Griffith et al. | Jan 2011 | B2 |
7878806 | Lemchen | Feb 2011 | B2 |
7909603 | Oda | Mar 2011 | B2 |
D636084 | Troester | Apr 2011 | S |
D636085 | Troester | Apr 2011 | S |
7950131 | Hilliard | May 2011 | B2 |
7993133 | Cinader, Jr. et al. | Aug 2011 | B2 |
8021146 | Cinader, Jr. et al. | Sep 2011 | B2 |
8029275 | Kesling | Oct 2011 | B2 |
8033824 | Oda et al. | Oct 2011 | B2 |
8038444 | Kitching et al. | Oct 2011 | B2 |
8047034 | Butscher | Nov 2011 | B2 |
8057226 | Wiechmann | Nov 2011 | B2 |
8070487 | Chishti et al. | Dec 2011 | B2 |
8082769 | Butscher | Dec 2011 | B2 |
8092215 | Stone-collonge et al. | Jan 2012 | B2 |
8102538 | Babayoff | Jan 2012 | B2 |
8113828 | Greenfield | Feb 2012 | B1 |
8113829 | Sachdeva | Feb 2012 | B2 |
8114327 | Cinader, Jr. et al. | Feb 2012 | B2 |
8121718 | Rubbert | Feb 2012 | B2 |
8142187 | Sporbert | Mar 2012 | B2 |
8152519 | Dumas et al. | Apr 2012 | B1 |
8177551 | Sachdeva et al. | May 2012 | B2 |
8192196 | Singh | Jun 2012 | B2 |
8192197 | Sporbert | Jun 2012 | B2 |
8194067 | Raby | Jun 2012 | B2 |
8220195 | Maijer et al. | Jul 2012 | B2 |
8251699 | Reising et al. | Aug 2012 | B2 |
8266940 | Riemeir et al. | Sep 2012 | B2 |
8297970 | Kanomi | Oct 2012 | B2 |
8308478 | Primus | Nov 2012 | B2 |
8313327 | Won | Nov 2012 | B1 |
8359115 | Kopelman et al. | Jan 2013 | B2 |
8363228 | Babayoff | Jan 2013 | B2 |
8366440 | Bathen | Feb 2013 | B2 |
8376739 | Dupray | Feb 2013 | B2 |
8382917 | Johnson | Feb 2013 | B2 |
8393896 | Oda | Mar 2013 | B2 |
8417366 | Getto | Apr 2013 | B2 |
8439671 | Cinader, Jr. | May 2013 | B2 |
8439672 | Matov et al. | May 2013 | B2 |
8451456 | Babayoff | May 2013 | B2 |
8454364 | Taub et al. | Jun 2013 | B2 |
8459988 | Dumas | Jun 2013 | B2 |
8465279 | Bathen | Jun 2013 | B2 |
8469704 | Oda et al. | Jun 2013 | B2 |
8479393 | Abels et al. | Jul 2013 | B2 |
8485816 | Macchi | Jul 2013 | B2 |
8491306 | Raby et al. | Jul 2013 | B2 |
D688803 | Gilbert | Aug 2013 | S |
8500445 | Borri | Aug 2013 | B2 |
8517727 | Raby et al. | Aug 2013 | B2 |
8545221 | Sonte-collenge et al. | Oct 2013 | B2 |
8550814 | Collins | Oct 2013 | B1 |
8562337 | Kuo et al. | Oct 2013 | B2 |
8573972 | Matov et al. | Nov 2013 | B2 |
8591225 | Wu et al. | Nov 2013 | B2 |
8591226 | Griffith et al. | Nov 2013 | B2 |
8636505 | Fornoff | Jan 2014 | B2 |
8638447 | Babayoff et al. | Jan 2014 | B2 |
8638448 | Babayoff et al. | Jan 2014 | B2 |
8675207 | Babayoff | Mar 2014 | B2 |
8678818 | Dupray | Mar 2014 | B2 |
8690568 | Chapouland | Apr 2014 | B2 |
8708697 | Li et al. | Apr 2014 | B2 |
8714972 | Eichenberg | May 2014 | B2 |
8734149 | Phan et al. | May 2014 | B2 |
8734690 | Komori | May 2014 | B2 |
8780106 | Chishti et al. | Jul 2014 | B2 |
8805048 | Batesole | Aug 2014 | B2 |
8805563 | Kopelman et al. | Aug 2014 | B2 |
8807995 | Kabbani et al. | Aug 2014 | B2 |
8827697 | Cinader, Jr. et al. | Sep 2014 | B2 |
8845330 | Taub et al. | Sep 2014 | B2 |
8871132 | Abels et al. | Oct 2014 | B2 |
8931171 | Rosenberg | Jan 2015 | B2 |
8932054 | Rosenberg | Jan 2015 | B1 |
8936464 | Kopelman | Jan 2015 | B2 |
8961172 | Dupray | Feb 2015 | B2 |
8968365 | Aschmann et al. | Mar 2015 | B2 |
8979528 | Macchi | Mar 2015 | B2 |
8986004 | Dumas | Mar 2015 | B2 |
8992215 | Chapouland | Mar 2015 | B2 |
8998608 | Imgrund et al. | Apr 2015 | B2 |
9022781 | Kuo et al. | May 2015 | B2 |
D731659 | Singh | Jun 2015 | S |
9066775 | Bukhary | Jun 2015 | B2 |
9089386 | Hagelganz | Jul 2015 | B2 |
D736945 | Singh | Aug 2015 | S |
9101433 | Babayoff | Aug 2015 | B2 |
9119689 | Kabbani | Sep 2015 | B2 |
9127338 | Johnson | Sep 2015 | B2 |
9144473 | Aldo | Sep 2015 | B2 |
9161823 | Morton et al. | Oct 2015 | B2 |
9204942 | Phan et al. | Dec 2015 | B2 |
9299192 | Kopelman | Mar 2016 | B2 |
9301815 | Dumas | Apr 2016 | B2 |
9329675 | Ojelund et al. | May 2016 | B2 |
9339352 | Cinader et al. | May 2016 | B2 |
9387055 | Cinader, Jr. et al. | Jul 2016 | B2 |
9402695 | Curiel et al. | Aug 2016 | B2 |
9427291 | Khoshnevis et al. | Aug 2016 | B2 |
9427916 | Taub et al. | Aug 2016 | B2 |
9433477 | Borovinskih et al. | Sep 2016 | B2 |
9439737 | Gonzales et al. | Sep 2016 | B2 |
9451873 | Kopelman et al. | Sep 2016 | B1 |
9492246 | Lin | Nov 2016 | B2 |
9498302 | Patel | Nov 2016 | B1 |
D774193 | Makmel et al. | Dec 2016 | S |
9510757 | Kopelman et al. | Dec 2016 | B2 |
9517112 | Hagelganz et al. | Dec 2016 | B2 |
9529970 | Andreiko | Dec 2016 | B2 |
9532854 | Cinader et al. | Jan 2017 | B2 |
9539064 | Abels et al. | Jan 2017 | B2 |
9554875 | Gualano | Jan 2017 | B2 |
9566132 | Stone-collonge et al. | Feb 2017 | B2 |
9566134 | Hagelganz et al. | Feb 2017 | B2 |
9585733 | Voudouris | Mar 2017 | B2 |
9585734 | Lai et al. | Mar 2017 | B2 |
9597165 | Kopelman | Mar 2017 | B2 |
9610628 | Riemeier | Apr 2017 | B2 |
9615901 | Babyoff et al. | Apr 2017 | B2 |
9622834 | Chapouland | Apr 2017 | B2 |
9622835 | See et al. | Apr 2017 | B2 |
9629551 | Fisker et al. | Apr 2017 | B2 |
9629694 | Chun et al. | Apr 2017 | B2 |
9642678 | Kuo | May 2017 | B2 |
9675435 | Karazivan et al. | Jun 2017 | B2 |
9707056 | Machata et al. | Jul 2017 | B2 |
9763750 | Kim et al. | Sep 2017 | B2 |
9788917 | Mah | Oct 2017 | B2 |
9814543 | Huang et al. | Nov 2017 | B2 |
9844420 | Cheang | Dec 2017 | B2 |
9848958 | Matov et al. | Dec 2017 | B2 |
9867678 | Macchi | Jan 2018 | B2 |
9867680 | Damon | Jan 2018 | B2 |
9872741 | Gualano | Jan 2018 | B2 |
9877804 | Chester | Jan 2018 | B2 |
9877805 | Abels et al. | Jan 2018 | B2 |
9925020 | Jo | Mar 2018 | B2 |
9937018 | Martz et al. | Apr 2018 | B2 |
9937020 | Choi | Apr 2018 | B2 |
9956058 | Kopelman | May 2018 | B2 |
9962244 | Esbech et al. | May 2018 | B2 |
9975294 | Taub et al. | May 2018 | B2 |
9987105 | Dupray | Jun 2018 | B2 |
10028804 | Schulhof et al. | Jul 2018 | B2 |
10045834 | Gualano | Aug 2018 | B2 |
10052177 | Andreiko | Aug 2018 | B2 |
10058400 | Abels et al. | Aug 2018 | B2 |
10058401 | Tan | Aug 2018 | B2 |
10064706 | Dickerson | Sep 2018 | B2 |
10070943 | Fornoff | Sep 2018 | B2 |
10076780 | Riemeier et al. | Sep 2018 | B2 |
10098709 | Kitching et al. | Oct 2018 | B1 |
10130987 | Riemeier et al. | Nov 2018 | B2 |
10136966 | Reybrouck et al. | Nov 2018 | B2 |
10149738 | Lee | Dec 2018 | B2 |
10179035 | Shivapuja et al. | Jan 2019 | B2 |
10179036 | Lee | Jan 2019 | B2 |
10219877 | Khoshnevis et al. | Mar 2019 | B2 |
10226312 | Khoshnevis et al. | Mar 2019 | B2 |
10238476 | Karazivan et al. | Mar 2019 | B2 |
10241499 | Griffin | Mar 2019 | B1 |
10278791 | Schumacher | May 2019 | B2 |
10278792 | Wool | May 2019 | B2 |
10278793 | Gonzalez et al. | May 2019 | B2 |
10292789 | Martz et al. | May 2019 | B2 |
10307221 | Cinader, Jr. | Jun 2019 | B2 |
10314673 | Schulhof et al. | Jun 2019 | B2 |
10327867 | Nikolskiy et al. | Jun 2019 | B2 |
10342640 | Cassalia | Jul 2019 | B2 |
10368961 | Paehl et al. | Aug 2019 | B2 |
10383707 | Roein Peikar et al. | Aug 2019 | B2 |
D859663 | Cetta et al. | Sep 2019 | S |
10413386 | Moon et al. | Sep 2019 | B2 |
10426575 | Raslambekov | Oct 2019 | B1 |
10456228 | Karazivan et al. | Oct 2019 | B2 |
10478271 | Patel | Nov 2019 | B2 |
10485638 | Salah | Nov 2019 | B2 |
10492889 | Kim et al. | Dec 2019 | B2 |
10492890 | Cinader, Jr. et al. | Dec 2019 | B2 |
10555792 | Kopelman et al. | Feb 2020 | B2 |
10588717 | Chun et al. | Mar 2020 | B2 |
10595966 | Carrier, Jr. et al. | Mar 2020 | B2 |
10596717 | Hashish et al. | Mar 2020 | B2 |
10603137 | Alauddin et al. | Mar 2020 | B2 |
10636522 | Katzman et al. | Apr 2020 | B2 |
10639130 | Blees et al. | May 2020 | B2 |
10639134 | Shangjani et al. | May 2020 | B2 |
10717208 | Raslambekov et al. | Jul 2020 | B1 |
10754325 | Griffin, III | Aug 2020 | B1 |
10758323 | Kopelman | Sep 2020 | B2 |
10772706 | Schumacher | Sep 2020 | B2 |
10806376 | Lotan et al. | Oct 2020 | B2 |
10809697 | Grapsas | Oct 2020 | B2 |
10828133 | Tong et al. | Nov 2020 | B2 |
10849723 | Yancey et al. | Dec 2020 | B1 |
10869738 | Witte et al. | Dec 2020 | B2 |
10881488 | Kopelman | Jan 2021 | B2 |
10881489 | Tong et al. | Jan 2021 | B2 |
10905527 | Roein Peikar et al. | Feb 2021 | B2 |
10932887 | Hung | Mar 2021 | B2 |
10935958 | Sirovskiy et al. | Mar 2021 | B2 |
10952820 | Song et al. | Mar 2021 | B2 |
10980614 | Roein Peikar et al. | Apr 2021 | B2 |
10984549 | Goncharov et al. | Apr 2021 | B2 |
10993782 | Raslambekov | May 2021 | B1 |
10993785 | Roein Peikar et al. | May 2021 | B2 |
10996813 | Makarenkova et al. | May 2021 | B2 |
11020205 | Li et al. | Jun 2021 | B2 |
11045281 | Tsai et al. | Jun 2021 | B2 |
11045295 | Karazivan et al. | Jun 2021 | B2 |
11058517 | Tong et al. | Jul 2021 | B2 |
11058518 | Roein Peikar et al. | Jul 2021 | B2 |
11058520 | Khoshnevis et al. | Jul 2021 | B2 |
11072021 | Riemeier et al. | Jul 2021 | B2 |
11083411 | Yancey et al. | Aug 2021 | B2 |
11083546 | Cassalia | Aug 2021 | B2 |
11103330 | Webber et al. | Aug 2021 | B2 |
11129696 | Khoshnevis et al. | Sep 2021 | B2 |
11147652 | Mason et al. | Oct 2021 | B2 |
11154382 | Kopelman et al. | Oct 2021 | B2 |
11229505 | Schumacher et al. | Jan 2022 | B2 |
11234794 | Pokotilov et al. | Feb 2022 | B2 |
11304781 | Chun et al. | Apr 2022 | B2 |
11317994 | Peikar et al. | May 2022 | B2 |
11317995 | Peikar et al. | May 2022 | B2 |
11324572 | Peikar et al. | May 2022 | B2 |
11331165 | Owen | May 2022 | B2 |
11337486 | Oda et al. | May 2022 | B2 |
11357598 | Cramer | Jun 2022 | B2 |
11382720 | Kopelman et al. | Jul 2022 | B2 |
11413117 | Griffin, III et al. | Aug 2022 | B2 |
11419701 | Shanjani et al. | Aug 2022 | B2 |
11433658 | Friedrich et al. | Sep 2022 | B2 |
11435142 | Hauptmann | Sep 2022 | B2 |
11446117 | Paehl et al. | Sep 2022 | B2 |
11446219 | Kohler et al. | Sep 2022 | B2 |
11464604 | Makarenkova et al. | Oct 2022 | B2 |
11471254 | Owen | Oct 2022 | B2 |
11471255 | Cinader, Jr. et al. | Oct 2022 | B2 |
11478335 | Lai et al. | Oct 2022 | B2 |
11478337 | Griffin, III et al. | Oct 2022 | B2 |
11490995 | Wratten, Jr. et al. | Nov 2022 | B2 |
11500354 | Griffin, III et al. | Nov 2022 | B2 |
11504212 | Wratten, Jr. et al. | Nov 2022 | B2 |
11510757 | Khoshnevis et al. | Nov 2022 | B2 |
11510758 | Khoshnevis et al. | Nov 2022 | B2 |
D972732 | Villanueva | Dec 2022 | S |
11517405 | Khoshnevis et al. | Dec 2022 | B2 |
11612458 | Tong et al. | Mar 2023 | B1 |
11612459 | Tong et al. | Mar 2023 | B2 |
11696816 | Gardner | Jul 2023 | B2 |
11911971 | Tong et al. | Feb 2024 | B2 |
20010055741 | Dixon et al. | Dec 2001 | A1 |
20020006597 | Andreiko et al. | Jan 2002 | A1 |
20020010568 | Rubbert et al. | Jan 2002 | A1 |
20020081546 | Tricca et al. | Jun 2002 | A1 |
20020098460 | Farzin-Nia | Jul 2002 | A1 |
20020192617 | Phan et al. | Dec 2002 | A1 |
20030049582 | Abels et al. | Mar 2003 | A1 |
20030070468 | Butscher et al. | Apr 2003 | A1 |
20030180689 | Arx et al. | Sep 2003 | A1 |
20030194677 | Sachdeva et al. | Oct 2003 | A1 |
20030207224 | Lotte | Nov 2003 | A1 |
20040048222 | Forster et al. | Mar 2004 | A1 |
20040072120 | Lauren | Apr 2004 | A1 |
20040083611 | Rubbert et al. | May 2004 | A1 |
20040161722 | Lai et al. | Aug 2004 | A1 |
20040166459 | Voudouris | Aug 2004 | A1 |
20040168752 | Julien | Sep 2004 | A1 |
20040199177 | Kim | Oct 2004 | A1 |
20040219471 | Cleary et al. | Nov 2004 | A1 |
20050043837 | Rubbert et al. | Feb 2005 | A1 |
20050074716 | Cleary et al. | Apr 2005 | A1 |
20050106529 | Abolfathi et al. | May 2005 | A1 |
20050181332 | Sernetz | Aug 2005 | A1 |
20050191592 | Farzin-Nia et al. | Sep 2005 | A1 |
20050233276 | Kopelman et al. | Oct 2005 | A1 |
20050244780 | Abels et al. | Nov 2005 | A1 |
20050244781 | Abels et al. | Nov 2005 | A1 |
20050244790 | Kuperman | Nov 2005 | A1 |
20060006092 | DuBos | Jan 2006 | A1 |
20060014116 | Maijer et al. | Jan 2006 | A1 |
20060068354 | Jeckel | Mar 2006 | A1 |
20060127834 | Szwajkowski | Jun 2006 | A1 |
20060175209 | Sabilla et al. | Aug 2006 | A1 |
20060223021 | Cinader et al. | Oct 2006 | A1 |
20060223031 | Cinader, Jr. et al. | Oct 2006 | A1 |
20060257813 | Highland | Nov 2006 | A1 |
20060257821 | Cinader, Jr. et al. | Nov 2006 | A1 |
20070015103 | Sorel | Jan 2007 | A1 |
20070031773 | Scuzzo | Feb 2007 | A1 |
20070031775 | Andreiko | Feb 2007 | A1 |
20070087302 | Reising et al. | Apr 2007 | A1 |
20070107745 | Kiyomoto | May 2007 | A1 |
20070111154 | Sampermans | May 2007 | A1 |
20070118215 | Moaddeb | May 2007 | A1 |
20070134611 | Nicholson | Jun 2007 | A1 |
20070134612 | Contencin | Jun 2007 | A1 |
20070141525 | Cinader, Jr. | Jun 2007 | A1 |
20070154859 | Hilliard | Jul 2007 | A1 |
20070172788 | Hill, II et al. | Jul 2007 | A1 |
20070190478 | Goldberg et al. | Aug 2007 | A1 |
20070231768 | Hutchinson | Oct 2007 | A1 |
20070235051 | Robinson | Oct 2007 | A1 |
20070287121 | Cinader et al. | Dec 2007 | A1 |
20080032250 | Kopelman et al. | Feb 2008 | A1 |
20080057460 | Hicks | Mar 2008 | A1 |
20080063995 | Farzin-Nia et al. | Mar 2008 | A1 |
20080131831 | Abels et al. | Jun 2008 | A1 |
20080160475 | Rojas-Pardini | Jul 2008 | A1 |
20080199825 | Jahn | Aug 2008 | A1 |
20080227049 | Sevinc | Sep 2008 | A1 |
20080233528 | Kim et al. | Sep 2008 | A1 |
20080233530 | Cinader | Sep 2008 | A1 |
20080233531 | Raby et al. | Sep 2008 | A1 |
20080248439 | Griffith et al. | Oct 2008 | A1 |
20080254403 | Hilliard | Oct 2008 | A1 |
20080268398 | Cantarella | Oct 2008 | A1 |
20080286711 | Corcoran et al. | Nov 2008 | A1 |
20080305450 | Steen | Dec 2008 | A1 |
20090004619 | Oda et al. | Jan 2009 | A1 |
20090019698 | Christoff | Jan 2009 | A1 |
20090042160 | Ofir | Feb 2009 | A1 |
20090088838 | Shaolian et al. | Apr 2009 | A1 |
20090191502 | Cao et al. | Jul 2009 | A1 |
20090197217 | Butscher et al. | Aug 2009 | A1 |
20090216322 | Le et al. | Aug 2009 | A1 |
20090220907 | Suyama | Sep 2009 | A1 |
20090220920 | Primus et al. | Sep 2009 | A1 |
20090222075 | Gordon | Sep 2009 | A1 |
20100092903 | Sabilla | Apr 2010 | A1 |
20100092905 | Martin | Apr 2010 | A1 |
20100105000 | Scommegna et al. | Apr 2010 | A1 |
20100129765 | Mohr et al. | May 2010 | A1 |
20100129766 | Hilgers | May 2010 | A1 |
20100178628 | Kim | Jul 2010 | A1 |
20100179789 | Sachdeva et al. | Jul 2010 | A1 |
20100193979 | Goldberg et al. | Aug 2010 | A1 |
20100241120 | Bledsoe et al. | Sep 2010 | A1 |
20100279243 | Cinader, Jr. et al. | Nov 2010 | A1 |
20100304321 | Patel | Dec 2010 | A1 |
20110008745 | McQuillan et al. | Jan 2011 | A1 |
20110027743 | Cinader, Jr. et al. | Feb 2011 | A1 |
20110059414 | Hirsch | Mar 2011 | A1 |
20110091832 | Kim et al. | Apr 2011 | A1 |
20110220612 | Kim | Sep 2011 | A1 |
20110250556 | Heiser | Oct 2011 | A1 |
20110270583 | Getto et al. | Nov 2011 | A1 |
20110287376 | Walther | Nov 2011 | A1 |
20110314891 | Gilbert | Dec 2011 | A1 |
20120048432 | Johnson et al. | Mar 2012 | A1 |
20120129119 | Oda | May 2012 | A1 |
20120148972 | Lewis | Jun 2012 | A1 |
20120208144 | Chiaramonte | Aug 2012 | A1 |
20120266419 | Browne et al. | Oct 2012 | A1 |
20120315595 | Beaudoin | Dec 2012 | A1 |
20120322019 | Lewis | Dec 2012 | A1 |
20130065193 | Curiel et al. | Mar 2013 | A1 |
20130122443 | Huang et al. | May 2013 | A1 |
20130177862 | Johnson | Jul 2013 | A1 |
20130196281 | Thornton | Aug 2013 | A1 |
20130196282 | Eichelberger et al. | Aug 2013 | A1 |
20130260329 | Voudouris | Oct 2013 | A1 |
20130315595 | Barr | Nov 2013 | A1 |
20140154637 | Hansen et al. | Jun 2014 | A1 |
20140170586 | Cantarella | Jun 2014 | A1 |
20140234794 | Vu | Aug 2014 | A1 |
20140255864 | Machata et al. | Sep 2014 | A1 |
20140287376 | Hultgren et al. | Sep 2014 | A1 |
20140363782 | Wiechmann et al. | Dec 2014 | A1 |
20150010879 | Kurthy | Jan 2015 | A1 |
20150064641 | Gardner | Mar 2015 | A1 |
20150072299 | Alauddin et al. | Mar 2015 | A1 |
20150140501 | Kim | May 2015 | A1 |
20150201943 | Brooks et al. | Jul 2015 | A1 |
20150265376 | Kopelman | Sep 2015 | A1 |
20150305833 | Cosse | Oct 2015 | A1 |
20150313687 | Blees et al. | Nov 2015 | A1 |
20150351872 | Jo | Dec 2015 | A1 |
20150359610 | Gonzalez et al. | Dec 2015 | A1 |
20150366638 | Kopelman et al. | Dec 2015 | A1 |
20160074139 | Machata et al. | Mar 2016 | A1 |
20160095670 | Witte et al. | Apr 2016 | A1 |
20160106522 | Kim | Apr 2016 | A1 |
20160135926 | Djamchidi | May 2016 | A1 |
20160166357 | Portalupi | Jun 2016 | A1 |
20160175073 | Huang | Jun 2016 | A1 |
20160206403 | Ouellette et al. | Jul 2016 | A1 |
20160228214 | Sachdeva et al. | Aug 2016 | A1 |
20160242871 | Morton et al. | Aug 2016 | A1 |
20160270885 | Kwon et al. | Sep 2016 | A1 |
20160278883 | Fasci et al. | Sep 2016 | A1 |
20160287354 | Viecilli et al. | Oct 2016 | A1 |
20160310239 | Paehl et al. | Oct 2016 | A1 |
20160374780 | Carrillo Gonzalez et al. | Dec 2016 | A1 |
20170086948 | Von Mandach | Mar 2017 | A1 |
20170105816 | Ward | Apr 2017 | A1 |
20170105817 | Chun et al. | Apr 2017 | A1 |
20170128169 | Lai et al. | May 2017 | A1 |
20170135793 | Webber et al. | May 2017 | A1 |
20170140381 | Ducrohet et al. | May 2017 | A1 |
20170151037 | Lee | Jun 2017 | A1 |
20170156823 | Roein Peikar et al. | Jun 2017 | A1 |
20170165032 | Webber | Jun 2017 | A1 |
20170165532 | Khan et al. | Jun 2017 | A1 |
20170181813 | Kalkhoran | Jun 2017 | A1 |
20170196660 | Lee | Jul 2017 | A1 |
20170224444 | Viecilli et al. | Aug 2017 | A1 |
20170231721 | Akeel et al. | Aug 2017 | A1 |
20170246682 | Duerig | Aug 2017 | A1 |
20170252140 | Murphy et al. | Sep 2017 | A1 |
20170281313 | Kim | Oct 2017 | A1 |
20170281314 | Freimuller | Oct 2017 | A1 |
20170296253 | Brandner et al. | Oct 2017 | A1 |
20170296304 | Tong | Oct 2017 | A1 |
20170312052 | Moss et al. | Nov 2017 | A1 |
20170318881 | Fonte et al. | Nov 2017 | A1 |
20170325911 | Marshall | Nov 2017 | A1 |
20170340777 | Ma et al. | Nov 2017 | A1 |
20180014915 | Voudouris | Jan 2018 | A1 |
20180014916 | Cinader, Jr. et al. | Jan 2018 | A1 |
20180021108 | Cinader, Jr. et al. | Jan 2018 | A1 |
20180049847 | Oda et al. | Feb 2018 | A1 |
20180055605 | Witte et al. | Mar 2018 | A1 |
20180071057 | Rudman | Mar 2018 | A1 |
20180110589 | Gao | Apr 2018 | A1 |
20180132974 | Rudman | May 2018 | A1 |
20180161121 | Butler et al. | Jun 2018 | A1 |
20180161126 | Marshall et al. | Jun 2018 | A1 |
20180168788 | Fernie | Jun 2018 | A1 |
20180185120 | Wool | Jul 2018 | A1 |
20180185121 | Pitts et al. | Jul 2018 | A1 |
20180206941 | Lee | Jul 2018 | A1 |
20180214250 | Martz | Aug 2018 | A1 |
20180235437 | Ozerov et al. | Aug 2018 | A1 |
20180243052 | Lee | Aug 2018 | A1 |
20180338564 | Oda et al. | Nov 2018 | A1 |
20190001396 | Riemeier et al. | Jan 2019 | A1 |
20190019187 | Miller et al. | Jan 2019 | A1 |
20190053876 | Sterental et al. | Feb 2019 | A1 |
20190090988 | Schumacher et al. | Mar 2019 | A1 |
20190090989 | Jo | Mar 2019 | A1 |
20190125494 | Li et al. | May 2019 | A1 |
20190142551 | Dickenson et al. | May 2019 | A1 |
20190159871 | Chan et al. | May 2019 | A1 |
20190163060 | Skamser et al. | May 2019 | A1 |
20190175304 | Morton et al. | Jun 2019 | A1 |
20190231488 | Dickerson | Aug 2019 | A1 |
20190247147 | Grande et al. | Aug 2019 | A1 |
20190252065 | Katzman et al. | Aug 2019 | A1 |
20190262103 | Cassalia | Aug 2019 | A1 |
20190276921 | Duerig et al. | Sep 2019 | A1 |
20190321136 | Martz et al. | Oct 2019 | A1 |
20190321138 | Roein Peikar et al. | Oct 2019 | A1 |
20190328487 | Levin et al. | Oct 2019 | A1 |
20190328491 | Hostettler et al. | Oct 2019 | A1 |
20190343606 | Wu et al. | Nov 2019 | A1 |
20190350682 | Cinader, Jr. et al. | Nov 2019 | A1 |
20190388189 | Shivapuja et al. | Dec 2019 | A1 |
20200000551 | Li et al. | Jan 2020 | A1 |
20200066391 | Sachdeva et al. | Feb 2020 | A1 |
20200078137 | Chen et al. | Mar 2020 | A1 |
20200107911 | Roein Peikar et al. | Apr 2020 | A1 |
20200129272 | Roein Peikar et al. | Apr 2020 | A1 |
20200138549 | Chun et al. | May 2020 | A1 |
20200146779 | Zhang | May 2020 | A1 |
20200146791 | Schülke et al. | May 2020 | A1 |
20200170757 | Kopelman et al. | Jun 2020 | A1 |
20200188063 | Cinader, Jr. et al. | Jun 2020 | A1 |
20200197131 | Matov et al. | Jun 2020 | A1 |
20200214806 | Hung | Jul 2020 | A1 |
20200229903 | Sandwick | Jul 2020 | A1 |
20200275996 | Tong et al. | Sep 2020 | A1 |
20200281611 | Kelly et al. | Sep 2020 | A1 |
20200338706 | Cunningham et al. | Oct 2020 | A1 |
20200345455 | Roein Peikar et al. | Nov 2020 | A1 |
20200345459 | Schueller et al. | Nov 2020 | A1 |
20200345460 | Roein Peikar et al. | Nov 2020 | A1 |
20200352765 | Lin | Nov 2020 | A1 |
20200360109 | Gao et al. | Nov 2020 | A1 |
20200375270 | Holschuh et al. | Dec 2020 | A1 |
20200375699 | Roein Peikar et al. | Dec 2020 | A1 |
20200390524 | Roein Peikar et al. | Dec 2020 | A1 |
20200390535 | Curtis et al. | Dec 2020 | A1 |
20200405191 | Lotan et al. | Dec 2020 | A1 |
20200405452 | Song et al. | Dec 2020 | A1 |
20210007830 | Roein Peikar et al. | Jan 2021 | A1 |
20210007832 | Roein Peikar et al. | Jan 2021 | A1 |
20210045701 | Unklesbay et al. | Feb 2021 | A1 |
20210068928 | Witte et al. | Mar 2021 | A1 |
20210077227 | Griffin, III et al. | Mar 2021 | A1 |
20210093422 | Tong et al. | Apr 2021 | A1 |
20210128275 | Suh et al. | May 2021 | A1 |
20210134450 | Katzman et al. | May 2021 | A1 |
20210137644 | Benarouch et al. | May 2021 | A1 |
20210145547 | Roein Peikar et al. | May 2021 | A1 |
20210177551 | Roein Peikar et al. | Jun 2021 | A1 |
20210186662 | Roein Peikar et al. | Jun 2021 | A1 |
20210205049 | Cinader, Jr. | Jul 2021 | A1 |
20210212803 | Tong et al. | Jul 2021 | A1 |
20210244502 | Farkash et al. | Aug 2021 | A1 |
20210244505 | Tong et al. | Aug 2021 | A1 |
20210244507 | Curiel et al. | Aug 2021 | A1 |
20210251730 | Curiel et al. | Aug 2021 | A1 |
20210259808 | Ben-gal Nguyen et al. | Aug 2021 | A1 |
20210275286 | Karazivan et al. | Sep 2021 | A1 |
20210330430 | Khoshnevis et al. | Oct 2021 | A1 |
20210338380 | Park et al. | Nov 2021 | A1 |
20210346127 | Cassalia | Nov 2021 | A1 |
20210353389 | Peikar et al. | Nov 2021 | A1 |
20210369413 | Li et al. | Dec 2021 | A1 |
20210378792 | Akopov et al. | Dec 2021 | A1 |
20210386523 | Raby, II et al. | Dec 2021 | A1 |
20210393375 | Chekh et al. | Dec 2021 | A1 |
20210401546 | Gardner | Dec 2021 | A1 |
20210401548 | Oda et al. | Dec 2021 | A1 |
20220008169 | Reisman | Jan 2022 | A1 |
20220023009 | Tong et al. | Jan 2022 | A1 |
20220031428 | Khoshnevis et al. | Feb 2022 | A1 |
20220039921 | Kopelman et al. | Feb 2022 | A1 |
20220039922 | Yamaguchi | Feb 2022 | A1 |
20220061964 | Khoshnevis et al. | Mar 2022 | A1 |
20220087783 | Khoshnevis et al. | Mar 2022 | A1 |
20220133438 | Wratten, Jr. et al. | May 2022 | A1 |
20220137592 | Cramer et al. | May 2022 | A1 |
20220168072 | Tong et al. | Jun 2022 | A1 |
20220183797 | Khoshnevis et al. | Jun 2022 | A1 |
20220226076 | Roein Peikar et al. | Jul 2022 | A1 |
20220226077 | Roein Peikar et al. | Jul 2022 | A1 |
20220249201 | Shuman et al. | Aug 2022 | A1 |
20220257341 | Somasundaram et al. | Aug 2022 | A1 |
20220257344 | Tsai et al. | Aug 2022 | A1 |
20220304773 | Wratten, Jr. et al. | Sep 2022 | A1 |
20220304774 | Wratten, Jr. et al. | Sep 2022 | A1 |
20220314508 | Subramaniam et al. | Oct 2022 | A1 |
20220323183 | Dufour et al. | Oct 2022 | A1 |
20220338960 | Reising | Oct 2022 | A1 |
20220346912 | Li et al. | Nov 2022 | A1 |
20220361996 | Raby et al. | Nov 2022 | A1 |
20230012364 | Melka et al. | Jan 2023 | A1 |
20230070165 | Tong et al. | Mar 2023 | A1 |
20230070837 | Oda | Mar 2023 | A1 |
20230072074 | Oda | Mar 2023 | A1 |
20230100466 | Huynh et al. | Mar 2023 | A1 |
20230157790 | Medvinskaya et al. | May 2023 | A1 |
20230404715 | Peikar et al. | Dec 2023 | A1 |
20230414327 | Peikar et al. | Dec 2023 | A1 |
20240058101 | Tong et al. | Feb 2024 | A1 |
20240061966 | Oda et al. | Feb 2024 | A1 |
20240090980 | Tong et al. | Mar 2024 | A1 |
20240138958 | Oda et al. | May 2024 | A1 |
20240173105 | Tong et al. | May 2024 | A1 |
Number | Date | Country |
---|---|---|
1372872 | Oct 2002 | CN |
201079455 | Jul 2008 | CN |
201320224 | Oct 2009 | CN |
102215773 | Oct 2011 | CN |
202365955 | Aug 2012 | CN |
202892116 | Apr 2013 | CN |
203074896 | Jul 2013 | CN |
103505293 | Jan 2014 | CN |
203506900 | Apr 2014 | CN |
104188728 | Dec 2014 | CN |
204049881 | Dec 2014 | CN |
205126459 | Apr 2016 | CN |
105596098 | May 2016 | CN |
105662615 | Jun 2016 | CN |
205416056 | Aug 2016 | CN |
205569100 | Sep 2016 | CN |
106029002 | Oct 2016 | CN |
106137419 | Nov 2016 | CN |
105520787 | Dec 2017 | CN |
108690967 | Oct 2018 | CN |
109009504 | Dec 2018 | CN |
110916820 | Feb 2020 | CN |
110840586 | Feb 2022 | CN |
114167807 | Mar 2022 | CN |
117695035 | Mar 2024 | CN |
3915807 | Nov 1990 | DE |
20 2018 003 574 | Aug 2018 | DE |
10 2018 005 769 | Jan 2020 | DE |
10 2018 133 705 | Jul 2020 | DE |
10 2015 017 301 | Mar 2022 | DE |
0 778 008 | Jun 1997 | EP |
1 139 902 | Oct 2001 | EP |
1 276 433 | Jan 2003 | EP |
1 379 193 | Feb 2007 | EP |
2 076 207 | Jul 2009 | EP |
1 073 378 | Jan 2012 | EP |
2 522 298 | Nov 2012 | EP |
2 617 383 | Jul 2013 | EP |
3 285 678 | May 2021 | EP |
3 954 320 | Feb 2022 | EP |
2 726 049 | Aug 2022 | EP |
3 019 141 | Aug 2022 | EP |
4 034 077 | Aug 2022 | EP |
4 035 649 | Aug 2022 | EP |
4 044 959 | Aug 2022 | EP |
4 048 196 | Aug 2022 | EP |
4065647 | Aug 2022 | EP |
3 691 559 | Sep 2022 | EP |
3 823 813 | Sep 2022 | EP |
3 905 986 | Sep 2022 | EP |
4 056 144 | Sep 2022 | EP |
2315046 | Apr 2010 | ES |
2 525 469 | Oct 1983 | FR |
3 056 393 | Oct 2018 | FR |
11221235 | Aug 1999 | JP |
2001198143 | Jul 2001 | JP |
2009205330 | Sep 2009 | JP |
100549294 | Feb 2006 | KR |
100737442 | Jul 2007 | KR |
100925286 | Nov 2009 | KR |
101301886 | Aug 2013 | KR |
101583547 | Jan 2016 | KR |
101584737 | Jan 2016 | KR |
101723674 | Apr 2017 | KR |
133408 | Oct 2013 | RU |
WO 0180761 | Nov 2001 | WO |
WO 0185047 | Nov 2001 | WO |
WO 2003045266 | Jun 2003 | WO |
WO 2005008441 | Jan 2005 | WO |
WO 2005094716 | Oct 2005 | WO |
WO 2007069286 | Jun 2007 | WO |
WO 2008051774 | May 2008 | WO |
WO 2011034522 | Mar 2011 | WO |
WO 2011090502 | Jul 2011 | WO |
WO 2011103669 | Sep 2011 | WO |
WO 2012089735 | Jul 2012 | WO |
WO 2012140021 | Oct 2012 | WO |
WO 2013019398 | Feb 2013 | WO |
WO 2014070920 | May 2014 | WO |
WO 2016148961 | Sep 2016 | WO |
WO 2016149008 | Sep 2016 | WO |
WO 2016199972 | Dec 2016 | WO |
WO 2016210402 | Dec 2016 | WO |
WO 2017007079 | Jan 2017 | WO |
WO 2017112004 | Jun 2017 | WO |
WO 2017172537 | Oct 2017 | WO |
WO 2017184632 | Oct 2017 | WO |
WO 2017194478 | Nov 2017 | WO |
WO 2017198640 | Nov 2017 | WO |
WO 2018102588 | Jun 2018 | WO |
WO 2018122862 | Jul 2018 | WO |
WO 2018144634 | Aug 2018 | WO |
WO 2018195356 | Oct 2018 | WO |
WO 2019135504 | Jul 2019 | WO |
WO 2020095182 | May 2020 | WO |
WO 2020178353 | Sep 2020 | WO |
WO 2020180740 | Sep 2020 | WO |
WO 2020223744 | Nov 2020 | WO |
WO 2020223745 | Nov 2020 | WO |
WO 2021087158 | May 2021 | WO |
WO 2021105878 | Jun 2021 | WO |
WO 2021214613 | Oct 2021 | WO |
WO 2021225916 | Nov 2021 | WO |
WO 2021226618 | Nov 2021 | WO |
WO 2021225916 | Dec 2021 | WO |
WO 2021245484 | Dec 2021 | WO |
WO 2021252675 | Dec 2021 | WO |
WO 2022099263 | May 2022 | WO |
WO 2022099267 | May 2022 | WO |
WO 2022123402 | Jun 2022 | WO |
WO 2022137109 | Jun 2022 | WO |
WO 2022145602 | Jul 2022 | WO |
WO 2022159738 | Jul 2022 | WO |
WO 2022162488 | Aug 2022 | WO |
WO 2022162528 | Aug 2022 | WO |
WO 2022162614 | Aug 2022 | WO |
WO 2022167899 | Aug 2022 | WO |
WO 2022167995 | Aug 2022 | WO |
WO 2022180466 | Sep 2022 | WO |
WO 2022189906 | Sep 2022 | WO |
WO 2022192409 | Sep 2022 | WO |
WO 2022195391 | Sep 2022 | WO |
WO 2022204711 | Sep 2022 | WO |
WO 2022214895 | Oct 2022 | WO |
WO 2022217269 | Oct 2022 | WO |
WO 2022219459 | Oct 2022 | WO |
WO 2022229734 | Nov 2022 | WO |
WO 2022229739 | Nov 2022 | WO |
WO 2022236027 | Nov 2022 | WO |
WO 2022236287 | Nov 2022 | WO |
WO 2023033869 | Mar 2023 | WO |
WO 2023033870 | Mar 2023 | WO |
WO 2023034876 | Mar 2023 | WO |
WO 2024040008 | Feb 2024 | WO |
WO 2024059653 | Mar 2024 | WO |
Entry |
---|
IPhone 3D scanning to dental software, screen shots at 0:09 and 7:00 of YouTube video, https://www.youtube.com/watch?v=QONGdQ3QiFE, uploaded Oct. 1, 2018 in 2 pages. |
Invisalign® SmileView™, How Would You Look with Straight Teeth?, https://www.invisalign.com/get-started/invisalign-smileview?v=0#start, printed Jun. 7, 2022 in 2 pages. |
A ScanBox demo, https://www.youtube.com/watch?v=MsCfv2PDQ0o, screen shots at 0:08 and 0:19 of YouTube video, uploaded May 5, 2019 in 2 pages. |
Southern Maine Orthodontics, Virtual Orthodontic Treatment, https://southernmainebraces.com/virtual-orthodontic-treatment/, printed Jun. 7, 2022 in 3 pages. |
International Search Report and Written Opinion in Application No. PCT/US2022/19565, mailed Jul. 6, 2022, in 17 pages. |
Coro, Jorge C. et al., “MEAW Therapy” MEAW Therapy—Orthodontic Products, accessed via http://www.orthodonticproductsonline.com/2012/11/meaw-therapy/ on Mar. 14, 2016, published Nov. 12, 2012 in 6 pages. |
ElSheikh, Moaaz Mohamed, et al. “A Forsus Distalizer: A Pilot Typodont Study”. Jul.-Dec. 2004, KDJ, vol. 7, No. 2, pp. 107-115. |
Gilbert, Alfredo. An in-office wire-bending robot for lingual orthodontics. ResearchGate. Article in Journal of clinical orthodontics: JCO, Apr. 2011. |
Glauser-Williams Orthodontics: Appliances, http://www.glauserwilliamsorthodontics.com/treatments/orthodontic-appliances.php , accessed Nov. 30, 2015 in 4 pages. |
Jiang et al. Bending Process Analysis and Structure Design of Orthodontic Archwire Bending Robot. International Journal of Smart Home. vol. 7, No. 5 (2013), pp. 345-352. http://dx.doi.org/10.14257/ijsh.2013.7.5.33. |
Jiang et al. A Review on Robot in Prosthodontics and Orthodontics. Hindawi Publishing Corporation. Advances in Mechanical Engineering. Article ID 198748. 2014. 11 pages. |
Mahony, Derek, “How We Got From There to Here and Back”. Dental Learning Hub (Capture of web page dated Jun. 24, 2013 downloaded from http://web.archive.org/web/20130624145806/http://www.dental-learninghub.com/Clinical/Orthodontics.aspx, downloaded Feb. 7, 2014). |
Miller, R.J. et al. “Validation of Align Technology's Treat III™ Digital Model Superimposition Tool and Its Case Application”. Orthodontic Craniofacial Res.,2003, vol. 6 (Suppl 1): pp. 143-149. |
SureSmile. 2013. About SureSmile. (Capture of web page dated Jun. 21, 2013 downloaded from http://web.archive.org/web/20130621031404/http://suresmile.com/About-SureSmile, downloaded Feb. 7, 2014). |
Xia, et al. Development of a Robotic System for Orthodontic Archwire Bending. 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden, May 16-21, 2016. pp. 730-735. |
Yang, Won-Sik, et al. “A Study of the Regional Load Deflection Rate of Multiloop Edgewise Arch Wire.” Angle Orthodontist, 2001, vol. 7, No. 2, pp. 103-109. |
Spini et al., “Transition temperature range of thermally activated nickel-titanium archwires”, J Appl Oral Sci., Apr. 2014, vol. 22, No. 2, pp. 109-117. |
Sinodentalgroup, “Braces Bonding Teeth Gems Glue Light Cure Adhesive”, https://sinodentalgroup.myshopify.com/products/sino-dental-group-orthodontic-brackets-glue-braces-bonding-light-cure-adhesive-kit?pr_prod_strat=use_description&pr_rec_id=0d0a6cdc9&pr_rec_pid=6687895355572&pr_ref_pid=6705886363828&pr_seq=uniform, dated as downloaded Jun. 7, 2023 in 12 pages. |
In Brace, Brush & Floss Easily with In Brace, dated as uploaded on: May 26, 2022, YouTube, Retrieved from Internet: https://www.youtube.com/watch?v=uAsxiBlbY4Y (Dated Year: 2022). |
MEAW School, Introduction to MEAW (Multi-loop Edgewise Arch Wire), dated as uploaded on: Mar. 24, 2021, YouTube, Retrieved from Internet: https://www.youtube.com/watch?v=ne785jIzN Pg (Year: 2021). |
Richard Gawel, Swift Health Systems Raises $45 Million to Finance Invisible Orthodontics, dated as published on: Dec. 4, 2019, dentistrytoday.com, Retrieved from Internet: https://www.dentistrytoday.com/products/swift-health-systems-raises-45-million-to-finance-invisible-orthodontics/ (Dated Year: 2019). |
In Brace, What Is In Brace?—Integration Booster, dated as uploaded on: May 22, 2023, YouTube, Retrieved from Internet: https://www.youtube.com/watch?v=ANUPkCSfQo4 (Dated Year: 2023). |
Number | Date | Country | |
---|---|---|---|
20220287804 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
63160166 | Mar 2021 | US |