Indirect orthodontic bonding systems and methods

Information

  • Patent Grant
  • 12268571
  • Patent Number
    12,268,571
  • Date Filed
    Wednesday, March 9, 2022
    3 years ago
  • Date Issued
    Tuesday, April 8, 2025
    6 months ago
Abstract
An indirect orthodontic bonding (IDB) tray preloaded with one or more orthodontic brackets with uncured pre-pasted adhesive. The loaded IDB tray can be produced by an IDB tray manufacturer and distributed to an orthodontist in a container that prevents the adhesive from curing. The loaded IDB tray can be removed from the container when the patient is ready for treatment. The loaded IDB tray can be placed over the dental arch of the patient such that the one or more orthodontic brackets can bond, via curing of the adhesive, to the teeth of the patient.
Description
BACKGROUND
Field of the Invention

This invention relates in some aspects to indirect orthodontic bonding systems and methods, including indirect orthodontic bonding trays.


SUMMARY

Indirect orthodontic bonding (IDB) trays can be used by orthodontists to place one or more brackets on a patient's teeth in predetermined locations. The IDB tray can be custom made for a patient's dental arch. The IDB tray can include one or more wells to receive an orthodontic bracket therein. The orthodontist can place an orthodontic bracket in a well with a bonding surface facing outward. An adhesive can be applied to a bonding surface of the orthodontic bracket. The IDB tray can be placed over a dental arch of the patient to apply the bonding surface of the orthodontic brackets to the patient's teeth. The adhesive can bond the bonding surfaces of the orthodontic brackets to the surfaces of the patient's teeth, securing the orthodontic brackets in predetermined locations on the patient's teeth. Loading one or more orthodontic brackets into the one or more wells of the IDB tray can be a time intensive process. Additionally, orthodontic brackets may be dropped on a contaminated surface during the loading process, requiring the orthodontic brackets to be cleaned—prolonging the administration of orthodontic care. Inadequate or excessive adhesive may be applied to the bonding surfaces, decreasing bonding reliability.


The IDB systems (e.g., kits) and methods described herein solve at least the foregoing problems. The IDB systems and methods described herein can advance the ease of use of IDB trays and minimize errors during bracket bonding. The IDB trays can be custom designed and formed for a particular patient's dental arch or segment of a dental arch segment based on images (e.g., scans) of a patient's mouth. The IDB tray can be formed by an IDB tray manufacturer. The IDB tray can include one or more wells shaped to receive an orthodontic bracket. The IDB tray manufacturer can load an orthodontic bracket into each of the one or more wells of the IDB tray with a bonding surface of the orthodontic bracket facing out of the well. The IDB tray manufacturer can apply an adhesive to the bonding surface of the orthodontic brackets in the one or more wells. The IDB tray manufacturer can select the quantity and type of adhesive used, which can improve bonding reliability. The loaded IDB tray (e.g., the IDB tray with the preloaded brackets and bonding surfaces with uncured pre-pasted adhesive) can be placed in a container to prevent curing of the adhesive. The loaded IDB tray, also referred to as an preloaded or preassembled IDB system or preloaded IDB tray, within the container can be shipped to an orthodontist's office for use. When ready for use, the orthodontist can remove the loaded IDB tray from the container and/or another controlled environment and place the loaded IDB tray over the dental arch of the patient to bond the one or more orthodontic brackets to the patient's teeth.


In some variants, a kit for bonding one or more orthodontic brackets to a dental arch of a patient is disclosed. The kit can include a preloaded indirect orthodontic bonding (IDB) tray. The preloaded IDB tray can include an IDB tray with one or more wells. The preloaded IDB tray can include one or more orthodontic brackets placed within the one or more wells. A bonding surface of the one or more orthodontic brackets can face out of the one or more wells. The preloaded IDB tray can include an adhesive applied onto the bonding surface of the one or more orthodontic brackets. The kit can include a container for housing the preloaded IDB tray during shipment. The container can prevent the adhesive from curing.


In some variants, the preloaded IDB tray can include a primer applied to the bonding surface of the one or more orthodontic brackets.


In some variants, the kit can include one or more archforms that can couple to the one or more orthodontic brackets when bonded to a patient's teeth. The one or more archforms can move the patient's teeth.


In some variants, the kit can include a tool that can facilitate coupling an archform of the one or more archforms to the one or more orthodontic brackets when bonded to a patient's teeth.


In some variants, the IBD tray can be in separate segments corresponding to portions of a patient's dental arch.


In some variants, a method of producing a loaded indirect orthodontic bonding (IDB) tray for distribution is disclosed herein. The method can include forming the IDB tray with one or more wells. The method can include placing an orthodontic bracket into the one or more wells such that a bonding surface of the orthodontic bracket can face out of the one or more wells. The method can include applying an adhesive to the bonding surface of the orthodontic bracket. The method can include placing the IDB tray preloaded with the orthodontic bracket and pre-pasted adhesive into a container for distribution. The container can prevent the adhesive from curing.


In some variants, the method can include applying a primer to the bonding surface of the orthodontic bracket.


In some variants, forming the IDB tray with the one or more wells can include 3D printing the IDB tray based on a digital model of at least a portion of a patient's dental arch.


In some variants, forming the IDB tray with the one or more wells can include molding over a 3D model of a patient's dental arch or portion thereof with one or more features positioned to form the one or more wells.


In some variants, a preloaded indirect orthodontic bonding (IDB) tray for distribution is disclosed herein. The preloaded IDB tray can include an IDB tray with one or more wells. The preloaded IDB tray can include one or more orthodontic brackets placed within the one or more wells. A bonding surface of the one or more orthodontic brackets can face out of the one or more wells. The preloaded IDB tray can include a primer applied to the bonding surface of the one or more orthodontic brackets. The preloaded IDB tray can include an adhesive pasted onto the bonding surface of the one or more orthodontic brackets.


In some variants, the preloaded IDB tray can be distributed to an orthodontist in a container that can prevent the adhesive from curing such that the preloaded IDB tray is ready for placement on a dental arch of a patient upon receipt by the orthodontist.


In some variants, the IDB tray can include a channel and the archform can be disposed in the channel.


In some variants, the preloaded IDB tray can include an archform disposed in the IDB tray.


In some variants, the archform can be coupled to the one or more orthodontic brackets.


In some variants, a preloaded indirect bonding (IDB) tray for distribution is disclosed herein. The preloaded IDB tray can include an indirect bonding (IDB) tray with a plurality of wells. Each of the plurality of wells can hold an adhesive therein. The preloaded IDB tray can include a retainer that can be adhered to the surfaces of a patient's teeth. The retainer can be disposed in the IDB tray and through the adhesive disposed in the plurality of wells.


In some variants, the retainer can be bonded to lingual surfaces of a patient's teeth.


In some variants, the retainer can be a braided stainless steel wire.


In some variants, the IDB tray can include a channel holding the retainer.


The channel can extend through the plurality of wells.


In some variants, the channel can span between adjacent wells of the plurality of wells.


In some variants, a kit for bonding a retainer to surfaces of a patient's teeth is disclosed herein. The kit can include a preloaded IDB tray, such as any disclosed herein. The kit can include a container for housing the preloaded IDB tray. The container can prevent the adhesive from curing.


In some variants, a method of bonding a retainer to surfaces of a patient's teeth is disclosed herein. The method can include placing a retainer into an indirect bonding (IDB) tray. The retainer can be flexible. The retainer can conform to contours of the IDB tray. The method can include flowing adhesive into wells of the IDB tray. The method can include positioning the IDB tray over the patient's teeth. The method can include curing the adhesive to bond the retainer to the surfaces of the patient's teeth and to form rounded mounds of cured adhesive on the surfaces of the patient's teeth. Portions of the retainer extending between rounded mounds of cured adhesive can be rigid. The method can include removing the IDB tray.


In some variants, curing the adhesive can include exposing the adhesive to UV light.


In some variants, the method can include forming the IDB tray.


In some variants, the forming the IDB tray can include 3D printing the IDB tray.


In some variants, the retainer can be a braided stainless steel wire.


In some variants, the placing the retainer into the IDB tray can include placing the retainer into a channel of the IDB tray. The channel can be disposed in a surface of the IDB tray that can face lingual surfaces of the patient's teeth when the IDB tray is positioned over the patient's teeth.





BRIEF DESCRIPTION OF THE DRAWINGS

These drawings are illustrative embodiments and do not present all possible embodiments of this invention. The illustrated embodiments are intended to illustrate, but not to limit, the scope of protection. Various features of the different disclosed embodiments can be combined to form further embodiments, which are part of this disclosure.



FIG. 1 illustrates an indirect orthodontic bonding (IDB) tray.



FIG. 2 illustrates an IDB tray with brackets positioned within wells of the IDB tray.



FIG. 3 illustrates a method of producing a preloaded IDB tray for distribution.



FIG. 4 illustrates an orthodontic bracket with a spring removed.



FIGS. 5A and 5B illustrate various views of the orthodontic bracket with the spring disposed in the orthodontic bracket.



FIG. 6 illustrates an archform.



FIG. 7 illustrate the archform coupled with the orthodontic bracket.



FIG. 8 illustrates an indirect orthodontic bonding (IDB) tray being positioned over a patient's teeth to bond a retainer to the patient's teeth.



FIG. 9 illustrates the IDB tray disposed over the patient's teeth.



FIG. 10 illustrates the retainer bonded to the patient's teeth with adhesive mounds.



FIG. 11 illustrates a method of installing a retainer in the patient's mouth with the IDB tray.





DETAILED DESCRIPTION

It can be difficult and/or time consuming to properly position one or more orthodontic brackets on a patient's teeth for bonding when administering a treatment plan to move the patient's teeth from maloccluded positions to predetermined positions. An indirect orthodontic bonding (IDB) tray can be used to assist an orthodontist or other individual attending to a patient to properly position the one or more orthodontic brackets on a patient's teeth in predetermined locations for bonding. The IDB tray can be used, in some variants, to position a plurality of orthodontic brackets simultaneously on a patient's teeth for bonding. Once the one or more orthodontic brackets are bonded to the patient's teeth, an archform can be coupled to the one or more orthodontic brackets to move the patient's teeth using sliding or non-sliding mechanics.


Disclosed herein are IDB systems (e.g., kits) and methods to advance the ease of use of IDB trays and minimize errors during bracket bonding. Preloaded IDB trays can include custom formed IDB trays with preloaded brackets with uncured pre-pasted adhesive applied thereto. The preloaded IDB trays can be produced by an IDB tray manufacturer and distributed to orthodontists in a container that prevents curing of the adhesive. In some variants, the container can be air tight, temperature controlled, and/or light blocking. The preloaded IDB trays can remain in the container or be removed from the container and placed in a controlled environment until the orthodontist or other individual is ready to bond the orthodontic brackets to the teeth of the patient.



FIG. 1 illustrates a gingival auxiliary view of an indirect orthodontic bonding (IDB) tray 100. The IDB tray 100 can be custom formed for a patient's dental arch. The IDB tray 100 can be custom formed based on digital data from images (e.g., scans) of a patient's teeth which can be captured using a variety of techniques, which can include a digital intra-oral scanner, a cone-beam computed tomography (CBCT) X-ray scanner, and/or others. The IDB tray 100 can be formed via a variety of techniques. In some variants, the IDB tray 100 can be 3-D printed—also known as additive manufacturing. The IDB tray 100 can be 3-D printed based on a digital model of at least a portion of the patient's dental arch. The IDB tray 100 can be 3-D printed with a variety of materials, which can include one or more resins. In some variants, the IDB tray 100 can be formed via molding over a 3D model of a patient's dental arch with features (e.g., functional or non-functional brackets, bite turbos, auxiliaries, temporary anchoring devices, archform, buttons, etc.) positioned to create wells to receive the brackets, bite turbos, auxiliaries, temporary anchoring devices, archform, buttons, etc. that will be transferred to the patient's teeth. The moldable material can be a polyvinyl siloxane (PVS) material. The indirect bonding tray 100 can be formed of a single piece. The IDB tray 100 can be formed of multiple pieces.


In some variants, the IDB tray 100 can be formed of a soluble material, such as melted/dried (caramelized) sugar and/or cellulose. The soluble material can be structurally stiff when dry but dissolve when wet. Accordingly, the IDB tray 100, when formed of soluble material, can be used to place one or more orthodontic brackets on a patient's teeth and, after placement (e.g., bonding), the patient's mouth can be rinsed with water or another liquid—dissolving the IDB tray 100 made of soluble material.


The indirect bonding tray 100 can correspond to a patient's upper or lower dental arch. The IDB tray 100 can correspond to a section of a patient's upper or lower dental arch (e.g., 1, 2, 3, 4, or more teeth). The IDB tray 100 can include cavities to receive the patient's teeth. The indirect bonding tray 100 can include one or more wells for receiving orthodontic brackets, bite turbos, auxiliaries, temporary anchoring devices, archform, buttons, etc. to be transferred to the teeth of a patient. The one or more wells can be disposed in the portion (e.g., walls) of the IDB tray 100 defining a cavity to receive a tooth of the patient. The indirect bonding tray 100 can include one or more lingual orthodontic bracket wells 102. The indirect bonding tray 100 can include one or more buccal orthodontic button wells 104. The indirect bonding tray 100 can include one or more occlusal orthodontic bracket wells 106. The illustrated indirect bonding tray 100 includes lingual orthodontic bracket wells 102 for each tooth, occlusal bite turbo wells 106 on the first molars, and buccal orthodontic button wells 104 on the second molars. Other locations for the wells are contemplated. In some variants, a well is positioned to place an orthodontic bracket on one or more teeth of the patient's upper or lower dental arch. In some variants, a well is positioned to place an orthodontic bracket on each tooth of a patient's upper or lower dental arch. In some variants, the IDB tray 100 can include wells to receive orthodontic brackets and channel(s), slot(s), hook(s), and/or other feature(s) to receive an archform (e.g., archwire). The IDB tray 100 can receive the archform in the channel(s), slot(s), hook(s), and/or other feature(s). In some variants, the IDB tray 100 can include pins, rods, brackets, hooks, or the like that can be coupled with the IDB tray 100 to retain the archform within the channel or the like of the IDB tray 100. The orthodontic brackets can be loaded into the wells and couple with the archform. In some variants, the brackets can include a spring that facilitates the archform to be secured to the brackets. Adhesive can be applied to the bonding surfaces of the orthodontic brackets and the loaded IDB tray placed over the dental arch of the patient. The adhesive can be cured (e.g., exposure to UV light, air, and/or chemical(s)) to bond the orthodontic brackets to the patient's teeth (lingual, buccal, and/or occlusal surfaces). The IDB tray 100 can be removed, leaving the orthodontic brackets and archform installed in the patient's mouth to move the patient's teeth.


As described herein, the IDB tray 100 can be pre-loaded with one or more pre-pasted brackets before distribution to an orthodontist. Brackets can be loaded into wells of an IDB tray with a bonding surface facing out of the well, a primer can be applied to the bonding surface, and/or an adhesive can be applied to the primer before distribution to an orthodontist for use. In some variants, adhesive can be applied directly to the bonding surface without a primer.


The IDB trays and/or other components referenced herein may, in some variants, be made with and/or used with the methods and/or include features described in U.S. patent application Ser. No. 16/804,734, filed Feb. 28, 2020, entitled Indirect Bonding Trays With Bite Turbo and Orthodontic Auxiliary Integration, and published as U.S. Pub. No. 2020/0275996, which is incorporated by reference herein in its entirety. The IDB trays and/or other components referenced herein may, in some variants, be made with and/or used with the methods and/or include features described in U.S. patent application Ser. No. 17/084,383, filed Oct. 29, 2020, entitled Indirect Orthodontic Bonding Systems and Methods, and published as U.S. Pub. No. 2021/0128275, which is incorporated by reference herein in its entirety. The IDB trays and/or other components referenced herein may, in some variants, be made with and/or used with the methods and/or features (e.g., brackets, archforms, etc.) described in U.S. patent application Ser. No. 17/303,860, filed Jun. 9, 2021, entitled Orthodontic Appliance with Non-Sliding Archform, and published as U.S. Pub. No. 2021/0401548, which is incorporated by reference herein in its entirety. The IDB trays and/or other components referenced herein may, in some variants, be made with and/or used with the methods and/or features (e.g., brackets, archforms, etc.) described in U.S. patent application Ser. No. 14/067,690, filed Oct. 30, 2013, entitled Orthodontic Appliance with Snap Fitted, Non-Sliding Archwire, and published as U.S. Pub. No. 2014/0120491, which is incorporated by reference herein in its entirety.



FIG. 2 illustrates an IDB tray 100 with an orthodontic bracket 108, orthodontic bracket 109, and orthodontic bracket 110 loaded, respectively, into wells of the IDB tray 100. In some variants, the brackets are the same. In some variants, the brackets are configured for the type of tooth upon which the bracket will be bonded (e.g., molar, lower anterior, etc.). The bracket 108 is positioned within a well with a bonding surface 116 facing out of the well. The bonding surface 116 can be bonded to a surface of a patient's tooth. The bonding surface 116 can include one or more features to improve bonding. For example, the bonding surface 116 can include features that increase the surface area of the bonding surface 116. In some variants, the bonding surface 116 can include grooves, slots, cuts, recesses, contours, and/or other features to improve bonding to the patient's tooth.


The bracket 109 is positioned within a well of the IDB tray 100. The bracket 109 is illustrated with a primer 112 disposed over the bonding surface 116. The primer 112 can be applied in preparation for the application of an adhesive. In some variants, no primer 112 is applied.


The bracket 110 is positioned within a well of the IDB tray 100. The bracket 110 is illustrated with an uncured adhesive 114 applied to the cured primer 112 disposed on the bonding surface 116 of bracket 110. In some variants, adhesive 114 is applied to the bonding surface 116 without primer 112. With an adhesive applied, the IDB tray 100 can be positioned over the patient's dental arch such that the bonding surface 116 is bonded to the surface of a patient's tooth via the adhesive 114. In some variants, the adhesive 114 cures from exposure to air, UV light, high temperatures, chemical(s), low temperatures, and/or other curing methods. As described herein, the pre-loaded IDB tray 200 (e.g., IDB tray with preloaded brackets that are pre-pasted with uncured adhesive), also referred to as the preassembled IDB system 200, can be placed within a container that prevents or delays curing of the adhesive 114 for distribution. The orthodontists can remove the pre-loaded IDB tray 200 from the container or another controlled environment for application of the preloaded IDB tray 200 on the dental arch of the patient. The adhesive 114 can cure, bonding the one or more orthodontic brackets to the patient's teeth. The IDB tray 200 can be removed from the patient's dental arch. An archform can be coupled to the one or more orthodontic brackets to move the patient's teeth according to a treatment plan. In some variants, the pre-loaded IDB tray 200 can hold an archform coupled to the one or more orthodontic brackets such that an orthodontist can omit the step of coupling an archform to the one or more brackets and install the one or more orthodontic brackets and archform in the same step.



FIG. 3 illustrates a method 300 of producing a preloaded IDB tray. The flow diagram is provided for the purpose of facilitating description of aspects of some embodiments. The diagram does not attempt to illustrate all aspects of the disclosures and should not be considered limiting. In some variants, some of the steps described in reference to method 300 may be omitted.


At block 302, an IDB tray manufacturer can form an IDB tray 100. As described herein, the IDB tray 100 can be formed for a patient's dental arch (e.g., section of or entire dental arch). The IDB tray 100 can be custom formed based on digital data from images (e.g., scans) of a patient's teeth which can be captured via using a variety of techniques, which can include a digital intra-oral scanner, a cone-beam computed tomography (CBCT) X-ray scanner, and/or others. In some variants, the patient may capture images of the patient's own teeth with a portable device (e.g., smartphone, tablet, laptop, desktop, and/or a device connected to one or more of the foregoing).


The IDB tray 100 can be formed via a variety of techniques. In some variants, the IDB tray 100 can be 3-D printed. The IDB tray 100 can be 3-D printed with a variety of materials, which can include one or more resins. In some variants, the IDB tray 100 can be formed via molding over a 3D model of a patient's dental arch with features (e.g., functional or non-functional brackets) positioned to create wells to receive the brackets that will be transferred to the patient's teeth. In some variants, the IDB tray 100 can be formed using a soluble material, as described herein. The IDB tray 100 can be formed with one or wells to receive one or more orthodontic brackets to transfer the one or more orthodontic brackets to a patient's teeth. As described herein, the IDB tray 100 can be formed with wells and/or a channel or slot to receive bite turbos, auxiliaries, temporary anchoring devices, an archform, buttons, etc. to be transferred to the teeth of a patient.


At block 304, the IDB tray manufacturer can place an orthodontic bracket in the one or more wells of the IDB tray 100. The orthodontic brackets can be placed into the wells with a bonding surface facing out of the well. The bonding surface, as described herein, can include one or more features to improve bonding to a tooth using an adhesive. In some variants, the IDB tray 100 can include one or more features to help retain the orthodontic brackets in the wells until placement on a patient's teeth. In some variants, an archform (e.g., archwire) can be loaded into a channel or slot in the IDB tray 100 before the orthodontic brackets are placed in the wells. When the orthodontic brackets are placed in the wells, the orthodontic brackets can couple with the archform. In some variants, the orthodontic brackets may include springs to secure the orthodontic brackets to the archform.


At block 306, the IDB tray manufacturer can optionally apply a primer to the bonding surfaces of the orthodontic brackets placed in the one or more wells of the IDB tray 100. The primer can improve adhesion of the adhesive to the bonding surface of the orthodontic brackets. The IDB tray manufacturer can elect the type and quantity of primer and ensure proper application.


At block 308, the IDB tray manufacturer can apply an adhesive to the bonding surfaces of the orthodontic brackets. When primer is applied to the bonding surfaces, the IDB tray manufacturer can apply the adhesive to the primer. In some variants, the primer can be cured before application of an adhesive. The IDB tray manufacturer can elect the type and quantity of adhesive and ensure proper application.


At block 310, the IDB tray manufacturer can place the loaded IDB tray with the preloaded brackets with pre-pasted uncured adhesive into a container. The container can help to prevent the adhesive from curing during shipping. In some variants, the container can be airtight to prevent the adhesive from curing or slow the curing of the adhesive. In some variants, the container can be opaque to reduce and/or prevent the transmission of light through the container to prevent the adhesive from curing or slow the curing of the adhesive. In some variants, the container can be thermally insulated to prevent the adhesive from curing or slow the curing of the adhesive.


At block 312, the IDB tray manufacturer can distribute the container with the loaded IDB tray to the orthodontist, which can include providing the container to a distributor.


The orthodontist can receive the container with the loaded IDB tray. In some variants, the orthodontist can leave the loaded IDB tray in the container until a patient is ready for treatment to prevent the adhesive from curing or slow curing. In some variants, the orthodontists can remove the loaded IDB tray from the container and place the loaded IDB tray into a controlled environment that will prevent the adhesive from curing or slow curing. When a patient is ready for treatment, the orthodontists can remove the IDB tray from the container and/or controlled environment and place the loaded IDB tray over the dental arch of the patient. The adhesive can bond the bonding surfaces of the orthodontic brackets to the patient's teeth. The IDB tray can be removed from the patient's dental arch. An archform can be coupled to the orthodontic brackets to move the patient's teeth using sliding or non-sliding mechanics. As described herein, in some variants, the archform can be transferred with the orthodontic brackets by way of the IDB tray to the teeth of the patient. As described herein, in some variants, bite turbos, auxiliaries, temporary anchoring devices, buttons, etc. can be transferred with the IDB tray, which can include being transferred with one or more orthodontic brackets and/or archform.


The IDB tray manufacturer, in some variants, can supply a kit and/or system to orthodontists. For example, in some variants, a kit and/or system can include a preloaded IDB tray (e.g., an IDB tray with preloaded brackets with uncured pre-pasted adhesive), one or more archforms (e.g., two, three, four, or more), a tool for handling and/or installing archforms, primer, and/or an adhesive (e.g., bonding agent) for attaching the plurality of brackets to the teeth of the patient in the event that more is needed. In some variants, the kit and/or system can include the components to install an orthodontic appliance (e.g., brackets and archform) in the mouth of the patient. In some variants, one archform can be loaded in the IDB tray and coupled to the preloaded brackets.



FIG. 4 illustrates an example orthodontic bracket 500. The orthodontic bracket 500 can be transferred to a tooth of a patient with the IDB trays described herein. For example, the orthodontic bracket 500 can be placed in a well of an IDB tray. Primer and/or adhesive can be applied to a contact or bonding surface facing out of the well.


As shown, the bracket 500 can include lateral extensions or wings 508, 509 that extend in the medial-distal direction when the bracket 500 is bonded to a tooth. In some variants, the bracket 500 may not include lateral extensions or wings 508, 509. The lateral extensions or wings 508, 509 can improve rotational control of a tooth.


The bracket 500 can include a contact or bonding surface 514 that is configured to be bonded to the surface of a tooth of the patient. Accordingly, primer and/or adhesive can be applied to the contact or bonding surface 514 to facilitate bonding to a surface (e.g., lingual or buccal) of a tooth of the patient. The contact or bonding surface 514 can include grooves, slots, etc. that can receive primer and/or adhesive. As illustrated, the lateral extensions 508, 509 increase the size of the contact surface 514, which can further increase the strength of the bond between the bracket 500 and the surface of the tooth. The bonding surface 514 can be exposed when the orthodontic brackets are disposed in the wells of the IDB tray, which can facilitate the bonding surfaces 514 being bonded, respectively, to the surfaces of the teeth of the patient during curing.


The bracket 500 can include a variety of features that facilitate coupling to an archform. The bracket 500 can include a slot 502, which can extend in the medial-distal direction, disposed between a retainer 504 and stops 506, 507. The slot 502 can receive a bracket connector of an archform therein such that the archform does not slide with respect to the bracket 500. The retainer 504 and the stops 506, 507 can at least prevent movement of the bracket connector relative to the bracket 500 in the gingival-occlusal direction. The bracket 500 can include a spring 510 (e.g., C-spring) that can lock the bracket connector within the slot 502. The spring 510 can be disposed in the retainer 504 and push the connector against the stops 506, 507 to lock the connector within the slot 502. The spring 510 can be disposed in a hole or cavity 516 of the bracket 500. In some variants, the bracket 500 does not include a spring 510. A gap 512 can space apart the stops 506, 507 and receive a portion of the bracket connector therein such that the stops 506, 507 impede medial-distal movement of the bracket connector relative to the bracket 500.



FIGS. 5A and 5B illustrate the bracket 500 with the spring 510 disposed in the hole or cavity 516.



FIG. 6 illustrates an example archform 700, which can also be referred to as an archwire. In some variants, the archform 700 can be transferred, via an IDB tray, to couple with orthodontic brackets bonded to the patients teeth. In some variants, the archform 700 can be disposed in an IDB tray and coupled with orthodontic brackets disposed in the IDB tray to transfer orthodontic brackets and the archform 700 together to the teeth of a patient.


The archform 700 can have a polygonal (e.g., square, rectangular), circular, and/or other shaped cross-section. The archform 700 can be cut from a sheet of material, such as shape memory material (e.g., nickel titanium). The archform 700 can include a plurality of bracket connectors or connector portions 704 that can be coupled to orthodontic brackets to install the archform 700 in the mouth of a patient. The connectors 704 can include one or more features (e.g., tongue, arms, etc.) to facilitate locking the connectors 704 within an orthodontic bracket.


The archform 700 can include a plurality of interproximal segments 702. The interproximal segments 702 can be disposed between adjacent connectors 204. The interproximal segment 702 can include loops. The loops can extend in a gingival direction when the archform 200 is installed in the mouth, which can improve aesthetics and/or facilitate flossing. The loops can open to move adjacent teeth apart from each other. The loops can close to move adjacent teeth closer together.


As shown, the archform 700 is a two-dimensional shape. The archform 700 can be set in a custom nonplanar shape using a fixture based on a digital model of a patient's teeth in second positions, which may be an expected final alignment of the teeth. The archform 700 can be held in the custom nonplanar shape by the fixture and set by exposure to heat such that the custom nonplanar shape is the default or memorized position of the archform 700. The archform 700 can follow the entire upper or lower dental arch of a patient or a segment thereof. The archform 700 can be deflected from the memorized custom nonplanar shape and coupled to orthodontic brackets (e.g., coupling the connectors 704 to orthodontic brackets). The archform 700 can exert forces on the brackets and/or directly on the patient's teeth, causing the teeth to move toward second positions (e.g., an expected planned alignment) planned in the digital model.



FIG. 7 illustrates the bracket 500 with a connector 704 of the archform 700 coupled thereto such that the connector 704 may not slide with respect to the bracket 500. The bracket connector 704 can be disposed within the slot 502 of the bracket 500. The stops 506, 507 and retainer 504 can cooperate to retain the bracket connector 704 within the slot and prevent movement of the bracket connector 704 in the occlusal-gingival direction. A portion of the bracket connector 704, e.g., the tongue or tab, can be disposed in the gap 512 between the stops 506, 507 which can help impede the connector 704 from sliding relative to the bracket 500 in the medial-distal direction. As described herein, the spring 510, when incorporated, can push the connector 704 against the stops 506, 507, locking the connector 704 within the bracket 500. In some variants, the connector 704 may be tied to the bracket 500. The bracket 500 can include tie wings.



FIG. 8 illustrates an indirect orthodontic bonding (IDB) tray 400 being used to transfer a retainer 408 (e.g., permanent retainer) to the teeth 800 of a patient. The IDB tray 400 can be formed using the techniques described herein (e.g., 3D printing, overmolding on a physical model of a patient's teeth, etc.). The IDB tray 400 can correspond to an entire lower or upper dental arch of the patient. The IDB tray 400 can correspond to a section of the lower or upper dental arch of the patient. As illustrated in FIG. 8, the IDB tray 400 corresponds to the anterior section of the lower dental arch of a patient. The IDB tray 400 can include one or more cavities 402 that can receive the teeth of the patient.


The retainer 408 (e.g., permanent retainer) can be bonded to the lingual or buccal surfaces of the patient's teeth to maintain the alignment of the patient's teeth. The retainer 408 can be cut to a length to span the dental arch of the patient or a section of the dental arch. The retainer 408 can be made of a variety of materials, which can include stainless steel wire, lightweight braided stainless steel wire, and/or others. The retainer 408 can be disposed in a channel 410, which can also be referred to as a slot or groove, in the IDB tray 400 when transferring the retainer 408 to the teeth of the patient. The channel 410 can be formed in the walls of the IDB tray 400 that face the buccal or lingual surfaces of the patient's teeth when disposed on the dental arch of the patient. The retainer 408 can be flexible, allowing the retainer 408 to confirm to the contours of the IDB tray 400. In some variants, the retainer 408 can be made of nickel titanium (e.g., Nitinol) and custom-shaped to correspond to the alignment of the patient's teeth. In some variants, the IDB tray 400 does not have a channel 410. The retainer 408 can be disposed against the inner surface of the IDB tray 400 that is positioned proximate the lingual surfaces of the patient's teeth when the IDB tray 400 is positioned on the patient's teeth.


The IDB tray 400 can include one or more wells 404, which can be disposed in the portion (e.g., walls) of the IDB tray 400 forming the cavities 402. The one or more wells 404 can be positioned to be open to the lingual surfaces of the patient's teeth. In some variants, the one or more wells 404 can be positioned to be open to the buccal surfaces of the patient's teeth. The channel 410 can span several of the wells 404 such that the retainer 408, when placed in the channel 410, extends through the wells 404. The one or more wells 404 can receive adhesive 406 or the like therein. The one or more wells 404 can include a contoured profile, which can include rounded, smooth, and/or curved surfaces. The one or more wells 404 can be shaped to form rounded mounds, bumps, beads, or the like with cured adhesive 406 on the surfaces (buccal or lingual) of the patient's teeth. The surfaces of the IDB tray 400 forming the one or more wells 404 can be smooth such that the surfaces of the adhesive 406, once cured, can be smooth to reduce adhesive cleanup for a clinician and/or avoid irritating the soft tissue and/or tongue of the patient. The adhesive 406, once cured, can bond the retainer 408 to the surfaces of the patient's teeth. The adhesive 406 can cure from exposure to light (e.g., UV light), air, temperature (high or low), chemicals, and/or other influences. The adhesive 406 can be clear or colored. In some variants, the IDB tray 400 does not have a channel 410 and the retainer 408 is disposed against the inner surface of the IDB tray 400 that is positioned proximate the lingual surfaces of the patient's teeth when the IDB tray 400 is positioned on the patient's teeth and the retainer 408 is disposed through the adhesive 406 in the wells 404.



FIG. 9 illustrates the IDB tray 400 disposed over the anterior teeth of the lower dental arch of the patient. The adhesive 406 can contact the lingual surfaces of the patient's teeth and cure, bonding the retainer 408 to the lingual surfaces of the patient's teeth. As described herein, the adhesive can be cured from exposure to light (e.g., UV light), air, temperature (high or low), chemicals, and/or other influences. In some variants, the adhesive 406 can be cured while covered by the IDB tray 400. In some variants, the adhesive 406 can be cured while covered and/or with the IDB tray 400 removed.



FIG. 10 illustrates the retainer 408 bonded to the lingual surfaces of the patient's teeth by way of the beads of cured adhesive 406. As described herein, the retainer 408 can be flexible when placed into the IDB tray 400, enabling the retainer 408 to conform to the contours of the IDB tray 400. When the adhesive 406 cures and bonds the retainer 408 onto the surfaces of the patient's teeth, the length of the portions of the retainer 408 between adjacent cured adhesive beads 406 can be sufficiently short such that the portions of the retainer 408 are stiff (e.g., rigid) and prevent movement of the patient's teeth. Accordingly, the portions of the retainer 408 between adjacent beads of adhesive 406 can be stiff (e.g., rigid), as well as the portions of the retainer 408 disposed in the adhesive.



FIG. 11 illustrates a method 600 of installing a retainer on a patient's teeth. The flow diagram is provided for the purpose of facilitating description of aspects of some embodiments. The diagram does not attempt to illustrate all aspects of the disclosures and should not be considered limiting. In some variants, some of the steps described in reference to method 600 may be omitted.


At block 602, an IDB tray manufacturer can form an IDB tray 400. As described herein, the IDB tray 400 can be formed for a patient's dental arch (e.g., section of or entire upper or lower dental arch). The IDB tray 400 can be custom formed based on digital data from images (e.g., scans) of a patient's teeth, which can be captured via using a variety of techniques, which can include a digital intra-oral scanner, a cone-beam computed tomography (CBCT) X-ray scanner, and/or others. In some variants, the patient may capture images of the patient's own teeth with a portable device (e.g., smartphone, tablet, laptop, desktop, and/or a device connected to one or more of the foregoing). The IDB tray 400 can include one or more wells 404 to receive adhesive as described herein. The IDB tray 400 can include a channel 410 to receive a retainer 408 as described herein.


The IDB tray 400 can be formed via a variety of techniques. In some variants, the IDB tray 400 can be 3-D printed. The IDB tray 400 can be 3-D printed with a variety of materials, which can include one or more resins. In some variants, the IDB tray 400 can be formed via molding over a 3D model of a patient's dental arch with features (e.g., mounds, bumps, ridges, protrusions, etc.) thereon to form the wells 404 and channel 410. In some variants, the IDB tray 400 can be formed without a channel 410. In some variants, the IDB tray 400 can be formed using a soluble material, as described herein.


At block 604, the retainer 408 can be disposed in the IDB tray 400. In some variants, the retainer 408 can be disposed in the channel 410 of the IDB tray 400. In some variants, the IDB manufacturer or clinician can cut the retainer 408 to a length corresponding to the portion of the dental arch to be retained. The IDB manufacturer or clinician can place the retainer 408 in the channel 410. In some variants, the IDB tray manufacturer can ship the IDB tray 400 with the retainer 408 loaded therein to the clinician. As described herein, the retainer can be flexible and conform to the surfaces of the IDB tray 400.


At block 606, adhesive 406 can be flowed (e.g., disposed) into the wells 404. In some variants, adhesive 406 can be flowed into the wells 404 by a clinician immediately before placing the IDB tray 400 on the patient's dental arch. In some variants, adhesive 406 can be flowed into the wells 404 by the IDB tray manufacturer and the loaded IDB tray 400 can be shipped to the clinician in a container that prevents or slows the curing of the adhesive 406, as described herein. The adhesive 406 can flow around the portions of the retainer 408 extending through the wells 404.


At block 608, the IDB tray 400 with the adhesive 406 and retainer 408 can be placed over the lower or upper dental arch or a portion thereof of the patient. The adhesive 406 can contact the surfaces (buccal or lingual) of the patient's teeth.


At block 610, the adhesive 406 can be cured to bond the retainer 408 to the surfaces (lingual or buccal) of the patient's teeth. The adhesive 406 can be cured via a variety of techniques, which can at least include exposure to light (e.g., UV light), air, temperature (high or low), chemicals, and/or other influences. Due to the shape of the wells 404, the cured adhesive 406 can form beads, mounds, or the like on the surfaces of the patient's teeth. The cured adhesive 406 can have contours that are smooth and/or curved to reduce irritation to the tongue and/or tissue of the patient. In some variants, the walls of the IDB tray 400 forming the wells 404 can be smooth such that the cured adhesive 406 has smooth surfaces.


At block 612, the IDB tray 400 can be removed from the dental arch of the patient. In some variants, the adhesive 406 can be cured, in addition to the curing performed at block 610, after removal of the IDB tray 400. In some variants, the IDB tray 400 is removed before curing at block 610.


In some variants, the IDB tray 400 loaded with a retainer 408 or a retainer 408 and adhesive 406 can be incorporated into a kit, which can be distributed to a clinician.


It is intended that the scope of this present invention herein disclosed should not be limited by the particular disclosed embodiments described above. This invention is susceptible to various modifications and alternative forms, and specific examples have been shown in the drawings and are herein described in detail. This invention is not limited to the detailed forms or methods disclosed, but rather covers all equivalents, modifications, and alternatives falling within the scope and spirit of the various embodiments described and the appended claims.


Various other modifications, adaptations, and alternative designs are of course possible in light of the above teachings. Therefore, it should be understood at this time that within the scope of the appended claims the invention may be practiced otherwise than as specifically described herein. It is contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments disclosed above may be made and still fall within one or more of the inventions. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with an embodiment can be used in all other embodiments set forth herein. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above. Moreover, while the invention is susceptible to various modifications, and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that the invention is not to be limited to the particular forms or methods disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the various embodiments described and the appended claims. Any methods disclosed herein need not be performed in the order recited. The methods disclosed herein include certain actions taken by a practitioner; however, they can also include any third-party instruction of those actions, either expressly or by implication. For example, actions such as “tying a tie onto an orthodontic bracket” includes “instructing the tying of a tie onto an orthodontic bracket.” The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “approximately”, “about”, and “substantially” as used herein include the recited numbers (e.g., about 10%=10%), and also represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.

Claims
  • 1. A kit comprising: a preloaded indirect orthodontic bonding (IDB) tray comprising: an IDB tray with a plurality of wells and a channel;a plurality of orthodontic brackets placed within the plurality of wells, each of the plurality of orthodontic brackets comprising a slot, a spring disposed in the slot, one or more stops, and a bonding surface, wherein the bonding surfaces are facing out of the plurality of wells;an archform disposed in the channel, the archform comprising a plurality of bracket connectors and a plurality of interproximal loops disposed between adjacent bracket connectors of the plurality of bracket connectors, the plurality of bracket connectors disposed in the slots of the plurality of orthodontic brackets such that the springs are deflected to push the plurality of bracket connectors in an occlusal-gingival direction against the one or more stops of the plurality of orthodontic brackets to lock the plurality of bracket connectors to the plurality of orthodontic brackets; andan adhesive applied onto the bonding surfaces of the plurality of orthodontic brackets;a container for housing the preloaded IDB tray, the container configured to prevent the adhesive from curing.
  • 2. The kit of claim 1, wherein the preloaded IDB tray further comprises a primer applied to the bonding surfaces of the plurality of orthodontic brackets.
  • 3. The kit of claim 1, wherein the IDB tray is in separate segments corresponding to portions of a patient's dental arch.
  • 4. A method of producing a loaded indirect orthodontic bonding (IDB) tray for distribution, the method comprising: forming an indirect orthodontic bonding (IDB) tray with a plurality of wells and a channel;placing an archform in the channel of the IDB tray, the archform comprising a plurality of bracket connectors and a plurality of interproximal loops disposed between adjacent bracket connectors of the plurality of bracket connectors;placing a plurality of orthodontic brackets into the plurality of wells such that bonding surfaces of the plurality of orthodontic brackets are facing out of the plurality of wells and the plurality of bracket connectors are disposed in slots of the plurality of orthodontic brackets such that springs disposed in the slots of the plurality of orthodontic brackets are deflected to push the plurality of bracket connectors in an occlusal-gingival direction against one or more stops of the plurality of orthodontic brackets to lock the plurality of bracket connectors to the plurality of orthodontic brackets;applying an adhesive to the bonding surfaces of the plurality of orthodontic brackets; andplacing the IDB tray loaded with the archform, the plurality of orthodontic brackets, and pre-pasted adhesive into a container for distribution, the container configured to prevent the adhesive from curing.
  • 5. The method of claim 4, further comprising applying a primer to the bonding surfaces of the plurality of orthodontic brackets.
  • 6. The method of claim 4, wherein forming the IDB tray with the plurality of wells comprises 3D printing the IDB tray based on a digital model of at least a portion of a patient's dental arch.
  • 7. The method of claim 4, wherein forming the IDB tray with the plurality of wells comprises molding over a 3D model of a patient's dental arch with a plurality of features positioned to form the plurality of wells.
  • 8. A preloaded indirect orthodontic bonding (IDB) tray for distribution, the preloaded IDB tray comprising: an indirect bonding tray (IDB) tray with a plurality of wells and a channel;a plurality of orthodontic brackets placed within the plurality of wells, each of the plurality of orthodontic brackets comprising a slot, a spring disposed in the slot, one or more stops, and a bonding surface, wherein the bonding surfaces are facing out of the plurality of wells;an archform disposed in the channel, the archform comprising a plurality of bracket connectors and a plurality of interproximal loops disposed between adjacent bracket connectors of the plurality of bracket connectors, the plurality of bracket connectors disposed in the slots of the plurality of orthodontic brackets such that the springs are deflected to push the plurality of bracket connectors in an occlusal-gingival direction against the one or more stops of the plurality of orthodontic brackets to lock the plurality of bracket connectors to the plurality of orthodontic brackets;a primer applied to the bonding surfaces of the plurality of orthodontic brackets; andan adhesive pasted onto the bonding surfaces of the plurality of orthodontic brackets.
  • 9. The preloaded IDB tray of claim 8, wherein the preloaded IDB tray is configured to be distributed to an orthodontist in a container that is configured to prevent the adhesive from curing such that the preloaded IDB tray is ready for placement on a dental arch of a patient upon receipt by the orthodontist.
  • 10. The method of claim 4, wherein the IDB tray comprises a soluble material configured to dissolve in a patient's mouth, and wherein the soluble material is cellulose.
  • 11. The kit of claim 1, wherein the IDB tray comprises a soluble material configured to dissolve in a patient's mouth.
  • 12. The preloaded IDB tray of claim 8, wherein the IDB tray comprises a soluble material configured to dissolve in a patient's mouth.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 63/160,166, filed Mar. 12, 2021, which is incorporated herein by reference in its entirety. Any and all applications, if any, for which a foreign or domestic priority claim is identified in the Application Data Sheet of the present application is hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (835)
Number Name Date Kind
1005131 Angle et al. Oct 1911 A
1108493 Federspiel Aug 1914 A
1307382 Stanton Jun 1919 A
1323141 Young Nov 1919 A
1429749 Maeulen et al. Sep 1922 A
1638006 Aderer Feb 1926 A
2257069 Peak Sep 1941 A
2495692 Brusse Jan 1950 A
2524763 Brusse Oct 1950 A
2582230 Brusse Jan 1952 A
3256602 Broussard Jun 1966 A
3262207 Kesling Jul 1966 A
3374542 Moylan, Jr. Mar 1968 A
3464113 Silverman et al. Sep 1969 A
3593421 Brader Jul 1971 A
3600808 Reeve Aug 1971 A
3683502 Wallshein Aug 1972 A
3691635 Wallshein Sep 1972 A
3762050 Dal Pont Oct 1973 A
3765091 Northcutt Oct 1973 A
3878610 Coscina Apr 1975 A
3936938 Northcutt Feb 1976 A
3946488 Miller et al. Mar 1976 A
3949477 Cohen et al. Apr 1976 A
3975823 Sosnay Aug 1976 A
4103423 Kessel Aug 1978 A
4171568 Forster Oct 1979 A
4192070 Lemchen et al. Mar 1980 A
4193195 Merkel et al. Mar 1980 A
4197643 Burstone et al. Apr 1980 A
4268250 Reeve May 1981 A
4330273 Kesling May 1982 A
4354833 Fujita Oct 1982 A
4354834 Wilson Oct 1982 A
4382781 Grossman May 1983 A
4385890 Klein May 1983 A
4412819 Cannon Nov 1983 A
4424033 Wool Jan 1984 A
4436510 Klein Mar 1984 A
4479779 Wool Oct 1984 A
4483674 Schütz Nov 1984 A
4490112 Tanaka et al. Dec 1984 A
4501554 Hickham Feb 1985 A
4516938 Hall May 1985 A
4533320 Piekarsky Aug 1985 A
4561844 Bates Dec 1985 A
4580976 O'Meara Apr 1986 A
4582487 Creekmore Apr 1986 A
4585414 Kottermann Apr 1986 A
4592725 Goshgarian Jun 1986 A
4634662 Rosenberg Jan 1987 A
4656860 Orthuber et al. Apr 1987 A
4659310 Kottermann Apr 1987 A
4664626 Kesling May 1987 A
4674978 Acevedo Jun 1987 A
4676747 Kesling Jun 1987 A
4725229 Miller Feb 1988 A
4797093 Bergersen Jan 1989 A
4797095 Armstrong et al. Jan 1989 A
4838787 Lerner Jun 1989 A
4842514 Kesling Jun 1989 A
4872449 Beeuwkes Oct 1989 A
4881896 Bergersen Nov 1989 A
4892479 McKenna Jan 1990 A
4897035 Green Jan 1990 A
4900251 Andreasen Feb 1990 A
4978323 Freedman Dec 1990 A
5011405 Lemchen Apr 1991 A
5017133 Miura May 1991 A
5044947 Sachdeva et al. Sep 1991 A
5055039 Abbatte et al. Oct 1991 A
5092768 Korn Mar 1992 A
5114339 Guis May 1992 A
5123838 Cannon Jun 1992 A
5127828 Suyama Jul 1992 A
5131843 Hilgers et al. Jul 1992 A
5154606 Wildman Oct 1992 A
5174754 Meritt Dec 1992 A
5176514 Viazis Jan 1993 A
5176618 Freedman Jan 1993 A
5238404 Andreiko Aug 1993 A
5242304 Truax et al. Sep 1993 A
5248257 Cannon Sep 1993 A
5259760 Orikasa Nov 1993 A
5312247 Sachdeva et al. May 1994 A
5344315 Hanson Sep 1994 A
5368478 Andreiko Nov 1994 A
5380197 Hanson Jan 1995 A
5399087 Arndt Mar 1995 A
5431562 Andreiko Jul 1995 A
5447432 Andreiko Sep 1995 A
5454717 Andreiko Oct 1995 A
RE35169 Lemchen et al. Mar 1996 E
5516284 Wildman May 1996 A
5556277 Yawata et al. Sep 1996 A
5624258 Wool Apr 1997 A
5630715 Voudouris May 1997 A
5683243 Andreiko Nov 1997 A
5683245 Sachdeva et al. Nov 1997 A
5722827 Allesee Mar 1998 A
5727941 Kesling Mar 1998 A
5816800 Brehm Oct 1998 A
5820370 Brosius Oct 1998 A
5863198 Doyle Jan 1999 A
5890893 Heiser Apr 1999 A
5971754 Sondhi et al. Oct 1999 A
5975893 Chishti et al. Nov 1999 A
5993208 Jonjic Nov 1999 A
6015289 Andreiko Jan 2000 A
6036489 Brosius Mar 2000 A
6042374 Farzin-Nia et al. Mar 2000 A
6086364 Brunson Jul 2000 A
6089861 Kelly Jul 2000 A
6095809 Kelly et al. Aug 2000 A
6099304 Carter Aug 2000 A
6123544 Cleary Sep 2000 A
6183250 Kanno et al. Feb 2001 B1
6190166 Sasakura Feb 2001 B1
6196839 Ross Mar 2001 B1
6213767 Dixon et al. Apr 2001 B1
6217325 Chishti et al. Apr 2001 B1
6227850 Chishti et al. May 2001 B1
6244861 Andreiko Jun 2001 B1
6250918 Sachdeva et al. Jun 2001 B1
6258118 Baum et al. Jul 2001 B1
6315553 Sachdeva et al. Nov 2001 B1
6318994 Chishti et al. Nov 2001 B1
6318995 Sachdeva et al. Nov 2001 B1
6334853 Kopelman et al. Jan 2002 B1
6350120 Sachdeva et al. Feb 2002 B1
6358045 Farzin-Nia et al. Mar 2002 B1
6371761 Cheang et al. Apr 2002 B1
6375458 Moorleghem et al. Apr 2002 B1
6394801 Chishti et al. May 2002 B2
6398548 Muhammad et al. Jun 2002 B1
6413084 Rubbert et al. Jun 2002 B1
6431870 Sachdeva Aug 2002 B1
6450807 Chishti et al. Sep 2002 B1
6464495 Voudouris Oct 2002 B1
6464496 Sachdeva et al. Oct 2002 B1
6471511 Chishti et al. Oct 2002 B1
6471512 Sachdeva et al. Oct 2002 B1
6512994 Sachdeva Jan 2003 B1
6514074 Chishti et al. Feb 2003 B1
6532299 Sachdeva et al. Mar 2003 B1
6540512 Sachdeva et al. Apr 2003 B1
6554613 Sachdeva et al. Apr 2003 B1
6572693 Wu et al. Jun 2003 B1
6582226 Jordan et al. Jun 2003 B2
6587828 Sachdeva Jul 2003 B1
6595774 Risse Jul 2003 B1
6554611 Chishti et al. Aug 2003 B2
6602070 Miller et al. Aug 2003 B2
6612143 Butscher et al. Sep 2003 B1
6616444 Andreiko Sep 2003 B2
6626666 Chishti et al. Sep 2003 B2
6629840 Chishti et al. Oct 2003 B2
6632089 Rubbert Oct 2003 B2
6648640 Rubbert Nov 2003 B2
6663385 Tepper Dec 2003 B2
6679700 McGann Jan 2004 B2
6682344 Stockstill Jan 2004 B1
6685469 Chishti et al. Feb 2004 B2
6685470 Chishti et al. Feb 2004 B2
6688885 Sachdeva et al. Feb 2004 B1
6699037 Chishti et al. Mar 2004 B2
6702575 Hilliard Mar 2004 B2
6705863 Phan et al. Mar 2004 B2
6722878 Graham Apr 2004 B2
6722880 Chishti et al. Apr 2004 B2
6728423 Rubbert et al. Apr 2004 B1
6729876 Chishti et al. May 2004 B2
6732558 Butscher et al. May 2004 B2
6733285 Puttler et al. May 2004 B2
6733287 Wilkerson May 2004 B2
6733288 Vallittu et al. May 2004 B2
6736638 Sachdeva et al. May 2004 B1
6738508 Rubbert et al. May 2004 B1
6739869 Taub et al. May 2004 B1
6744914 Rubbert et al. Jun 2004 B1
6744932 Rubbert et al. Jun 2004 B1
6746241 Townsend-Hansen Jun 2004 B2
6755064 Butscher Jun 2004 B2
6771809 Rubbert et al. Aug 2004 B1
6776614 Wiechmann Aug 2004 B2
6811397 Wool Nov 2004 B2
6830450 Knopp et al. Dec 2004 B2
6845175 Kopelman et al. Jan 2005 B2
6846179 Chapouland Jan 2005 B2
6851949 Sachdeva et al. Feb 2005 B1
6860132 Butscher Mar 2005 B2
6893257 Kelly May 2005 B2
6928733 Rubbert et al. Aug 2005 B2
6948931 Chishti et al. Sep 2005 B2
6960079 Brennan et al. Nov 2005 B2
6971873 Sachdeva Dec 2005 B2
6976627 Culp et al. Dec 2005 B1
6988889 Abels Jan 2006 B2
6996452 Erichsen et al. Feb 2006 B2
7008221 McGann Mar 2006 B2
7013191 Rubbert Mar 2006 B2
7020963 Cleary et al. Apr 2006 B2
7029275 Rubbert Apr 2006 B2
7033171 Wilkerson Apr 2006 B2
7037107 Yamamoto May 2006 B2
7056115 Phan et al. Jun 2006 B2
7063531 Maijer et al. Jun 2006 B2
7068836 Rubbert et al. Jun 2006 B1
7076980 Butscher Jul 2006 B2
7077646 Hilliard Jul 2006 B2
7077647 Choi et al. Jul 2006 B2
7080979 Rubbert et al. Jul 2006 B2
7092107 Babayoff et al. Aug 2006 B2
7094053 Andreiko Aug 2006 B2
7112065 Kopelman et al. Sep 2006 B2
7125248 Phan et al. Oct 2006 B2
7134874 Chishti et al. Nov 2006 B2
7137812 Cleary et al. Nov 2006 B2
7155373 Jordan et al. Dec 2006 B2
7156661 Choi et al. Jan 2007 B2
7160110 Imgrund et al. Jan 2007 B2
7168950 Cinader, Jr. et al. Jan 2007 B2
7172417 Sporbert et al. Feb 2007 B2
7175428 Nicholson Feb 2007 B2
7186115 Goldberg et al. Mar 2007 B2
7188421 Cleary et al. Mar 2007 B2
7201574 Wiley Apr 2007 B1
7204690 Hanson et al. Apr 2007 B2
7214056 Stockstill May 2007 B2
7229282 Andreiko Jun 2007 B2
7234934 Rosenberg Jun 2007 B2
7234936 Lai Jun 2007 B2
7234937 Sachdeva et al. Jun 2007 B2
7240528 Weise et al. Jul 2007 B2
7244121 Brosius Jul 2007 B2
7245977 Simkins Jul 2007 B1
7252506 Lai Aug 2007 B2
7267545 Oda Sep 2007 B2
7283891 Butscher Oct 2007 B2
7296996 Sachdeva Nov 2007 B2
7335021 Nikodem Feb 2008 B2
7347688 Kopelman et al. Mar 2008 B2
7354268 Raby et al. Apr 2008 B2
7357634 Knopp Apr 2008 B2
7361017 Sachdeva Apr 2008 B2
7364428 Cinader, Jr. et al. Apr 2008 B2
7404714 Cleary et al. Jul 2008 B2
7410357 Cleary et al. Aug 2008 B2
7416408 Farzin-Nia et al. Aug 2008 B2
7442041 Imgrund et al. Oct 2008 B2
7452205 Cinader, Jr. et al. Nov 2008 B2
7458812 Sporbert et al. Dec 2008 B2
7469783 Rose, Sr. Dec 2008 B2
7471821 Rubbert et al. Dec 2008 B2
7473097 Raby et al. Jan 2009 B2
7556496 Cinader, Jr. et al. Jul 2009 B2
7578673 Wen et al. Aug 2009 B2
7578674 Chishti et al. Aug 2009 B2
7585172 Rubbert Sep 2009 B2
7590462 Rubbert Sep 2009 B2
7604181 Culp et al. Oct 2009 B2
7621743 Bathen Nov 2009 B2
7641473 Sporbert Jan 2010 B2
7674110 Oda Mar 2010 B2
7677887 Nicholson Mar 2010 B2
7699606 Sachdeva et al. Apr 2010 B2
7704072 Damon Apr 2010 B2
7717708 Sachdeva May 2010 B2
7722354 Dumas May 2010 B1
7726470 Cinader, Jr. et al. Jun 2010 B2
7726968 Raby et al. Jun 2010 B2
7751925 Rubbert Jul 2010 B2
7762815 Cinader, Jr. et al. Jul 2010 B2
7811087 Wiechmann Oct 2010 B2
7837464 Marshall Nov 2010 B2
7837466 Griffith et al. Nov 2010 B2
7837467 Butscher Nov 2010 B2
7845938 Kim et al. Dec 2010 B2
7850451 Wiechmann Dec 2010 B2
7871267 Griffith et al. Jan 2011 B2
7878806 Lemchen Feb 2011 B2
7909603 Oda Mar 2011 B2
D636084 Troester Apr 2011 S
D636085 Troester Apr 2011 S
7950131 Hilliard May 2011 B2
7993133 Cinader, Jr. et al. Aug 2011 B2
8021146 Cinader, Jr. et al. Sep 2011 B2
8029275 Kesling Oct 2011 B2
8033824 Oda et al. Oct 2011 B2
8038444 Kitching et al. Oct 2011 B2
8047034 Butscher Nov 2011 B2
8057226 Wiechmann Nov 2011 B2
8070487 Chishti et al. Dec 2011 B2
8082769 Butscher Dec 2011 B2
8092215 Stone-collonge et al. Jan 2012 B2
8102538 Babayoff Jan 2012 B2
8113828 Greenfield Feb 2012 B1
8113829 Sachdeva Feb 2012 B2
8114327 Cinader, Jr. et al. Feb 2012 B2
8121718 Rubbert Feb 2012 B2
8142187 Sporbert Mar 2012 B2
8152519 Dumas et al. Apr 2012 B1
8177551 Sachdeva et al. May 2012 B2
8192196 Singh Jun 2012 B2
8192197 Sporbert Jun 2012 B2
8194067 Raby Jun 2012 B2
8220195 Maijer et al. Jul 2012 B2
8251699 Reising et al. Aug 2012 B2
8266940 Riemeir et al. Sep 2012 B2
8297970 Kanomi Oct 2012 B2
8308478 Primus Nov 2012 B2
8313327 Won Nov 2012 B1
8359115 Kopelman et al. Jan 2013 B2
8363228 Babayoff Jan 2013 B2
8366440 Bathen Feb 2013 B2
8376739 Dupray Feb 2013 B2
8382917 Johnson Feb 2013 B2
8393896 Oda Mar 2013 B2
8417366 Getto Apr 2013 B2
8439671 Cinader, Jr. May 2013 B2
8439672 Matov et al. May 2013 B2
8451456 Babayoff May 2013 B2
8454364 Taub et al. Jun 2013 B2
8459988 Dumas Jun 2013 B2
8465279 Bathen Jun 2013 B2
8469704 Oda et al. Jun 2013 B2
8479393 Abels et al. Jul 2013 B2
8485816 Macchi Jul 2013 B2
8491306 Raby et al. Jul 2013 B2
D688803 Gilbert Aug 2013 S
8500445 Borri Aug 2013 B2
8517727 Raby et al. Aug 2013 B2
8545221 Sonte-collenge et al. Oct 2013 B2
8550814 Collins Oct 2013 B1
8562337 Kuo et al. Oct 2013 B2
8573972 Matov et al. Nov 2013 B2
8591225 Wu et al. Nov 2013 B2
8591226 Griffith et al. Nov 2013 B2
8636505 Fornoff Jan 2014 B2
8638447 Babayoff et al. Jan 2014 B2
8638448 Babayoff et al. Jan 2014 B2
8675207 Babayoff Mar 2014 B2
8678818 Dupray Mar 2014 B2
8690568 Chapouland Apr 2014 B2
8708697 Li et al. Apr 2014 B2
8714972 Eichenberg May 2014 B2
8734149 Phan et al. May 2014 B2
8734690 Komori May 2014 B2
8780106 Chishti et al. Jul 2014 B2
8805048 Batesole Aug 2014 B2
8805563 Kopelman et al. Aug 2014 B2
8807995 Kabbani et al. Aug 2014 B2
8827697 Cinader, Jr. et al. Sep 2014 B2
8845330 Taub et al. Sep 2014 B2
8871132 Abels et al. Oct 2014 B2
8931171 Rosenberg Jan 2015 B2
8932054 Rosenberg Jan 2015 B1
8936464 Kopelman Jan 2015 B2
8961172 Dupray Feb 2015 B2
8968365 Aschmann et al. Mar 2015 B2
8979528 Macchi Mar 2015 B2
8986004 Dumas Mar 2015 B2
8992215 Chapouland Mar 2015 B2
8998608 Imgrund et al. Apr 2015 B2
9022781 Kuo et al. May 2015 B2
D731659 Singh Jun 2015 S
9066775 Bukhary Jun 2015 B2
9089386 Hagelganz Jul 2015 B2
D736945 Singh Aug 2015 S
9101433 Babayoff Aug 2015 B2
9119689 Kabbani Sep 2015 B2
9127338 Johnson Sep 2015 B2
9144473 Aldo Sep 2015 B2
9161823 Morton et al. Oct 2015 B2
9204942 Phan et al. Dec 2015 B2
9299192 Kopelman Mar 2016 B2
9301815 Dumas Apr 2016 B2
9329675 Ojelund et al. May 2016 B2
9339352 Cinader et al. May 2016 B2
9387055 Cinader, Jr. et al. Jul 2016 B2
9402695 Curiel et al. Aug 2016 B2
9427291 Khoshnevis et al. Aug 2016 B2
9427916 Taub et al. Aug 2016 B2
9433477 Borovinskih et al. Sep 2016 B2
9439737 Gonzales et al. Sep 2016 B2
9451873 Kopelman et al. Sep 2016 B1
9492246 Lin Nov 2016 B2
9498302 Patel Nov 2016 B1
D774193 Makmel et al. Dec 2016 S
9510757 Kopelman et al. Dec 2016 B2
9517112 Hagelganz et al. Dec 2016 B2
9529970 Andreiko Dec 2016 B2
9532854 Cinader et al. Jan 2017 B2
9539064 Abels et al. Jan 2017 B2
9554875 Gualano Jan 2017 B2
9566132 Stone-collonge et al. Feb 2017 B2
9566134 Hagelganz et al. Feb 2017 B2
9585733 Voudouris Mar 2017 B2
9585734 Lai et al. Mar 2017 B2
9597165 Kopelman Mar 2017 B2
9610628 Riemeier Apr 2017 B2
9615901 Babyoff et al. Apr 2017 B2
9622834 Chapouland Apr 2017 B2
9622835 See et al. Apr 2017 B2
9629551 Fisker et al. Apr 2017 B2
9629694 Chun et al. Apr 2017 B2
9642678 Kuo May 2017 B2
9675435 Karazivan et al. Jun 2017 B2
9707056 Machata et al. Jul 2017 B2
9763750 Kim et al. Sep 2017 B2
9788917 Mah Oct 2017 B2
9814543 Huang et al. Nov 2017 B2
9844420 Cheang Dec 2017 B2
9848958 Matov et al. Dec 2017 B2
9867678 Macchi Jan 2018 B2
9867680 Damon Jan 2018 B2
9872741 Gualano Jan 2018 B2
9877804 Chester Jan 2018 B2
9877805 Abels et al. Jan 2018 B2
9925020 Jo Mar 2018 B2
9937018 Martz et al. Apr 2018 B2
9937020 Choi Apr 2018 B2
9956058 Kopelman May 2018 B2
9962244 Esbech et al. May 2018 B2
9975294 Taub et al. May 2018 B2
9987105 Dupray Jun 2018 B2
10028804 Schulhof et al. Jul 2018 B2
10045834 Gualano Aug 2018 B2
10052177 Andreiko Aug 2018 B2
10058400 Abels et al. Aug 2018 B2
10058401 Tan Aug 2018 B2
10064706 Dickerson Sep 2018 B2
10070943 Fornoff Sep 2018 B2
10076780 Riemeier et al. Sep 2018 B2
10098709 Kitching et al. Oct 2018 B1
10130987 Riemeier et al. Nov 2018 B2
10136966 Reybrouck et al. Nov 2018 B2
10149738 Lee Dec 2018 B2
10179035 Shivapuja et al. Jan 2019 B2
10179036 Lee Jan 2019 B2
10219877 Khoshnevis et al. Mar 2019 B2
10226312 Khoshnevis et al. Mar 2019 B2
10238476 Karazivan et al. Mar 2019 B2
10241499 Griffin Mar 2019 B1
10278791 Schumacher May 2019 B2
10278792 Wool May 2019 B2
10278793 Gonzalez et al. May 2019 B2
10292789 Martz et al. May 2019 B2
10307221 Cinader, Jr. Jun 2019 B2
10314673 Schulhof et al. Jun 2019 B2
10327867 Nikolskiy et al. Jun 2019 B2
10342640 Cassalia Jul 2019 B2
10368961 Paehl et al. Aug 2019 B2
10383707 Roein Peikar et al. Aug 2019 B2
D859663 Cetta et al. Sep 2019 S
10413386 Moon et al. Sep 2019 B2
10426575 Raslambekov Oct 2019 B1
10456228 Karazivan et al. Oct 2019 B2
10478271 Patel Nov 2019 B2
10485638 Salah Nov 2019 B2
10492889 Kim et al. Dec 2019 B2
10492890 Cinader, Jr. et al. Dec 2019 B2
10555792 Kopelman et al. Feb 2020 B2
10588717 Chun et al. Mar 2020 B2
10595966 Carrier, Jr. et al. Mar 2020 B2
10596717 Hashish et al. Mar 2020 B2
10603137 Alauddin et al. Mar 2020 B2
10636522 Katzman et al. Apr 2020 B2
10639130 Blees et al. May 2020 B2
10639134 Shangjani et al. May 2020 B2
10717208 Raslambekov et al. Jul 2020 B1
10754325 Griffin, III Aug 2020 B1
10758323 Kopelman Sep 2020 B2
10772706 Schumacher Sep 2020 B2
10806376 Lotan et al. Oct 2020 B2
10809697 Grapsas Oct 2020 B2
10828133 Tong et al. Nov 2020 B2
10849723 Yancey et al. Dec 2020 B1
10869738 Witte et al. Dec 2020 B2
10881488 Kopelman Jan 2021 B2
10881489 Tong et al. Jan 2021 B2
10905527 Roein Peikar et al. Feb 2021 B2
10932887 Hung Mar 2021 B2
10935958 Sirovskiy et al. Mar 2021 B2
10952820 Song et al. Mar 2021 B2
10980614 Roein Peikar et al. Apr 2021 B2
10984549 Goncharov et al. Apr 2021 B2
10993782 Raslambekov May 2021 B1
10993785 Roein Peikar et al. May 2021 B2
10996813 Makarenkova et al. May 2021 B2
11020205 Li et al. Jun 2021 B2
11045281 Tsai et al. Jun 2021 B2
11045295 Karazivan et al. Jun 2021 B2
11058517 Tong et al. Jul 2021 B2
11058518 Roein Peikar et al. Jul 2021 B2
11058520 Khoshnevis et al. Jul 2021 B2
11072021 Riemeier et al. Jul 2021 B2
11083411 Yancey et al. Aug 2021 B2
11083546 Cassalia Aug 2021 B2
11103330 Webber et al. Aug 2021 B2
11129696 Khoshnevis et al. Sep 2021 B2
11147652 Mason et al. Oct 2021 B2
11154382 Kopelman et al. Oct 2021 B2
11229505 Schumacher et al. Jan 2022 B2
11234794 Pokotilov et al. Feb 2022 B2
11304781 Chun et al. Apr 2022 B2
11317994 Peikar et al. May 2022 B2
11317995 Peikar et al. May 2022 B2
11324572 Peikar et al. May 2022 B2
11331165 Owen May 2022 B2
11337486 Oda et al. May 2022 B2
11357598 Cramer Jun 2022 B2
11382720 Kopelman et al. Jul 2022 B2
11413117 Griffin, III et al. Aug 2022 B2
11419701 Shanjani et al. Aug 2022 B2
11433658 Friedrich et al. Sep 2022 B2
11435142 Hauptmann Sep 2022 B2
11446117 Paehl et al. Sep 2022 B2
11446219 Kohler et al. Sep 2022 B2
11464604 Makarenkova et al. Oct 2022 B2
11471254 Owen Oct 2022 B2
11471255 Cinader, Jr. et al. Oct 2022 B2
11478335 Lai et al. Oct 2022 B2
11478337 Griffin, III et al. Oct 2022 B2
11490995 Wratten, Jr. et al. Nov 2022 B2
11500354 Griffin, III et al. Nov 2022 B2
11504212 Wratten, Jr. et al. Nov 2022 B2
11510757 Khoshnevis et al. Nov 2022 B2
11510758 Khoshnevis et al. Nov 2022 B2
D972732 Villanueva Dec 2022 S
11517405 Khoshnevis et al. Dec 2022 B2
11612458 Tong et al. Mar 2023 B1
11612459 Tong et al. Mar 2023 B2
11696816 Gardner Jul 2023 B2
11911971 Tong et al. Feb 2024 B2
20010055741 Dixon et al. Dec 2001 A1
20020006597 Andreiko et al. Jan 2002 A1
20020010568 Rubbert et al. Jan 2002 A1
20020081546 Tricca et al. Jun 2002 A1
20020098460 Farzin-Nia Jul 2002 A1
20020192617 Phan et al. Dec 2002 A1
20030049582 Abels et al. Mar 2003 A1
20030070468 Butscher et al. Apr 2003 A1
20030180689 Arx et al. Sep 2003 A1
20030194677 Sachdeva et al. Oct 2003 A1
20030207224 Lotte Nov 2003 A1
20040048222 Forster et al. Mar 2004 A1
20040072120 Lauren Apr 2004 A1
20040083611 Rubbert et al. May 2004 A1
20040161722 Lai et al. Aug 2004 A1
20040166459 Voudouris Aug 2004 A1
20040168752 Julien Sep 2004 A1
20040199177 Kim Oct 2004 A1
20040219471 Cleary et al. Nov 2004 A1
20050043837 Rubbert et al. Feb 2005 A1
20050074716 Cleary et al. Apr 2005 A1
20050106529 Abolfathi et al. May 2005 A1
20050181332 Sernetz Aug 2005 A1
20050191592 Farzin-Nia et al. Sep 2005 A1
20050233276 Kopelman et al. Oct 2005 A1
20050244780 Abels et al. Nov 2005 A1
20050244781 Abels et al. Nov 2005 A1
20050244790 Kuperman Nov 2005 A1
20060006092 DuBos Jan 2006 A1
20060014116 Maijer et al. Jan 2006 A1
20060068354 Jeckel Mar 2006 A1
20060127834 Szwajkowski Jun 2006 A1
20060175209 Sabilla et al. Aug 2006 A1
20060223021 Cinader et al. Oct 2006 A1
20060223031 Cinader, Jr. et al. Oct 2006 A1
20060257813 Highland Nov 2006 A1
20060257821 Cinader, Jr. et al. Nov 2006 A1
20070015103 Sorel Jan 2007 A1
20070031773 Scuzzo Feb 2007 A1
20070031775 Andreiko Feb 2007 A1
20070087302 Reising et al. Apr 2007 A1
20070107745 Kiyomoto May 2007 A1
20070111154 Sampermans May 2007 A1
20070118215 Moaddeb May 2007 A1
20070134611 Nicholson Jun 2007 A1
20070134612 Contencin Jun 2007 A1
20070141525 Cinader, Jr. Jun 2007 A1
20070154859 Hilliard Jul 2007 A1
20070172788 Hill, II et al. Jul 2007 A1
20070190478 Goldberg et al. Aug 2007 A1
20070231768 Hutchinson Oct 2007 A1
20070235051 Robinson Oct 2007 A1
20070287121 Cinader et al. Dec 2007 A1
20080032250 Kopelman et al. Feb 2008 A1
20080057460 Hicks Mar 2008 A1
20080063995 Farzin-Nia et al. Mar 2008 A1
20080131831 Abels et al. Jun 2008 A1
20080160475 Rojas-Pardini Jul 2008 A1
20080199825 Jahn Aug 2008 A1
20080227049 Sevinc Sep 2008 A1
20080233528 Kim et al. Sep 2008 A1
20080233530 Cinader Sep 2008 A1
20080233531 Raby et al. Sep 2008 A1
20080248439 Griffith et al. Oct 2008 A1
20080254403 Hilliard Oct 2008 A1
20080268398 Cantarella Oct 2008 A1
20080286711 Corcoran et al. Nov 2008 A1
20080305450 Steen Dec 2008 A1
20090004619 Oda et al. Jan 2009 A1
20090019698 Christoff Jan 2009 A1
20090042160 Ofir Feb 2009 A1
20090088838 Shaolian et al. Apr 2009 A1
20090191502 Cao et al. Jul 2009 A1
20090197217 Butscher et al. Aug 2009 A1
20090216322 Le et al. Aug 2009 A1
20090220907 Suyama Sep 2009 A1
20090220920 Primus et al. Sep 2009 A1
20090222075 Gordon Sep 2009 A1
20100092903 Sabilla Apr 2010 A1
20100092905 Martin Apr 2010 A1
20100105000 Scommegna et al. Apr 2010 A1
20100129765 Mohr et al. May 2010 A1
20100129766 Hilgers May 2010 A1
20100178628 Kim Jul 2010 A1
20100179789 Sachdeva et al. Jul 2010 A1
20100193979 Goldberg et al. Aug 2010 A1
20100241120 Bledsoe et al. Sep 2010 A1
20100279243 Cinader, Jr. et al. Nov 2010 A1
20100304321 Patel Dec 2010 A1
20110008745 McQuillan et al. Jan 2011 A1
20110027743 Cinader, Jr. et al. Feb 2011 A1
20110059414 Hirsch Mar 2011 A1
20110091832 Kim et al. Apr 2011 A1
20110220612 Kim Sep 2011 A1
20110250556 Heiser Oct 2011 A1
20110270583 Getto et al. Nov 2011 A1
20110287376 Walther Nov 2011 A1
20110314891 Gilbert Dec 2011 A1
20120048432 Johnson et al. Mar 2012 A1
20120129119 Oda May 2012 A1
20120148972 Lewis Jun 2012 A1
20120208144 Chiaramonte Aug 2012 A1
20120266419 Browne et al. Oct 2012 A1
20120315595 Beaudoin Dec 2012 A1
20120322019 Lewis Dec 2012 A1
20130065193 Curiel et al. Mar 2013 A1
20130122443 Huang et al. May 2013 A1
20130177862 Johnson Jul 2013 A1
20130196281 Thornton Aug 2013 A1
20130196282 Eichelberger et al. Aug 2013 A1
20130260329 Voudouris Oct 2013 A1
20130315595 Barr Nov 2013 A1
20140154637 Hansen et al. Jun 2014 A1
20140170586 Cantarella Jun 2014 A1
20140234794 Vu Aug 2014 A1
20140255864 Machata et al. Sep 2014 A1
20140287376 Hultgren et al. Sep 2014 A1
20140363782 Wiechmann et al. Dec 2014 A1
20150010879 Kurthy Jan 2015 A1
20150064641 Gardner Mar 2015 A1
20150072299 Alauddin et al. Mar 2015 A1
20150140501 Kim May 2015 A1
20150201943 Brooks et al. Jul 2015 A1
20150265376 Kopelman Sep 2015 A1
20150305833 Cosse Oct 2015 A1
20150313687 Blees et al. Nov 2015 A1
20150351872 Jo Dec 2015 A1
20150359610 Gonzalez et al. Dec 2015 A1
20150366638 Kopelman et al. Dec 2015 A1
20160074139 Machata et al. Mar 2016 A1
20160095670 Witte et al. Apr 2016 A1
20160106522 Kim Apr 2016 A1
20160135926 Djamchidi May 2016 A1
20160166357 Portalupi Jun 2016 A1
20160175073 Huang Jun 2016 A1
20160206403 Ouellette et al. Jul 2016 A1
20160228214 Sachdeva et al. Aug 2016 A1
20160242871 Morton et al. Aug 2016 A1
20160270885 Kwon et al. Sep 2016 A1
20160278883 Fasci et al. Sep 2016 A1
20160287354 Viecilli et al. Oct 2016 A1
20160310239 Paehl et al. Oct 2016 A1
20160374780 Carrillo Gonzalez et al. Dec 2016 A1
20170086948 Von Mandach Mar 2017 A1
20170105816 Ward Apr 2017 A1
20170105817 Chun et al. Apr 2017 A1
20170128169 Lai et al. May 2017 A1
20170135793 Webber et al. May 2017 A1
20170140381 Ducrohet et al. May 2017 A1
20170151037 Lee Jun 2017 A1
20170156823 Roein Peikar et al. Jun 2017 A1
20170165032 Webber Jun 2017 A1
20170165532 Khan et al. Jun 2017 A1
20170181813 Kalkhoran Jun 2017 A1
20170196660 Lee Jul 2017 A1
20170224444 Viecilli et al. Aug 2017 A1
20170231721 Akeel et al. Aug 2017 A1
20170246682 Duerig Aug 2017 A1
20170252140 Murphy et al. Sep 2017 A1
20170281313 Kim Oct 2017 A1
20170281314 Freimuller Oct 2017 A1
20170296253 Brandner et al. Oct 2017 A1
20170296304 Tong Oct 2017 A1
20170312052 Moss et al. Nov 2017 A1
20170318881 Fonte et al. Nov 2017 A1
20170325911 Marshall Nov 2017 A1
20170340777 Ma et al. Nov 2017 A1
20180014915 Voudouris Jan 2018 A1
20180014916 Cinader, Jr. et al. Jan 2018 A1
20180021108 Cinader, Jr. et al. Jan 2018 A1
20180049847 Oda et al. Feb 2018 A1
20180055605 Witte et al. Mar 2018 A1
20180071057 Rudman Mar 2018 A1
20180110589 Gao Apr 2018 A1
20180132974 Rudman May 2018 A1
20180161121 Butler et al. Jun 2018 A1
20180161126 Marshall et al. Jun 2018 A1
20180168788 Fernie Jun 2018 A1
20180185120 Wool Jul 2018 A1
20180185121 Pitts et al. Jul 2018 A1
20180206941 Lee Jul 2018 A1
20180214250 Martz Aug 2018 A1
20180235437 Ozerov et al. Aug 2018 A1
20180243052 Lee Aug 2018 A1
20180338564 Oda et al. Nov 2018 A1
20190001396 Riemeier et al. Jan 2019 A1
20190019187 Miller et al. Jan 2019 A1
20190053876 Sterental et al. Feb 2019 A1
20190090988 Schumacher et al. Mar 2019 A1
20190090989 Jo Mar 2019 A1
20190125494 Li et al. May 2019 A1
20190142551 Dickenson et al. May 2019 A1
20190159871 Chan et al. May 2019 A1
20190163060 Skamser et al. May 2019 A1
20190175304 Morton et al. Jun 2019 A1
20190231488 Dickerson Aug 2019 A1
20190247147 Grande et al. Aug 2019 A1
20190252065 Katzman et al. Aug 2019 A1
20190262103 Cassalia Aug 2019 A1
20190276921 Duerig et al. Sep 2019 A1
20190321136 Martz et al. Oct 2019 A1
20190321138 Roein Peikar et al. Oct 2019 A1
20190328487 Levin et al. Oct 2019 A1
20190328491 Hostettler et al. Oct 2019 A1
20190343606 Wu et al. Nov 2019 A1
20190350682 Cinader, Jr. et al. Nov 2019 A1
20190388189 Shivapuja et al. Dec 2019 A1
20200000551 Li et al. Jan 2020 A1
20200066391 Sachdeva et al. Feb 2020 A1
20200078137 Chen et al. Mar 2020 A1
20200107911 Roein Peikar et al. Apr 2020 A1
20200129272 Roein Peikar et al. Apr 2020 A1
20200138549 Chun et al. May 2020 A1
20200146779 Zhang May 2020 A1
20200146791 Schülke et al. May 2020 A1
20200170757 Kopelman et al. Jun 2020 A1
20200188063 Cinader, Jr. et al. Jun 2020 A1
20200197131 Matov et al. Jun 2020 A1
20200214806 Hung Jul 2020 A1
20200229903 Sandwick Jul 2020 A1
20200275996 Tong et al. Sep 2020 A1
20200281611 Kelly et al. Sep 2020 A1
20200338706 Cunningham et al. Oct 2020 A1
20200345455 Roein Peikar et al. Nov 2020 A1
20200345459 Schueller et al. Nov 2020 A1
20200345460 Roein Peikar et al. Nov 2020 A1
20200352765 Lin Nov 2020 A1
20200360109 Gao et al. Nov 2020 A1
20200375270 Holschuh et al. Dec 2020 A1
20200375699 Roein Peikar et al. Dec 2020 A1
20200390524 Roein Peikar et al. Dec 2020 A1
20200390535 Curtis et al. Dec 2020 A1
20200405191 Lotan et al. Dec 2020 A1
20200405452 Song et al. Dec 2020 A1
20210007830 Roein Peikar et al. Jan 2021 A1
20210007832 Roein Peikar et al. Jan 2021 A1
20210045701 Unklesbay et al. Feb 2021 A1
20210068928 Witte et al. Mar 2021 A1
20210077227 Griffin, III et al. Mar 2021 A1
20210093422 Tong et al. Apr 2021 A1
20210128275 Suh et al. May 2021 A1
20210134450 Katzman et al. May 2021 A1
20210137644 Benarouch et al. May 2021 A1
20210145547 Roein Peikar et al. May 2021 A1
20210177551 Roein Peikar et al. Jun 2021 A1
20210186662 Roein Peikar et al. Jun 2021 A1
20210205049 Cinader, Jr. Jul 2021 A1
20210212803 Tong et al. Jul 2021 A1
20210244502 Farkash et al. Aug 2021 A1
20210244505 Tong et al. Aug 2021 A1
20210244507 Curiel et al. Aug 2021 A1
20210251730 Curiel et al. Aug 2021 A1
20210259808 Ben-gal Nguyen et al. Aug 2021 A1
20210275286 Karazivan et al. Sep 2021 A1
20210330430 Khoshnevis et al. Oct 2021 A1
20210338380 Park et al. Nov 2021 A1
20210346127 Cassalia Nov 2021 A1
20210353389 Peikar et al. Nov 2021 A1
20210369413 Li et al. Dec 2021 A1
20210378792 Akopov et al. Dec 2021 A1
20210386523 Raby, II et al. Dec 2021 A1
20210393375 Chekh et al. Dec 2021 A1
20210401546 Gardner Dec 2021 A1
20210401548 Oda et al. Dec 2021 A1
20220008169 Reisman Jan 2022 A1
20220023009 Tong et al. Jan 2022 A1
20220031428 Khoshnevis et al. Feb 2022 A1
20220039921 Kopelman et al. Feb 2022 A1
20220039922 Yamaguchi Feb 2022 A1
20220061964 Khoshnevis et al. Mar 2022 A1
20220087783 Khoshnevis et al. Mar 2022 A1
20220133438 Wratten, Jr. et al. May 2022 A1
20220137592 Cramer et al. May 2022 A1
20220168072 Tong et al. Jun 2022 A1
20220183797 Khoshnevis et al. Jun 2022 A1
20220226076 Roein Peikar et al. Jul 2022 A1
20220226077 Roein Peikar et al. Jul 2022 A1
20220249201 Shuman et al. Aug 2022 A1
20220257341 Somasundaram et al. Aug 2022 A1
20220257344 Tsai et al. Aug 2022 A1
20220304773 Wratten, Jr. et al. Sep 2022 A1
20220304774 Wratten, Jr. et al. Sep 2022 A1
20220314508 Subramaniam et al. Oct 2022 A1
20220323183 Dufour et al. Oct 2022 A1
20220338960 Reising Oct 2022 A1
20220346912 Li et al. Nov 2022 A1
20220361996 Raby et al. Nov 2022 A1
20230012364 Melka et al. Jan 2023 A1
20230070165 Tong et al. Mar 2023 A1
20230070837 Oda Mar 2023 A1
20230072074 Oda Mar 2023 A1
20230100466 Huynh et al. Mar 2023 A1
20230157790 Medvinskaya et al. May 2023 A1
20230404715 Peikar et al. Dec 2023 A1
20230414327 Peikar et al. Dec 2023 A1
20240058101 Tong et al. Feb 2024 A1
20240061966 Oda et al. Feb 2024 A1
20240090980 Tong et al. Mar 2024 A1
20240138958 Oda et al. May 2024 A1
20240173105 Tong et al. May 2024 A1
Foreign Referenced Citations (135)
Number Date Country
1372872 Oct 2002 CN
201079455 Jul 2008 CN
201320224 Oct 2009 CN
102215773 Oct 2011 CN
202365955 Aug 2012 CN
202892116 Apr 2013 CN
203074896 Jul 2013 CN
103505293 Jan 2014 CN
203506900 Apr 2014 CN
104188728 Dec 2014 CN
204049881 Dec 2014 CN
205126459 Apr 2016 CN
105596098 May 2016 CN
105662615 Jun 2016 CN
205416056 Aug 2016 CN
205569100 Sep 2016 CN
106029002 Oct 2016 CN
106137419 Nov 2016 CN
105520787 Dec 2017 CN
108690967 Oct 2018 CN
109009504 Dec 2018 CN
110916820 Feb 2020 CN
110840586 Feb 2022 CN
114167807 Mar 2022 CN
117695035 Mar 2024 CN
3915807 Nov 1990 DE
20 2018 003 574 Aug 2018 DE
10 2018 005 769 Jan 2020 DE
10 2018 133 705 Jul 2020 DE
10 2015 017 301 Mar 2022 DE
0 778 008 Jun 1997 EP
1 139 902 Oct 2001 EP
1 276 433 Jan 2003 EP
1 379 193 Feb 2007 EP
2 076 207 Jul 2009 EP
1 073 378 Jan 2012 EP
2 522 298 Nov 2012 EP
2 617 383 Jul 2013 EP
3 285 678 May 2021 EP
3 954 320 Feb 2022 EP
2 726 049 Aug 2022 EP
3 019 141 Aug 2022 EP
4 034 077 Aug 2022 EP
4 035 649 Aug 2022 EP
4 044 959 Aug 2022 EP
4 048 196 Aug 2022 EP
4065647 Aug 2022 EP
3 691 559 Sep 2022 EP
3 823 813 Sep 2022 EP
3 905 986 Sep 2022 EP
4 056 144 Sep 2022 EP
2315046 Apr 2010 ES
2 525 469 Oct 1983 FR
3 056 393 Oct 2018 FR
11221235 Aug 1999 JP
2001198143 Jul 2001 JP
2009205330 Sep 2009 JP
100549294 Feb 2006 KR
100737442 Jul 2007 KR
100925286 Nov 2009 KR
101301886 Aug 2013 KR
101583547 Jan 2016 KR
101584737 Jan 2016 KR
101723674 Apr 2017 KR
133408 Oct 2013 RU
WO 0180761 Nov 2001 WO
WO 0185047 Nov 2001 WO
WO 2003045266 Jun 2003 WO
WO 2005008441 Jan 2005 WO
WO 2005094716 Oct 2005 WO
WO 2007069286 Jun 2007 WO
WO 2008051774 May 2008 WO
WO 2011034522 Mar 2011 WO
WO 2011090502 Jul 2011 WO
WO 2011103669 Sep 2011 WO
WO 2012089735 Jul 2012 WO
WO 2012140021 Oct 2012 WO
WO 2013019398 Feb 2013 WO
WO 2014070920 May 2014 WO
WO 2016148961 Sep 2016 WO
WO 2016149008 Sep 2016 WO
WO 2016199972 Dec 2016 WO
WO 2016210402 Dec 2016 WO
WO 2017007079 Jan 2017 WO
WO 2017112004 Jun 2017 WO
WO 2017172537 Oct 2017 WO
WO 2017184632 Oct 2017 WO
WO 2017194478 Nov 2017 WO
WO 2017198640 Nov 2017 WO
WO 2018102588 Jun 2018 WO
WO 2018122862 Jul 2018 WO
WO 2018144634 Aug 2018 WO
WO 2018195356 Oct 2018 WO
WO 2019135504 Jul 2019 WO
WO 2020095182 May 2020 WO
WO 2020178353 Sep 2020 WO
WO 2020180740 Sep 2020 WO
WO 2020223744 Nov 2020 WO
WO 2020223745 Nov 2020 WO
WO 2021087158 May 2021 WO
WO 2021105878 Jun 2021 WO
WO 2021214613 Oct 2021 WO
WO 2021225916 Nov 2021 WO
WO 2021226618 Nov 2021 WO
WO 2021225916 Dec 2021 WO
WO 2021245484 Dec 2021 WO
WO 2021252675 Dec 2021 WO
WO 2022099263 May 2022 WO
WO 2022099267 May 2022 WO
WO 2022123402 Jun 2022 WO
WO 2022137109 Jun 2022 WO
WO 2022145602 Jul 2022 WO
WO 2022159738 Jul 2022 WO
WO 2022162488 Aug 2022 WO
WO 2022162528 Aug 2022 WO
WO 2022162614 Aug 2022 WO
WO 2022167899 Aug 2022 WO
WO 2022167995 Aug 2022 WO
WO 2022180466 Sep 2022 WO
WO 2022189906 Sep 2022 WO
WO 2022192409 Sep 2022 WO
WO 2022195391 Sep 2022 WO
WO 2022204711 Sep 2022 WO
WO 2022214895 Oct 2022 WO
WO 2022217269 Oct 2022 WO
WO 2022219459 Oct 2022 WO
WO 2022229734 Nov 2022 WO
WO 2022229739 Nov 2022 WO
WO 2022236027 Nov 2022 WO
WO 2022236287 Nov 2022 WO
WO 2023033869 Mar 2023 WO
WO 2023033870 Mar 2023 WO
WO 2023034876 Mar 2023 WO
WO 2024040008 Feb 2024 WO
WO 2024059653 Mar 2024 WO
Non-Patent Literature Citations (22)
Entry
IPhone 3D scanning to dental software, screen shots at 0:09 and 7:00 of YouTube video, https://www.youtube.com/watch?v=QONGdQ3QiFE, uploaded Oct. 1, 2018 in 2 pages.
Invisalign® SmileView™, How Would You Look with Straight Teeth?, https://www.invisalign.com/get-started/invisalign-smileview?v=0#start, printed Jun. 7, 2022 in 2 pages.
A ScanBox demo, https://www.youtube.com/watch?v=MsCfv2PDQ0o, screen shots at 0:08 and 0:19 of YouTube video, uploaded May 5, 2019 in 2 pages.
Southern Maine Orthodontics, Virtual Orthodontic Treatment, https://southernmainebraces.com/virtual-orthodontic-treatment/, printed Jun. 7, 2022 in 3 pages.
International Search Report and Written Opinion in Application No. PCT/US2022/19565, mailed Jul. 6, 2022, in 17 pages.
Coro, Jorge C. et al., “MEAW Therapy” MEAW Therapy—Orthodontic Products, accessed via http://www.orthodonticproductsonline.com/2012/11/meaw-therapy/ on Mar. 14, 2016, published Nov. 12, 2012 in 6 pages.
ElSheikh, Moaaz Mohamed, et al. “A Forsus Distalizer: A Pilot Typodont Study”. Jul.-Dec. 2004, KDJ, vol. 7, No. 2, pp. 107-115.
Gilbert, Alfredo. An in-office wire-bending robot for lingual orthodontics. ResearchGate. Article in Journal of clinical orthodontics: JCO, Apr. 2011.
Glauser-Williams Orthodontics: Appliances, http://www.glauserwilliamsorthodontics.com/treatments/orthodontic-appliances.php , accessed Nov. 30, 2015 in 4 pages.
Jiang et al. Bending Process Analysis and Structure Design of Orthodontic Archwire Bending Robot. International Journal of Smart Home. vol. 7, No. 5 (2013), pp. 345-352. http://dx.doi.org/10.14257/ijsh.2013.7.5.33.
Jiang et al. A Review on Robot in Prosthodontics and Orthodontics. Hindawi Publishing Corporation. Advances in Mechanical Engineering. Article ID 198748. 2014. 11 pages.
Mahony, Derek, “How We Got From There to Here and Back”. Dental Learning Hub (Capture of web page dated Jun. 24, 2013 downloaded from http://web.archive.org/web/20130624145806/http://www.dental-learninghub.com/Clinical/Orthodontics.aspx, downloaded Feb. 7, 2014).
Miller, R.J. et al. “Validation of Align Technology's Treat III™ Digital Model Superimposition Tool and Its Case Application”. Orthodontic Craniofacial Res.,2003, vol. 6 (Suppl 1): pp. 143-149.
SureSmile. 2013. About SureSmile. (Capture of web page dated Jun. 21, 2013 downloaded from http://web.archive.org/web/20130621031404/http://suresmile.com/About-SureSmile, downloaded Feb. 7, 2014).
Xia, et al. Development of a Robotic System for Orthodontic Archwire Bending. 2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden, May 16-21, 2016. pp. 730-735.
Yang, Won-Sik, et al. “A Study of the Regional Load Deflection Rate of Multiloop Edgewise Arch Wire.” Angle Orthodontist, 2001, vol. 7, No. 2, pp. 103-109.
Spini et al., “Transition temperature range of thermally activated nickel-titanium archwires”, J Appl Oral Sci., Apr. 2014, vol. 22, No. 2, pp. 109-117.
Sinodentalgroup, “Braces Bonding Teeth Gems Glue Light Cure Adhesive”, https://sinodentalgroup.myshopify.com/products/sino-dental-group-orthodontic-brackets-glue-braces-bonding-light-cure-adhesive-kit?pr_prod_strat=use_description&pr_rec_id=0d0a6cdc9&pr_rec_pid=6687895355572&pr_ref_pid=6705886363828&pr_seq=uniform, dated as downloaded Jun. 7, 2023 in 12 pages.
In Brace, Brush & Floss Easily with In Brace, dated as uploaded on: May 26, 2022, YouTube, Retrieved from Internet: https://www.youtube.com/watch?v=uAsxiBlbY4Y (Dated Year: 2022).
MEAW School, Introduction to MEAW (Multi-loop Edgewise Arch Wire), dated as uploaded on: Mar. 24, 2021, YouTube, Retrieved from Internet: https://www.youtube.com/watch?v=ne785jIzN Pg (Year: 2021).
Richard Gawel, Swift Health Systems Raises $45 Million to Finance Invisible Orthodontics, dated as published on: Dec. 4, 2019, dentistrytoday.com, Retrieved from Internet: https://www.dentistrytoday.com/products/swift-health-systems-raises-45-million-to-finance-invisible-orthodontics/ (Dated Year: 2019).
In Brace, What Is In Brace?—Integration Booster, dated as uploaded on: May 22, 2023, YouTube, Retrieved from Internet: https://www.youtube.com/watch?v=ANUPkCSfQo4 (Dated Year: 2023).
Related Publications (1)
Number Date Country
20220287804 A1 Sep 2022 US
Provisional Applications (1)
Number Date Country
63160166 Mar 2021 US