Indium gallium nitride light emitting devices

Information

  • Patent Grant
  • 9978904
  • Patent Number
    9,978,904
  • Date Filed
    Tuesday, October 15, 2013
    11 years ago
  • Date Issued
    Tuesday, May 22, 2018
    6 years ago
Abstract
InGaN-based light-emitting devices fabricated on an InGaN template layer are disclosed.
Description
FIELD

The disclosure relates to InGaN-based light-emitting devices fabricated on an InGaN template layer.


BACKGROUND

Today's state-of-the-art visible-spectrum light-emitting diodes (LEDs) and laser diodes (LDs) in the ultraviolet to green (380 nm to 550 nm) regime are based on InGaN active layers grown pseudomorphic to wurtzite GaN. This is true whether the growth substrate is GaN itself, or a foreign substrate such as sapphire or SiC, since in the latter cases GaN-based template layers are employed. Because the lattice constants of GaN and InN are significantly different, InGaN grown pseudomorphically on GaN substrates or layers has significant stress, where the magnitude increases as the In/Ga ratio in the InGaN layer increases.


The built-in stress within the InGaN active layers can make it difficult to achieve high quality material and good device operation. Obtaining high quality material and good device operation becomes progressively more difficult as the InN mole fraction increases, which is a requirement for longer wavelength devices. In addition, for c-plane grown devices, increasing the InN mole fraction also increases the built-in electric fields across the active layers due to spontaneous and piezoelectric polarization fields, reducing the overlap between electrons and holes and decreasing the radiative efficiency. Moreover, there is evidence that material breakdown occurs once the stress level becomes too high, resulting in so-called “phase separation” (see N. A. El-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, “Phase separation in InGaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 72, pp. 40-42, 1998). Phase separation is exhibited beyond a critical limit of a certain InN mole fraction combined with a certain layer thickness. Such a limit is commonly observed for InGaN layers of about 10% InN grown more than 0.2 μm thick, for example, resulting in “black” or “grey” wafers.


The use of substrates comprising non-polar (1-100), (11-20), and semi-polar planes of GaN can address some of the problems above. In particular, for certain growth planes, the combined spontaneous and piezoelectric polarization vector can be reduced to zero or near-zero, eliminating the electron-hole overlap problem prevalent in c-plane-based devices. Also, improved material quality with higher InN mole fraction can be observed, such as is demonstrated in semi-polar material, which has resulted in continuous-wave (cw) true-green laser diodes (LDs) (see Enya et al., “531 nm green lasing of InGaN based laser diodes on semi-polar {20-21} free-standing GaN substrates,” Appl. Phys. Express 2, 082101, 2009; J. W. Raring et al., “High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates,” Appl. Phys. Express 3, 112101 (2010)). However, the performance of longer-wavelength devices grown on these structures still suffers considerably compared to that of their shorter-wavelength counterparts. Also, it is not clear that growth plane orientation would eliminate the material quality problems associated with strain. Indeed, recent characterization of semi-polar (Al,In,Ga)N heterostructures reveals the formation of a large density of misfit dislocations at heterointerfaces between AlGaN and GaN, for example (see A. Tyagi et al., “Partial strain relaxation via misfit dislocation generation at heterointerfaces in (Al,In)GaN epitaxial layers grown on semipolar (11-22) GaN free standing substrates,” Appl. Phys. Lett. 95, 251905, 2009). These dislocations are likely to act as non-radiative recombination centers, and these dislocations may also provide potential degradation mechanisms which may prevent long-life operation (e.g., as is necessary for applications such as solid-state lighting). Further, reported external quantum efficiencies vs. wavelength for LEDs generally show a strong reduction in external quantum efficiency with increasing InN mole fraction, which is often referred to as the “green gap,” regardless of growth plane orientation.


SUMMARY

Disclosed herein are light emitting devices. In one embodiment, the light emitting device is formed on a gallium- and indium-containing nitride substrate having an n-type layer overlying the substrate, and having an active layer overlying the n-type layer with a p-type layer overlying the active layer. In this specific embodiment, the gallium- and indium-containing nitride substrate comprises a thickness greater than 4 μm and an InN composition greater than 0.5%.


In another embodiment, a light emitting device is formed of a substrate, an n-type layer overlying the substrate, an active layer overlying the n-type layer; and a p-type layer overlying the active layer. Each of the aforementioned layers is characterized by an in-plane lattice constant greater, by at least 1%, than that of similarly oriented GaN.


In certain aspects, light emitting devices are provided comprising a gallium- and indium-containing nitride substrate; an n-type layer overlying the substrate; an active layer overlying the n-type layer; and a p-type layer overlying the active layer; wherein the gallium- and indium-containing nitride substrate comprises a thickness greater than 4 μm and an InN composition greater than 0.5%.


In certain aspects, light emitting devices are provided comprising a substrate; an n-type layer overlying the substrate; an active layer overlying the n-type layer; and a p-type layer overlying the active layer; each of the n-type layer, the active layer, and the p-type layer is characterized by an in-plane lattice constant, wherein each of the in-plane lattice constants is greater, by at least 1%, than an in-plane lattice constant of similarly oriented GaN.


In certain aspects, methods of fabricating a light emitting devices are provided comprising providing a substrate; selecting an InN composition; fabricating an InGaN template by growing an InGaN epitaxial layer having the selected InN composition on the substrate by hydride vapor phase epitaxy; and growing an optoelectronic device structure on the InGaN template.


Further details of aspects, objectives, and advantages of the disclosure are described below and in the detailed description, drawings, and claims. Both the foregoing general description of the background and the following detailed description are exemplary and explanatory, and are not intended to be limiting as to the scope of the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided upon request and payment of the necessary fee.



FIG. 1 is a chart 100 showing variation in energy bandgap vs. basal-plane lattice constant.



FIG. 2 is a chart 200 showing variation in external quantum efficiency vs. emission wavelength for several light emitting diodes based on InGaN or AlInGaP active layers (from Denbaars, “Fundamental Limits to Efficiency of LEDs,” DOE Solid State Lighting Workshop, Raleigh, N.C., Feb. 2-4, 2010.)



FIG. 3 shows a schematic view 300 of the InGaN HVPE reactor, which consists of the source zone and the deposition zone, according to some embodiments.



FIG. 4 presents a photograph 400 of a susceptor showing a (000-1) GaN substrate after InGaN growth by HVPE.



FIG. 5 presents a graph 500 showing solid composition of InGaN as a function of growth temperature, according to certain embodiments.



FIG. 6 is a chart 600 showing growth rate and solid composition percentage as a function of an input partial pressure of group III sources GaCl3 and InCl3, according to certain embodiments.



FIG. 7 shows an SEM image 700 of an In0.16Ga0.84N epitaxial layer grown on a (000-1) GaN substrate, according to certain embodiments.



FIG. 8 depicts cross-sectional maps 800 showing energy dispersive X-ray spectroscopy (EDS) data of InGaN on a (000-1) GaN substrate, according to certain embodiments.



FIG. 9 shows a plot 900 of an X-ray reciprocal space map (RSM) of (−1-14) diffraction for InGaN on a (000-1) GaN substrate grown by HVPE, according to certain embodiments.



FIG. 10 shows structure 1000 for thick InGaN growth on GaN, according to certain embodiments.



FIG. 11 depicts a comparison chart 1100 showing relative strain for optoelectronic device layer structures on GaN templates as compared with relative strain of optoelectronic device layer structures on InGaN templates, according to certain embodiments.





DETAILED DESCRIPTION

Today's state-of-the-art visible-spectrum light-emitting diodes (LEDs) and laser diodes (LDs) in the ultraviolet to green (380 nm to 550 nm) regime are based on InGaN active layers grown pseudomorphic to wurtzite GaN. FIG. 1 exemplifies this situation. Chart 100 shows the variation in energy bandgap vs. basal-plane lattice constant. Pseudomorphic strained-to-GaN curve 102 is shown in juxtaposition to the relaxed InGaN curve 104. Moreover, external quantum efficiencies for LEDs decreases with increasing InN mole fraction, regardless of growth plane orientation. This is depicted in chart 200 of FIG. 2 that shows variations in external quantum efficiency vs. emission wavelength for several light emitting diodes.


In this disclosure, the above problems are circumvented by fabricating InGaN-based light-emitting devices on an InGaN template layer rather than on a layer whose lattice constant is pseudomorphic to GaN. Devices fabricated using this technique exhibit a lower strain mismatch between the template layer and device layers, which results in improved optical performance (e.g., via reduced polarization fields) as well as improved reliability (e.g., resulting from higher crystalline quality). Moreover, in accordance with this disclosure, the long-wavelength range of high-performing light-emitting devices can be extended.


When carrying out certain embodiments of this disclosure, a seed substrate is placed into a reaction chamber for hydride vapor phase epitaxy deposition of InGaN, to form an InGaN template. FIG. 3 shows a schematic view 300 of an InGaN HVPE reactor that consists of a source zone and a deposition zone (K. Hanaoka, H. Murakami, Y. Kumagai and A. Koukitu, “Thermodynamic analysis on HVPE growth of InGaN ternary alloy,” Journal Crystal Growth, vol. 318 (2011) 441-445). In the source zone, two boats for gallium metal and indium metal are located, and the mixture gas of Cl2 and IG (Inert Gas such as nitrogen, helium and argon), or the mixture gas Cl2, IG, and hydrogen feeds into the source boats. In FIG. 5, the reactions representing formation of GaCl3, InCl3, and NH3, are identified as reactions 302, 304, and 306, respectively. The precursors are deposited on substrate 308 and unreacted species exhausted 310 from the HVPE growth apparatus. The group III precursors, GaCl3 and InCl3, are generated by reactions (1) and (2) (below), and are transported into the deposition zone. In substitution for the above reactions, the vapor pressures of GaCl3 and/or InCl3 vaporized from solid GaCl3 and InCl3 sources can be used as the group III precursors. Thus, the relevant reactions are:

Ga(s)+1.5Cl2→GaCl3  (1)
In(s)+1.5Cl2→InCl3  (2)


In the deposition zone, the group III precursors and NH3 as the group V precursor are mixed to deposit InGaN alloy on a substrate. The reactions in the deposition zone are expressed by reactions (3) and (4), where the InGaN alloy comprises GaN(alloy) and InN(alloy). The reactions are:

GaCl3+NH3→GaN(alloy)+3HCl  (3)
InCl3+NH3→InN(alloy)+3HCl  (4)


A substantially indium-free seed substrate may be provided. The substrate may comprise one of sapphire, silicon carbide, gallium arsenide, silicon, germanium, a silicon-germanium alloy, MgAl2O4 spinel, ZnO, BP, ScAlMgO4, YFeZnO4, MgO, Fe2NiO4, LiGa5O8, Na2MoO4, Na2WO4, In2CdO4, LiAlO2, LiGaO2, Ca8La2(PO4)6O2, lithium aluminate, gallium nitride, indium nitride, or aluminum nitride. The substrate may have a wurtzite crystal structure and the surface orientation may be within 5 degrees, within 2 degrees, within 1 degree, within 0.5 degree, within 0.2 degree, within 0.1 degree, within 0.05 degree, within 0.02 degree, or within 0.01 degree of the (0 0 0 1) +c plane, the (0 0 0 −1) −c plane, the {1 0 −1 0} m-plane, the {1 1 −2 0} the a-plane, or to (h k i l) semi-polar plane, where l and at least one of h and k are nonzero and i=−(h+k). In a specific embodiment, the crystallographic orientation of the substrate is within 5 degrees, within 2 degrees, within 1 degree, within 0.5 degree, within 0.2 degree, within 0.1 degree, within 0.05 degree, within 0.02 degree, or within 0.01 degree of {10−1±1}, {1 0 −1 ±2}, {1 0 −1 ±3}, {1 1 −2 ±2}, {2 0 −2 ±1}, {3 0 −3 ±1}, {3 0 −3 ±2}, {2 1 −3 ±1}, or {3 0 −3 ±4}. The substrate may have a cubic crystal structure and the surface orientation may be within 5 degrees, within 2 degrees, within 1 degree, within 0.5 degree, within 0.2 degree, within 0.1 degree, within 0.05 degree, within 0.02 degree, or within 0.01 degree of (1 1 1), (−1 −1 −1), {0 0 1}, or {1 1 0}. The substrate may have a diameter greater than about 5 millimeters, greater than about 10 millimeters, greater than about 15 millimeters, greater than about 25 millimeters, greater than about 40 millimeters, greater than about 70 millimeters, greater than about 90 millimeters, greater than about 140 millimeters, or greater than about 190 millimeters.


In a specific embodiment, the seed substrate is wurtzite GaN and the growth surface is substantially N-face GaN. The seed substrate may have a dislocation density below 107 cm−2, below 106 cm−2, below 105 cm2, below 104 cm−2, below 103 cm−2, or below 102 cm−2. The seed substrate may have a stacking-fault concentration below 103 cm−1, below 102 cm−1, below 10 cm−1 or below 1 cm−1. The seed substrate may have an optical absorption coefficient below 100 cm−1, below 50 cm−1, below 5 cm−1, below 2 cm−1, below 1 cm−1, or below 0.3 cm−1 at wavelengths between about 390 nm and about 700 nm. The seed substrate may have an optical absorption coefficient below 100 cm−1, below 50 cm−1, below 5 cm−1, below 2 cm−1, below 1 cm−1, or below 0.3 cm−1 at wavelengths between about 700 nm and about 3077 nm and at wavelengths between about 3333 nm and about 6667 nm. The top surface of the seed substrate may have an X-ray diffraction ω-scan rocking curve full-width-at-half-maximum (FWHM) less than about 300 arc sec, less than about 200 arc sec, less than about 100 arc sec, less than about 50 arcsec, less than about 40 arcsec, less than about 30 arcsec, less than about 20 arcsec, or less than about 10 arcsec for the lowest-order symmetric and non-symmetric reflections. The top surface of the seed substrate may have been prepared by chemical mechanical polishing and may have a root-mean-square surface roughness less than 1 nanometer, less than 0.5 nanometer, less than 0.2 nanometer, or less than 0.1 nanometer, for example, as measured by atomic force microscopy over an area of at least 10 micrometers by 10 micrometers. In certain embodiments, the crystallographic orientation of the top (growth) surface is within about 0.1 degree of the (000-1) N-face. In certain embodiments, the crystallographic orientation of the top surface is miscut from (000-1) N-face by between about 0.1 and about 10 degrees toward a {10-10} m-plane and is miscut by less than about 0.5 degrees towards an orthogonal {11-20} a-plane. In certain embodiments, the crystallographic orientation of the top surface is miscut from the (000-1) N-face by between about 0.1 and about 10 degrees toward a {11-20} a-plane and is miscut by less than about 0.5 degrees towards an orthogonal {10-10} m-plane. In certain embodiments, the crystallographic orientation of the top surface is miscut from the (000-1) N-face by between about 0.1 and about 10 degrees toward a {10-10} m-plane and is miscut by between about 0.1 and about 10 degrees towards an orthogonal {11-20} a-plane.


In certain embodiments an indium-containing nitride layer is deposited onto the substrate prior to initiating HVPE bulk growth on the substrate. An indium-containing nitride layer may be deposited at relatively low temperature by at least one of molecular beam epitaxy, hydride vapor phase epitaxy, metalorganic chemical vapor deposition, and atomic layer epitaxy. In certain embodiments, alternating layers of a higher-indium composition and a lower-indium composition are deposited. The alternative compositions may be deposited by periodic changes in the gas phase composition above a stationary substrate or by physical transport of the substrate between regions of the reactor providing higher-indium and lower-indium growth environments. Deposition of high-crystallinity layers at low temperature may be facilitated by providing one or more hot wires to assist in the decomposition of gas-phase precursor species, by a plasma, or by similar means. Further details are described in U.S. Publication No. 212/0199952, which is incorporated by reference in its entirety. In certain embodiments, partial or full relaxation of an indium-containing nitride layer on the substrate is performed prior to initiating HVPE bulk growth on the substrate. In certain embodiments, the substrate or a layer deposited thereupon is patterned to facilitate atom transport along glide planes to form misfit dislocations. If desired, a pattern, for example to provide stripes, bottom pillars, holes, or a grid, is formed on the substrate or on an epitaxial layer on the substrate by conventional photolithography or by nanoimprint lithography. Generation of misfit dislocations may be facilitated by roughening the growth surface before deposition, for example, by deposition of nano-dots, islands, ion bombardment, ion implantation, or by light etching. Misfit dislocations may also preferentially be formed by modifying the lattice parameter of the substrate near an epitaxial layer by a process such as atomic diffusion, atomic doping, ion implantation, and/or mechanically straining the substrate. Generation of misfit dislocations may also be facilitated by deposition of a thin layer of AlxGa(1-x)N, for example, thinner than about 10 nanometers to 100 nanometers, followed by annealing to a temperature between about 1000 degrees Celsius and about 1400 degrees Celsius in an ammonia-rich atmosphere. Further details are described in U.S. Publication No. 2012/0091465, which is incorporated by reference in its entirety. In certain embodiments, the indium-containing nitride layer is relaxed, having a-axis and c-axis lattice constants within 0.1%, within 0.01%, or within 0.001% of the equilibrium lattice constants for the specific indium-containing nitride composition.


Recent results using an N-face (000-1) GaN substrate are disclosed. A mirror-like surface can be obtained. However, in some cases there may be cracks on the surface of the InGaN layer caused by the expansion stress. A photograph 400 of the susceptor showing the (000-1) GaN substrate after InGaN growth is shown below in FIG. 4.



FIG. 5 depicts a graph 500 showing the solid composition of InN in InGaN as a function of the growth temperature. The solid composition of InN in InGaN decreases with increasing temperature. In FIG. 5, previous data is also displayed for InGaN grown by using solid sources, GaCl3 and InCl3 (N. Takahashi, R. Matsumoto, A. Koukitu and H. Seki, “Vapor phase epitaxy of InGaN using InCl3, GaCl3 and NH3 sources,” Jpn. Appl. Phys., 36 (1997) pp. L601-L603). The content of the solid compositions of the present samples are similar to that of the previous samples. However, photoluminescence of the previous samples was not observed due to the high impurity concentration in solid sources. In the figure, PIII and Pv indicate the input partial pressures of the group III source (PIn+PGa) and the group V source (PNH3).



FIG. 6 depicts a chart 600 showing the growth rate (602) and the solid composition (604) as a function of the input partial pressure of the group III sources. The growth rate linearly increases with increasing input pressure, while the solid composition, InN in InGaN, is constant at about 0.16.



FIG. 7 shows a scanning electron microscope (SEM) image 700 of an In0.16Ga0.84N epitaxial layer grown on a (000-1) GaN substrate of the methods of the present disclosure. The thickness of the epitaxial layer is about 800 nm and the growth rate is about 8.5 μm/h. Because the thickness of InGaN layer is large (about 800 nm), the expansion stress may have caused the cracks on the InGaN surface. Some methods serve to prevent crack formation, resulting in a high quality thick InGaN layer. One such method is the “multi-step grading method.” For example, to grow a crack-free InxGa1-xN film, where x is greater than about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0, it may be desirable to grow a series of layers of graded composition. For example, a graded layer may consist of successive 1-micron thicknesses of In0.2xGa1-0.2xN, In0.4xGa1-0.4xN, In0.6xGa1-0.6xN, In0.8xGa1-0.8xN, followed by a thicker InxGa1-xN film. In certain embodiments, the thickness of the intermediate-composition layers lies between 10 nanometers and 5 microns. In certain embodiments, the composition is graded continuously rather than as discrete layers with each layer having a fixed InGaN composition.



FIG. 8 depicts cross-sectional maps 800 showing energy dispersive X-ray spectroscopy (EDS) data of InGaN on —C GaN, using the same sample shown in FIG. 7. Measurement conditions are as follows: accelerating voltage: 20 kV, emission current: 20 μA, spot size: 7, WD: 15 mm, wavelength resolution: 130 eV to 140 eV. From the mapping data, it can be seen that the InGaN layer exhibits a relatively homogeneous solid composition.



FIG. 9 presents a plot 900 showing the reciprocal space map (RSM) of (−1−14) diffraction for InGaN on —C GaN grown by HVPE (same sample shown in FIG. 7). FIG. 9 shows that the InGaN layer is fully relaxed with respect to the GaN substrate because the grown thickness of InGaN is about 800 nm. The lattice constant of InGaN layer is estimated to be a=0.32657 nm and c=0.52712 nm. Assuming that the lattice constant of InGaN follows Vegard's law of linear function between InN and GaN, solid composition x in InxGa1-xN should be 0.216 (estimation from the a-axis lattice constant). Since the value is somewhat different from that estimated from the c-axis lattice constant of InGaN (x=0.152), residual strain and/or some impurities are thought to be included in the layer.



FIG. 10 shows a new structure 1000 for thick InGaN growth without cracks grown using a graded structure, as described above. This structure can be grown using a HVPE reactor described in the present disclosure. The growth rate of InGaN is very fast and it is easy to grow 1 μm-thick multi-step layers (see layers). In certain embodiments, this structure is deposited onto a substrate 1004. A GaN layer 1002 deposited upon the substrate may be patterned to facilitate atom transport along glide planes to form misfit dislocations, as described in U.S. Patent Application Publication. No. 2012/0091465, which is incorporated by reference in its entirety.


There are several ways to provide the final InGaN template suitable for subsequent epitaxial growth and device fabrication. In one embodiment, the InGaN layer is left on its seed substrate. If necessary, a polishing step (e.g., chemical-mechanical polishing) may be provided to prepare the surface for epitaxial growth. In another embodiment, the N-face InGaN material is grown very thick, to several hundred microns or more, to provide a free-standing InGaN crystal or boule. In certain embodiment, the indium-containing nitride crystal or boule is relaxed, having a-axis and c-axis lattice constants within 0.1% within 0.01%, or within 0.001% of the equilibrium lattice constants for the specific indium-containing nitride composition. The InGaN boule may be machined by well-known wafering techniques to provide one or more InGaN wafers. Steps for wafering may include wire-sawing, lapping, polishing, and chemical cleaning steps. A typical wafer thickness may be between 100 and 750 microns, more typically between 250 and 350 microns. In certain embodiments, an InGaN boule or wafer is used as a seed for further bulk growth, for example, by HVPE, by an ammonothermal technique, by a flux technique, or by a solution growth technique. In the case of polar or semi-polar orientations, either the +c or −c orientation surface may be selected preferentially for final preparation for epitaxial growth (that is, the “backside” need not have all the same polishing and or cleaning steps). In certain embodiments it is preferable to remove the original seed substrate at some point in the process.


The InGaN template is provided for device fabrication as follows. Typically, the template is placed in a metal-organic chemical vapor deposition (MOCVD) or molecular beam epitaxy (MBE) reactor for deposition of device quality layers. This is accomplished by reacting tri-methyl (-ethyl) indium, tri-methyl (-ethyl) gallium, and/or tri-methyl (-ethyl) aluminum in the presence of ammonia (NH3) in nitrogen and/or hydrogen carrier gas, at elevated temperatures (500° C. to 1000° C.). The ratio of precursors is selected in order to provide a close lattice match to the InGaN template, and can be controlled by monitoring of mass flow controllers (MFCs), or growth temperature, or by in situ wafer bow measurements. Typically, an n-type InGaN layer is deposited first. The n-type characteristic may be achieved unintentionally (i.e., background oxygen) or intentionally by introducing donor species (e.g., Si via silane). Then, an InGaN or AlGaInN active layer structure is deposited. A common active layer structure is a multiplequantum-well structure. The light-emitting layers are grown with a higher InN mole fraction than the template and the barrier layers (if any) separating the light-emitting layers. The active region may be undoped, n-type doped, or p-type doped. The p-type characteristic is typically achieved by introducing acceptor species (e.g., Mg via Cp2Mg). After the active layers are deposited, a spacer layer may be provided, before growing the p-type layers. The p-type layers may include an InGaN, GaN, AlGaN, or AlGaInN “electron blocking” layer to assist in carrier confinement in the active layers during device operation. After the electron blocking layer, a p-type InGaN layer is grown, followed by an InGaN or GaN p+ contact layer. Typically, after MOCVD growth, the entire structure is annealed at elevated temperature to activate the p-type layers through redistribution of hydrogen which has been grown into the crystal.


A device structure is illustrated schematically in comparison chart 1100 of FIG. 11. The top illustration (see features 1102, 1104, and 1106) indicates a device structure where the growth template is a GaN template (on, for example, sapphire, silicon carbide, or silicon) or a GaN substrate. The lattice constant along the in-plane direction is that of GaN and the epitaxial layers are grown pseudomorphically to the GaN template or substrate. The device layers grown thereon include InGaN active (e.g., quantum well) layers and AlGaN (e.g., electron blocking) layers. The native in-plane lattice constants of these tertiary alloys are larger (InGaN) or smaller (AlGaN) than that of GaN, resulting in strong compressive or tensile stress, respectively, in these pseudomorphically grown layers. For long wavelength devices, significant InN is required, resulting in severe compressive stress that can result in poor quality crystal growth and consequently, poor device performance and reliability.


Referring to the bottom illustration (see features 11081110, and 1112), and in accordance with the present disclosure, the InGaN template is chosen to provide larger in-plane lattice constant than that of GaN, providing for a strain-compensated design, wherein compressive and tensile stress are balanced out so that the entire crystal structure has strong mechanical integrity. This results in more design freedom, higher crystal quality, and better performance and reliability in devices.


In certain embodiments, the active layer is designed so that the InGaN template is substantially transparent with respect to the wavelength(s) of light emitted by the active layer. For example, if the composition of the InGaN substrate is specified by InyGa1-yN, where 0.05≤y≤1, and the composition of the active layer is designated by InxGa1-xN, where 0.05≤x≤1, x may be chosen to be greater than y by at least about 0.01, at least about 0.02, or at least about 0.05. The resulting compressive strain may be compensated by tensile strain associated with GaN, AlN, AlInGaN, or InzGa1-zN, where 0.0≤z≤y, barrier layers, electron-blocking layers, p-type layers, and the like. Of course, many quaternary (AlInGaN) compositions may be suitable for selecting a strain state while providing desired bandgap engineering for the device layer stack.


In certain embodiments, the InGaN template is conductive and a vertical light-emitting device may be fabricated, in which case an ohmic contact electrode is made to the back of the InGaN template. If a lateral or flip-chip device is desired, the n-type electrode is provided after etching through the p-type and active layers down to the n-type epitaxial or n-type InGaN template layers. Suitable n-type ohmic contact metallizations include Ti and Al, and combinations thereof. The p-type electrode is provided on the p+ contact layer. Suitable p-type ohmic contact metallizations include Ni, Au, Pt, Pd, and Ag, and combinations thereof. For light-emitting diodes (LEDs), reflective metallizations are sometimes preferred.


In the case of LEDs, extraction features may be incorporated into one of more exposed surfaces of the wafer. Extraction features may include roughened aspects as well as ordered texturing, including photonic crystal structures. After metal patterning and extraction feature implementation, the wafer may be diced into multiple LED chips, by means such as laser scribe and break, diamond tool scribe and break, sawing, etc. After dicing, further extraction features may be incorporated into the chip side surfaces, by means such as wet chemical etching.


In the case of laser diodes, the wafer may be laser scribed and broken into bars to provide mirror facets for multiple laser stripes. The mirror facets may be coated to provide high-reflectivity or anti-reflection properties, to optimize total laser light output. Then, the individual laser diode chips may be obtained in a further singulation step, which may include another scribe and break step.


After dicing, the light-emitting device is packaged into a suitable housing, and electrical connections are made to the n and p ohmic contacts electrodes. Thermal management is provided by providing a thermally conductive path from the active layers to the package housing. Optical encapsulation and/or lensing may be provided by primary optics comprising, for example, transparent materials such as silicones or glass. The final packaged device may be then incorporated into a solid state lighting product such as a lamp, luminaire, or light engine for displays.


The present disclosure is applicable to various crystal orientations. For example, the growth substrate maybe be polar (+c or −c plane), non-polar (a or m plane), or semi-polar (e.g., 11-2±2, 10-1±1, 20-2±1, 30-3±1, 30-3±2, etc.), which will provide for an InGaN template of similar orientation. This allows one to utilize the benefits of the chosen plane (e.g., polarization field reduction) for the InGaN device.


In the foregoing specification, the disclosure has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the disclosure. For example, the above-described process flows are described with reference to a particular ordering of process actions. However, the ordering of many of the described process actions may be changed without affecting the scope or operation of the disclosure. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than restrictive sense. In the foregoing specification, the disclosure has been described with reference to specific embodiments thereof.

Claims
  • 1. A method of fabricating a light emitting device comprising: providing a first substrate having a crystallographic orientation within about 5 degrees of a −c-plane, the first substrate comprising a bulk gallium nitride substrate, wherein the bulk gallium nitride substrate is a single layer having a top surface of wurtzite GaN;fabricating an InGaN template by growing an InGaN epitaxial layer having a selected InN composition by hydride vapor phase epitaxy on said bulk gallium nitride such that said InGaN epitaxial layer directly contacts said top surface, wherein said InGaN epitaxial layer has a thickness greater than 4 μm and comprises an InN mole fraction greater than 0.5%, wherein the InGaN epitaxial layer is relaxed, having a-axis and c-axis lattice constants within 0.1% of the respective equilibrium lattice constants for a specific indium-containing nitride composition; andgrowing an optoelectronic device structure on one of the InGaN template or a derivative of the InGaN template.
  • 2. The method of claim 1, wherein the growing of the InGaN epitaxial layer is characterized by a crystallographic orientation that is miscut from said −c-plane.
  • 3. The method of claim 2, wherein said crystallographic orientation is miscut from N-face by between about 0.1 and about 10 degrees toward an m-plane.
  • 4. The method of claim 1, wherein the bulk GaN is substantially indium-free.
  • 5. The method of claim 1, wherein growing the InGaN epitaxial layer having the selected InN composition on the first substrate is performed by growing a series of graded InGaN epitaxial layers, wherein each graded InGaN epitaxial layer comprises an increasing InN mole fraction.
  • 6. The method of claim 1, wherein growing the InGaN epitaxial layer having the selected InN composition on the first substrate is performed by growing a layer having a continuously-graded InN composition.
  • 7. The method of claim 1, further comprising separating the InGaN layer having the selected InN composition from the first substrate to form a free-standing InGaN crystal.
  • 8. The method of claim 7, further comprising utilizing the free-standing InGaN crystal as a seed for bulk crystal growth.
  • 9. The method of claim 1, further comprising incorporating the optoelectronic device structure into a light emitting diode or a laser diode.
  • 10. The method of claim 9, further comprising incorporating the light emitting diode or the laser diode into at least one of, a lamp, a luminaire, and a lighting system.
  • 11. The method of claim 1, wherein the InGaN epitaxial layer is characterized by a single (−1-14) x-ray diffraction peak within a reciprocal space map.
  • 12. The method of claim 1, wherein the optoelectronic device structure is grown directly on one of the InGaN template or a derivative of the InGaN template.
  • 13. The method of claim 1, wherein the derivative of the InGaN template is a free-standing InGaN crystal or wafer formed from the InGaN template.
  • 14. The method of claim 1, wherein the derivative of the InGaN template is a free-standing InGaN crystal or wafer formed from a process wherein the InGaN template or a portion thereof is used as a seed for bulk crystal growth.
  • 15. A method of fabricating a light emitting device comprising: providing a first substrate having a crystallographic orientation within about 5 degrees of a −c-plane, the first substrate comprising a bulk gallium nitride substrate, wherein the bulk gallium nitride substrate is a single layer having a top surface;fabricating an InGaN template by growing an InGaN epitaxial layer having a selected InN composition by hydride vapor phase epitaxy on said bulk gallium nitride substrate such that said InGaN epitaxial layer directly contacts said top surface, wherein the InGaN epitaxial layer has a thickness greater than 4 μm and comprises an InN mole fraction greater than 0.5%;growing an optoelectronic device structure on a second substrate selected from one of the InGaN template and a derivative of the InGaN template; andwherein the InGaN epitaxial layer is relaxed, having a-axis and c-axis lattice constants within 0.1% of the respective equilibrium lattice constants for a specific indium-containing nitride composition.
  • 16. The method of claim 15, wherein the top surface comprises wurtzite GaN.
  • 17. A light emitting device made from a process comprising: providing a first substrate having a crystallographic orientation within about 5 degrees of a −c-plane, the first substrate comprising a bulk gallium nitride substrate, wherein the bulk gallium nitride substrate is a single layer having a top surface;fabricating an InGaN template by growing an InGaN epitaxial layer having a selected InN composition by hydride vapor phase epitaxy on said bulk gallium nitride substrate such that said InGaN epitaxial layer directly contacts said top surface, wherein the InGaN epitaxial layer has a thickness greater than 4 μm and comprises an InN mole fraction greater than 0.5%;growing an optoelectronic device structure on a second substrate selected from one of the InGaN template and a derivative of the InGaN template; andwherein the InGaN epitaxial layer is relaxed, having a-axis and c-axis lattice constants within 0.1% of the respective equilibrium lattice constants for a specific indium-containing nitride composition.
  • 18. The light emitting device of claim 17, wherein the top surface comprises wurtzite GaN.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/714,693 filed on Oct. 16, 2012. Certain embodiments of the present application are related to material disclosed in U.S. Pat. No. 8,482,104, and U.S. Publication No. 2012/0091465, each of which is incorporated by reference in its entirety.

US Referenced Citations (421)
Number Name Date Kind
3283143 Gosnell Nov 1966 A
3621233 Ferdinand et al. Nov 1971 A
3647522 Single Mar 1972 A
4065688 Thornton Dec 1977 A
4066868 Witkin et al. Jan 1978 A
4225904 Linder Sep 1980 A
4350560 Helgeland et al. Sep 1982 A
4581646 Kubodera Apr 1986 A
4870045 Gasper et al. Sep 1989 A
5005109 Carleton Apr 1991 A
5142387 Shikama et al. Aug 1992 A
5169486 Young et al. Dec 1992 A
5331654 Jewell et al. Jul 1994 A
5366953 Char et al. Nov 1994 A
5607899 Yoshida et al. Mar 1997 A
5632812 Hirabayashi May 1997 A
5685885 Khandros et al. Nov 1997 A
5764674 Hibbs-Brenner et al. Jun 1998 A
5813753 Vriens et al. Sep 1998 A
5926493 O'Brien et al. Jul 1999 A
6069394 Hashimoto et al. May 2000 A
6072197 Horino et al. Jun 2000 A
6147953 Duncan Nov 2000 A
6195381 Botez et al. Feb 2001 B1
6275145 Rogozinski Aug 2001 B1
6335771 Hiraishi Jan 2002 B1
6379985 Cervantes et al. Apr 2002 B1
6498355 Harrah et al. Dec 2002 B1
6501154 Morita et al. Dec 2002 B2
6509651 Matsubara et al. Jan 2003 B1
6533874 Vaudo et al. Mar 2003 B1
6547249 Collins, III et al. Apr 2003 B2
6586762 Kozaki Jul 2003 B2
6680959 Tanabe et al. Jan 2004 B2
6734461 Shiomi et al. May 2004 B1
6809781 Setlur et al. Oct 2004 B2
6853010 Slater, Jr. et al. Feb 2005 B2
6860628 Robertson et al. Mar 2005 B2
6864641 Dygert Mar 2005 B2
6889006 Kobayashi May 2005 B2
6956246 Epler et al. Oct 2005 B1
6989807 Chiang Jan 2006 B2
7009199 Hall Mar 2006 B2
7012279 Wierer, Jr. et al. Mar 2006 B2
7019325 Li et al. Mar 2006 B2
7081722 Huynh et al. Jul 2006 B1
7083302 Chen et al. Aug 2006 B2
7113658 Ide et al. Sep 2006 B2
7128849 Setlur et al. Oct 2006 B2
7148515 Huang et al. Dec 2006 B1
7193246 Tanizawa et al. Mar 2007 B1
7252408 Mazzochette et al. Aug 2007 B2
7253446 Sakuma et al. Aug 2007 B2
7279040 Wang Oct 2007 B1
7285801 Eliashevich et al. Oct 2007 B2
7303630 Motoki et al. Dec 2007 B2
7318651 Chua et al. Jan 2008 B2
7341880 Erchak et al. Mar 2008 B2
7348600 Narukawa et al. Mar 2008 B2
7358542 Radkov et al. Apr 2008 B2
7358543 Chua et al. Apr 2008 B2
7390359 Miyanaga et al. Jun 2008 B2
7419281 Porchia et al. Sep 2008 B2
7470555 Matsumura Dec 2008 B2
7470938 Lee et al. Dec 2008 B2
7483466 Uchida et al. Jan 2009 B2
7489441 Scheible et al. Feb 2009 B2
7491984 Koike et al. Feb 2009 B2
7518159 Masui et al. Apr 2009 B2
7560981 Chao et al. Jul 2009 B2
7566639 Kohda Jul 2009 B2
7598104 Teng et al. Oct 2009 B2
7622742 Kim et al. Nov 2009 B2
7733571 Li Jun 2010 B1
7772585 Uematsu et al. Aug 2010 B2
7816238 Osada et al. Oct 2010 B2
7858408 Mueller et al. Dec 2010 B2
7862761 Okushima et al. Jan 2011 B2
7871839 Lee et al. Jan 2011 B2
7884538 Mitsuishi et al. Feb 2011 B2
7906793 Negley Mar 2011 B2
7923741 Zhai et al. Apr 2011 B1
7976630 Poblenz et al. Jul 2011 B2
7997774 Liddle Aug 2011 B2
8044412 Murphy et al. Oct 2011 B2
8044609 Liu Oct 2011 B2
8062726 Greiner et al. Nov 2011 B2
8142566 Kiyomi et al. Mar 2012 B2
8148801 D'Evelyn Apr 2012 B2
8188504 Lee May 2012 B2
8198643 Lee et al. Jun 2012 B2
8207548 Nagai Jun 2012 B2
8207554 Shum Jun 2012 B2
D662899 Shum et al. Jul 2012 S
D662900 Shum et al. Jul 2012 S
8247886 Sharma et al. Aug 2012 B1
8247887 Raring et al. Aug 2012 B1
8252662 Poblenz et al. Aug 2012 B1
8269245 Shum Sep 2012 B1
8293551 Sharma et al. Oct 2012 B2
8304265 Nakamura et al. Nov 2012 B2
8310143 Van De Ven et al. Nov 2012 B2
8314429 Raring et al. Nov 2012 B1
8324835 Shum et al. Dec 2012 B2
8324840 Shteynberg et al. Dec 2012 B2
8350273 Vielemeyer Jan 2013 B2
8351478 Raring et al. Jan 2013 B2
8355418 Raring et al. Jan 2013 B2
8362603 Lim et al. Jan 2013 B2
8404071 Cope et al. Mar 2013 B2
8410711 Lin et al. Apr 2013 B2
8410717 Shteynberg et al. Apr 2013 B2
8431942 Butterworth Apr 2013 B2
8455894 D'Evelyn et al. Jun 2013 B1
8477259 Kubota et al. Jul 2013 B2
8502465 Katona et al. Aug 2013 B2
8519437 Chakraborty Aug 2013 B2
8524578 Raring et al. Sep 2013 B1
8541951 Shum et al. Sep 2013 B1
8575642 Shum Nov 2013 B1
8575728 Raring et al. Nov 2013 B1
8597967 Krames et al. Dec 2013 B1
8651711 Rudisill et al. Feb 2014 B2
8674395 Shum Mar 2014 B2
8686431 Batres et al. Apr 2014 B2
8704258 Tasaki et al. Apr 2014 B2
8746918 Rubino Jun 2014 B1
8752975 Rubino Jun 2014 B2
8786053 D'Evelyn et al. Jul 2014 B2
8791499 Sharma et al. Jul 2014 B1
8888332 Martis et al. Nov 2014 B2
8896235 Shum et al. Nov 2014 B1
8912025 Felker et al. Dec 2014 B2
8946865 D'Evelyn et al. Feb 2015 B2
20010009134 Kim et al. Jul 2001 A1
20010022495 Salam Sep 2001 A1
20010043042 Murazaki et al. Nov 2001 A1
20010055208 Kimura Dec 2001 A1
20020027933 Tanabe et al. Mar 2002 A1
20020050488 Nikitin et al. May 2002 A1
20020070416 Morse et al. Jun 2002 A1
20020088985 Komoto et al. Jul 2002 A1
20020096994 Iwafuchi et al. Jul 2002 A1
20020127824 Shelton et al. Sep 2002 A1
20020155691 Lee et al. Oct 2002 A1
20020182768 Morse et al. Dec 2002 A1
20020190260 Shen et al. Dec 2002 A1
20030000453 Unno et al. Jan 2003 A1
20030001238 Ban Jan 2003 A1
20030020087 Goto et al. Jan 2003 A1
20030045042 Biwa et al. Mar 2003 A1
20030047076 Liu Mar 2003 A1
20030080345 Motoki et al. May 2003 A1
20030164507 Edmond et al. Sep 2003 A1
20030178617 Appenzeller et al. Sep 2003 A1
20030216011 Nakamura et al. Nov 2003 A1
20040051107 Nagahama et al. Mar 2004 A1
20040070004 Eliashevich et al. Apr 2004 A1
20040080256 Hampden-Smith et al. Apr 2004 A1
20040104391 Maeda et al. Jun 2004 A1
20040116033 Ouderkirk et al. Jun 2004 A1
20040124435 D'Evelyn et al. Jul 2004 A1
20040161222 Niida et al. Aug 2004 A1
20040164308 Asatsuma et al. Aug 2004 A1
20040190304 Sugimoto et al. Sep 2004 A1
20040196877 Kawakami et al. Oct 2004 A1
20040201598 Eliav et al. Oct 2004 A1
20040207998 Suehiro et al. Oct 2004 A1
20040227149 Ibbetson et al. Nov 2004 A1
20040245543 Yoo Dec 2004 A1
20040251471 Dwilinski et al. Dec 2004 A1
20050001227 Niki et al. Jan 2005 A1
20050012446 Jermann et al. Jan 2005 A1
20050045894 Okuyama et al. Mar 2005 A1
20050084218 Ide et al. Apr 2005 A1
20050087753 D'Evelyn et al. Apr 2005 A1
20050121679 Nagahama et al. Jun 2005 A1
20050140270 Henson et al. Jun 2005 A1
20050167680 Shei et al. Aug 2005 A1
20050179376 Fung et al. Aug 2005 A1
20050199899 Lin et al. Sep 2005 A1
20050214992 Chakraborty et al. Sep 2005 A1
20050224830 Blonder et al. Oct 2005 A1
20050230701 Huang Oct 2005 A1
20050232327 Nomura et al. Oct 2005 A1
20050263791 Yanagihara et al. Dec 2005 A1
20060006404 Ibbetson et al. Jan 2006 A1
20060038542 Park et al. Feb 2006 A1
20060060131 Atanackovic Mar 2006 A1
20060060872 Edmond et al. Mar 2006 A1
20060065900 Hsieh et al. Mar 2006 A1
20060068154 Parce et al. Mar 2006 A1
20060077795 Kitahara et al. Apr 2006 A1
20060079082 Bruhns et al. Apr 2006 A1
20060097385 Negley May 2006 A1
20060118799 D'Evelyn et al. Jun 2006 A1
20060124051 Yoshioka et al. Jun 2006 A1
20060152795 Yang Jul 2006 A1
20060163589 Fan et al. Jul 2006 A1
20060166390 Letertre et al. Jul 2006 A1
20060169993 Fan et al. Aug 2006 A1
20060177362 D'Evelyn et al. Aug 2006 A1
20060180828 Kim et al. Aug 2006 A1
20060186418 Edmond et al. Aug 2006 A1
20060189098 Edmond Aug 2006 A1
20060204865 Erchak et al. Sep 2006 A1
20060208262 Sakuma et al. Sep 2006 A1
20060214287 Ogihara et al. Sep 2006 A1
20060255343 Ogihara et al. Nov 2006 A1
20060256482 Araki et al. Nov 2006 A1
20060261364 Suehiro et al. Nov 2006 A1
20060273339 Steigerwald et al. Dec 2006 A1
20060288927 Chodelka et al. Dec 2006 A1
20060288928 Eom et al. Dec 2006 A1
20070045200 Moon et al. Mar 2007 A1
20070054476 Nakahata et al. Mar 2007 A1
20070062440 Sato et al. Mar 2007 A1
20070072324 Krames et al. Mar 2007 A1
20070091608 Hauffe et al. Apr 2007 A1
20070093073 Farrell, Jr. et al. Apr 2007 A1
20070096239 Cao et al. May 2007 A1
20070105351 Motoki et al. May 2007 A1
20070114563 Paek et al. May 2007 A1
20070114569 Wu et al. May 2007 A1
20070121690 Fujii et al. May 2007 A1
20070126023 Haskell et al. Jun 2007 A1
20070131967 Kawaguchi et al. Jun 2007 A1
20070170450 Murphy Jul 2007 A1
20070181895 Nagai Aug 2007 A1
20070202624 Yoon et al. Aug 2007 A1
20070217462 Yamasaki Sep 2007 A1
20070231963 Doan et al. Oct 2007 A1
20070231978 Kanamoto et al. Oct 2007 A1
20070264733 Choi et al. Nov 2007 A1
20070280320 Feezell et al. Dec 2007 A1
20070290224 Ogawa Dec 2007 A1
20080023691 Jang et al. Jan 2008 A1
20080030976 Murazaki et al. Feb 2008 A1
20080054290 Shieh et al. Mar 2008 A1
20080073660 Ohno et al. Mar 2008 A1
20080083929 Fan et al. Apr 2008 A1
20080087919 Tysoe et al. Apr 2008 A1
20080099777 Erchak et al. May 2008 A1
20080106212 Yen et al. May 2008 A1
20080121906 Yakushiji May 2008 A1
20080121913 McKenzie et al. May 2008 A1
20080128752 Wu Jun 2008 A1
20080142781 Lee Jun 2008 A1
20080151543 Wang Jun 2008 A1
20080164489 Schmidt et al. Jul 2008 A1
20080164578 Tanikella et al. Jul 2008 A1
20080173884 Chitnis et al. Jul 2008 A1
20080179607 DenBaars et al. Jul 2008 A1
20080179610 Okamoto et al. Jul 2008 A1
20080191192 Feezell et al. Aug 2008 A1
20080191223 Nakamura et al. Aug 2008 A1
20080192791 Furukawa et al. Aug 2008 A1
20080194054 Lin et al. Aug 2008 A1
20080206925 Chatterjee et al. Aug 2008 A1
20080211416 Negley et al. Sep 2008 A1
20080217745 Miyanaga et al. Sep 2008 A1
20080230765 Yoon et al. Sep 2008 A1
20080237569 Nago et al. Oct 2008 A1
20080261381 Akiyama et al. Oct 2008 A1
20080272463 Butcher et al. Nov 2008 A1
20080282978 Butcher et al. Nov 2008 A1
20080283851 Akita Nov 2008 A1
20080284346 Lee Nov 2008 A1
20080291961 Kamikawa et al. Nov 2008 A1
20080298409 Yamashita et al. Dec 2008 A1
20080303033 Brandes Dec 2008 A1
20090028204 Hiroyama et al. Jan 2009 A1
20090032828 Romano et al. Feb 2009 A1
20090058532 Kikkawa et al. Mar 2009 A1
20090065798 Masui et al. Mar 2009 A1
20090071394 Nakahata et al. Mar 2009 A1
20090072252 Son et al. Mar 2009 A1
20090078944 Kubota et al. Mar 2009 A1
20090078955 Fan et al. Mar 2009 A1
20090081857 Hanser et al. Mar 2009 A1
20090086475 Caruso et al. Apr 2009 A1
20090095973 Tanaka et al. Apr 2009 A1
20090140279 Zimmerman et al. Jun 2009 A1
20090146170 Zhong et al. Jun 2009 A1
20090155989 Uematsu et al. Jun 2009 A1
20090173958 Chakraborty et al. Jul 2009 A1
20090194796 Hashimoto et al. Aug 2009 A1
20090206354 Kitano et al. Aug 2009 A1
20090226139 Yuang Sep 2009 A1
20090227056 Kyono et al. Sep 2009 A1
20090250686 Sato et al. Oct 2009 A1
20090262516 Li Oct 2009 A1
20090267098 Choi Oct 2009 A1
20090267100 Miyake et al. Oct 2009 A1
20090273005 Lin Nov 2009 A1
20090309105 Letts Dec 2009 A1
20090309110 Raring et al. Dec 2009 A1
20090309127 Raring et al. Dec 2009 A1
20090315057 Konishi et al. Dec 2009 A1
20090315480 Yan et al. Dec 2009 A1
20090321745 Kinoshita et al. Dec 2009 A1
20090321778 Chen et al. Dec 2009 A1
20100001300 Raring et al. Jan 2010 A1
20100006873 Raring et al. Jan 2010 A1
20100006876 Moteki et al. Jan 2010 A1
20100025656 Raring et al. Feb 2010 A1
20100032691 Kim Feb 2010 A1
20100055819 Ohba et al. Mar 2010 A1
20100067241 Lapatovich et al. Mar 2010 A1
20100096615 Okamoto et al. Apr 2010 A1
20100108985 Chung et al. May 2010 A1
20100109030 Krames et al. May 2010 A1
20100117101 Kim et al. May 2010 A1
20100117106 Trottier May 2010 A1
20100117118 Dabiran et al. May 2010 A1
20100140634 van de Ven et al. Jun 2010 A1
20100148145 Ishibashi et al. Jun 2010 A1
20100148210 Huang et al. Jun 2010 A1
20100149814 Zhai et al. Jun 2010 A1
20100155746 Ibbetson et al. Jun 2010 A1
20100164403 Liu Jul 2010 A1
20100195687 Okamoto et al. Aug 2010 A1
20100200888 Kuhmann et al. Aug 2010 A1
20100220262 DeMille et al. Sep 2010 A1
20100240158 Ter-Hovhannissian Sep 2010 A1
20100244055 Greisen Sep 2010 A1
20100258830 Ide et al. Oct 2010 A1
20100276663 Enya et al. Nov 2010 A1
20100290208 Pickard Nov 2010 A1
20100295054 Okamoto et al. Nov 2010 A1
20100295088 D'Evelyn et al. Nov 2010 A1
20100200837 Zimmerman et al. Dec 2010 A1
20100302464 Raring et al. Dec 2010 A1
20100309943 Chakraborty et al. Dec 2010 A1
20100316075 Raring et al. Dec 2010 A1
20110001157 McKenzie et al. Jan 2011 A1
20110017298 Lee Jan 2011 A1
20110031508 Hamaguchi et al. Feb 2011 A1
20110037049 Tachibana et al. Feb 2011 A1
20110038154 Chakravarty et al. Feb 2011 A1
20110056429 Raring Mar 2011 A1
20110057167 Ueno et al. Mar 2011 A1
20110057205 Mueller et al. Mar 2011 A1
20110062415 Ohta et al. Mar 2011 A1
20110064100 Raring et al. Mar 2011 A1
20110064101 Raring et al. Mar 2011 A1
20110064102 Raring et al. Mar 2011 A1
20110064103 Ohta et al. Mar 2011 A1
20110068700 Fan Mar 2011 A1
20110075694 Yoshizumi et al. Mar 2011 A1
20110100291 D'Evelyn May 2011 A1
20110101350 Greisen May 2011 A1
20110101400 Chu et al. May 2011 A1
20110101414 Thompson et al. May 2011 A1
20110103418 Hardy et al. May 2011 A1
20110108081 Werthen et al. May 2011 A1
20110124139 Chang May 2011 A1
20110136281 Sheen Jun 2011 A1
20110140150 Shum Jun 2011 A1
20110175200 Yoshida Jul 2011 A1
20110177631 Gardner et al. Jul 2011 A1
20110180781 Raring et al. Jul 2011 A1
20110182056 Trottier et al. Jul 2011 A1
20110186860 Enya et al. Aug 2011 A1
20110186874 Shum Aug 2011 A1
20110186887 Trottier et al. Aug 2011 A1
20110188530 Lell et al. Aug 2011 A1
20110198979 Shum et al. Aug 2011 A1
20110204378 Su et al. Aug 2011 A1
20110204763 Shum et al. Aug 2011 A1
20110204779 Shum et al. Aug 2011 A1
20110204780 Shum et al. Aug 2011 A1
20110215348 Trottier et al. Sep 2011 A1
20110216795 Hsu et al. Sep 2011 A1
20110220912 D'Evelyn Sep 2011 A1
20110247556 Raring et al. Oct 2011 A1
20110256693 D'Evelyn et al. Oct 2011 A1
20110262773 Poblenz et al. Oct 2011 A1
20110266552 Tu et al. Nov 2011 A1
20110279054 Katona et al. Nov 2011 A1
20110279998 Su et al. Nov 2011 A1
20110281422 Wang et al. Nov 2011 A1
20110315999 Sharma et al. Dec 2011 A1
20110317397 Trottier et al. Dec 2011 A1
20120000415 D'Evelyn et al. Jan 2012 A1
20120007102 Feezell et al. Jan 2012 A1
20120043552 David et al. Feb 2012 A1
20120073494 D'Evelyn Mar 2012 A1
20120091465 Krames et al. Apr 2012 A1
20120104412 Zhong et al. May 2012 A1
20120118223 D'Evelyn May 2012 A1
20120135553 Felker et al. May 2012 A1
20120137966 D'Evelyn et al. Jun 2012 A1
20120178215 D'Evelyn Jul 2012 A1
20120187412 D'Evelyn et al. Jul 2012 A1
20120199841 Batres et al. Aug 2012 A1
20120199952 D'Evelyn et al. Aug 2012 A1
20120235201 Shum Sep 2012 A1
20120288974 Sharma et al. Nov 2012 A1
20120299492 Egawa et al. Nov 2012 A1
20120313541 Egawa et al. Dec 2012 A1
20120320581 Rogers Dec 2012 A1
20130016750 Raring et al. Jan 2013 A1
20130022064 Raring et al. Jan 2013 A1
20130022758 Trottier Jan 2013 A1
20130026483 Sharma et al. Jan 2013 A1
20130043799 Siu et al. Feb 2013 A1
20130044782 Raring Feb 2013 A1
20130064261 Sharma et al. Mar 2013 A1
20130112987 Fu et al. May 2013 A1
20130126902 Isozaki et al. May 2013 A1
20130207148 Krauter et al. Aug 2013 A1
20130234108 David et al. Sep 2013 A1
20130313516 David et al. Nov 2013 A1
20130322089 Martis et al. Dec 2013 A1
20140042918 Lee Feb 2014 A1
20140070710 Harris Mar 2014 A1
20140145235 Shum May 2014 A1
20140175492 Steranka et al. Jun 2014 A1
20140346524 Batres et al. Nov 2014 A1
20140346546 D'Evelyn et al. Nov 2014 A1
Foreign Referenced Citations (42)
Number Date Country
0961328 Dec 1999 EP
2381490 Oct 2011 EP
06-334215 Dec 1994 JP
1997-036430 Feb 1997 JP
09-082587 Mar 1997 JP
H09-199756 Jul 1997 JP
11-340507 Dec 1999 JP
11-340576 Dec 1999 JP
2001-160627 Jun 2001 JP
2001-177146 Jun 2001 JP
2002-185085 Jun 2002 JP
2003-031844 Jan 2003 JP
2003-037288 Feb 2003 JP
2000-294883 Feb 2004 JP
2004-179644 Jun 2004 JP
2007-507115 Mar 2006 JP
2006-147933 Jun 2006 JP
2006-173621 Jun 2006 JP
2007-110090 Apr 2007 JP
2008-084973 Apr 2008 JP
2008-172040 Jul 2008 JP
2008-263154 Oct 2008 JP
2008-311640 Dec 2008 JP
2009-21824 Jan 2009 JP
2009-147271 Jul 2009 JP
2010-517274 Sep 2009 JP
2009-267164 Nov 2009 JP
2010-034487 Feb 2010 JP
2010-098068 Apr 2010 JP
2010-226110 Oct 2010 JP
2010-263128 Nov 2010 JP
2011-243963 Dec 2011 JP
WO 2006062880 Jun 2006 WO
WO 2008091846 Jul 2008 WO
WO 2009001039 Dec 2008 WO
WO 2009066430 May 2009 WO
WO 2010138923 Feb 2010 WO
WO 2010150880 Dec 2010 WO
WO 2011010774 Jan 2011 WO
WO 2011097393 Aug 2011 WO
WO 2012022813 Feb 2012 WO
WO 2012024636 Feb 2012 WO
Non-Patent Literature Citations (160)
Entry
M. A. Mastro et al., “Hydride Vapor Phase Epitaxy-Grown AlGaN/GaN High Electron Mobility Transistors,” Solid-State Electronics 47 (2003) 1075-1079.
Hadis Morkoc, “Handbook of Nitride Semiconductors and Devices,” vol. 1, 2008, p. 704.
Aguilar, ‘Ohmic n-contacts to Gallium Nitride Light Emitting Diodes’, National Nanotechnologhy Infrastructure Network, 2007, p. 56-81.
Baker et al., ‘Characterization of Planar Semipolar Gallium Nitride Films on Spinel Substrates’, Japanese Journal of Applied Physics, vol. 44, No. 29, 2005, pp. L920-L922.
Benke et al., ‘Uncertainty in Health Risks from Artificial Lighting due to Disruption of Circadian Rythm and Melatonin Secretion: A Review’, Human and Ecological Risk Assessment: An International Journal, vol. 19, No. 4, 2013, pp. 916-929.
Cich et al., ‘Bulk GaN based violet light-emitting diodes with high efficiency at very high current density’, Applied Physics Letters, Nov. 29, 2012, pp. 223509-1-223509-3.
Csuti et al., ‘Color-matching experiments with RGB-LEDs’, Color Research and Application, vol. 33, No. 2, 2008, pp. 1-9.
Davis et al., ‘Color quality scale’, Optical Engineering, vol. 49, No. 3, Mar. 2010, pp. 033602-1-036602-16.
Founta et al., ‘Anisotropic Morphology of Nonpolar a-Plane GaN Quantum Dots and Quantum Wells’, Journal of Applied Physics, vol. 102, vol. 7, 2007, pp. 074304-1-074304-6.
Hanifin et al., ‘Photoreception for Circadian, Neuroendocrine, and Neurobehavioral Regulation’, Journal of Physiological Anthropology, vol. 26, 2007, pp. 87-94.
Haskell et al., ‘Defect Reduction in (1100) m-plane gallium nitride via lateral epitaxial overgrowth by hydride vapor phase epitaxy’, Applied Physics Letters 86, 111917 (2005), pp. 1-3.
Houser et al., ‘Review of measures for light-source color rendition and considerations for a two-measure system for characterizing color rendition’, Optics Express, vol. 21, No. 8, Apr. 19, 2013, pp. 10393-10411.
Iso et al., ‘High Brightness Blue InGaN/GaN Light Emitting Diode on Nonpolar m-Plane Bulk GaN Substrate’, Japanese Journal of Applied Physics, vol. 46, No. 40, 2007, pp. L960-L962.
Paper and Board Determination of CIE Whiteness, D65/10 (outdoor daylight)', ISO International Standard 11475:2004E (2004), 18 pgs.
Kim et al., ‘High Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays’, Nano Letters, vol. 4, No. 6, 2004, pp. 1059-1062.
Lu et al., ‘Etch-Pits of GaN Films with Different Etching Methods’, Journal of the Korean Physical Society, vol. 45, Dec. 2004, p. S673-S675.
International Search Report & Written Opinion of PCT Application No. PCT/US2013/029453, dated Jul. 25, 2013, 11 pages total.
http://www.philipslumileds.com/products/luxeon-flash, ‘LUXEON Flash’, Philips Lumileds, Aug. 8, 2013, pp. 1-2.
Rea et al., ‘White Lighting’, Color Research and Application, vol. 38, No. 2, Sep. 3, 2011, pp. 82-92.
Rickert et al., ‘n-GaN Surface Treatments for Metal Contacts Studied Via X-ray Photoemission Spectroscopy’, Applied Physics Letters, vol. 80, No. 2, Jan. 14, 2002, p. 204-206.
Sato et al., ‘High Power and High Efficiency Semipolar InGaN Light Emitting Diodes’, Journal of Light and Visible Environment, vol. 32, No. 2, Dec. 13, 2007, pp. 57-60.
Sato et al., ‘Optical Properties of Yellow Light-Emitting Diodes Grown on Semipolar (1122) Bulk GaN Substrate’, Applied Physics Letters, vol. 92, No. 22, 2008, pp. 221110-1-221110-3.
Selvanathan et al., ‘Investigation of Surface Treatment Schemes on n-type GaN and A1 0.20Ga0.80N’, Journal of Vacuum Science and Technology B, vol. 23, No. 6, May 10, 2005, p. 2538-2544.
Semendy et al., ‘Observation and Study of Dislocation Etch Pits in Molecular Beam Epitaxy Grown Gallium Nitride with the use of Phosphoric Acid and Molten Potassium Hydroxide’, Army Research Laboratory, Jun. 2007, 18 pages.
Communication from the Korean Patent Office re 10-2012-7009980 dated Apr. 15, 2013, (6 pages).
Communication from the Japanese Patent Office re 2012-529969, dated Oct. 15, 2013, (6 pages).
Weaver et al., ‘Optical Properties of Selected Elements’, Handbook of Chemistry and Physics, 94th Edition, 2013-2014, pp. 12-126-12-150.
Whitehead et al., ‘A Monte Carlo method for assessing color rendering quality with possible application to color rendering standards’, Color Research and Application, vol. 37, No. 1, Feb. 2012, pp. 13-22.
USPTO Office Action for U.S. Appl. No. 12/481,543 dated Jun. 27, 2011 (9 pages).
USPTO Office Action for U.S. Appl. No. 12/491,169 dated Oct. 22, 2010 (9 pages).
USPTO Office Action for U.S. Appl. No. 12/491,169 dated May 11, 2011 (9 pages).
USPTO Office Action for U.S. Appl. No. 12/491,176 dated Mar. 1, 2012 (9 pages).
USPTO Office Action for U.S. Appl. No. 12/491,176 dated Jul. 19, 2012 (13 pages).
USPTO Office Action for U.S. Appl. No. 12/491,176 dated Nov. 22, 2013 (14 pages).
USPTO Office Action for U.S. Appl. No. 12/497,289 dated Feb. 2, 2012 (6 pages).
USPTO Notice of Allowance for U.S. Appl. No. 12/497,289 dated May 22, 2012 (7 pages).
USPTO Office Action for U.S. Appl. No. 12/569,841 dated Dec. 23, 2011 (12 pages).
USPTO Office Action for U.S. Appl. No. 12/569,841 dated Mar. 26, 2013 (17 pages).
USPTO Office Action for U.S. Appl. No. 12/569,841 dated Aug. 13, 2013 (20 pages).
USPTO Office Action for U.S. Appl. No. 12/569,844 dated Oct. 12, 2012 (12 pages).
USPTO Notice of Allowance for U.S. Appl. No. 12/569,844 dated Mar. 7, 2013 (9 pages).
USPTO Office Action for U.S. Appl. No. 12/634,665 dated Mar. 12, 2012 (9 pages).
USPTO Notice of Allowance for U.S. Appl. No. 12/720,593 dated Jul. 11, 2012 (7 pages).
USPTO Office Action for U.S. Appl. No. 12/749,466 dated Jul. 3, 2012 (18 pages).
USPTO Office Action for U.S. Appl. No. 12/749,476 dated Apr. 11, 2011 (14 pages).
USPTO Office Action for U.S. Appl. No. 12/749,476 dated Nov. 8, 2011 (11 pages).
USPTO Notice of Allowance for U.S. Appl. No. 12/749,476 dated May 4, 2012 (8 pages).
USPTO Notice of Allowance for U.S. Appl. No. 12/749,476 dated Jun. 26, 2012 (8 pages).
USPTO Office Action for U.S. Appl. No. 12/785,953 dated Apr. 12, 2012 (11 pages).
USPTO Office Action for U.S. Appl. No. 12/785,953 dated Jan. 11, 2013 (14 pages).
USPTO Office Action for U.S. Appl. No. 12/785,953 dated Oct. 3, 2013 (10 pages).
USPTO Office Action for U.S. Appl. No. 12/861,765 dated Jul. 2, 2012 (11 pages).
USPTO Office Action for U.S. Appl. No. 12/861,765 dated Mar. 7, 2013 (12 pages).
USPTO Office Action for U.S. Appl. No. 12/861,765 dated Sep. 17, 2013 (10 pages).
USPTO Office Action for U.S. Appl. No. 12/879,784 dated Jan. 25, 2012 (6 pages).
USPTO Notice of Allowance for U.S. Appl. No. 12/879,784 dated Apr. 3, 2012 (7 pages).
USPTO Office Action for U.S. Appl. No. 12/880,803 dated Feb. 22, 2012 (8 pages).
USPTO Notice of Allowance for U.S. Appl. No. 12/880,803 dated Jul. 18, 2012 (5 pages).
USPTO Office Action for U.S. Appl. No. 12/914,789 dated Oct. 12, 2011 (7 pages).
USPTO Office Action for U.S. Appl. No. 12/914,789 dated Feb. 24, 2012 (8 pages).
USPTO Notice of Allowance for U.S. Appl. No. 12/914,789 dated May 17, 2012 (5 pages).
USPTO Office Action for U.S. Appl. No. 12/936,238 dated Aug. 30, 2012 (11 pages).
USPTO Office Action for U.S. Appl. No. 12/936,238 dated Jan. 30, 2013 (12 pages).
USPTO Notice of Allowance for U.S. Appl. No. 12/936,238 dated Apr. 16, 2013 (9 pages).
USPTO Office Action for U.S. Appl. No. 12/995,946 dated Mar. 28, 2012 (17 pages).
USPTO Office Action for U.S. Appl. No. 12/995,946 dated Jan. 29, 2013 (25 pages).
USPTO Office Action for U.S. Appl. No. 12/995,946 dated Aug. 2, 2013 (15 pages).
USPTO Office Action for U.S. Appl. No. 13/014,622 dated Nov. 28, 2011 (13 pages).
USPTO Office Action for U.S. Appl. No. 13/014,622 dated Apr. 30, 2012 (13 pages).
USPTO Office Action for U.S. Appl. No. 13/019,897 dated Mar. 30, 2012 (14 pages).
USPTO Office Action for U.S. Appl. No. 13/019,897 dated Jan. 16, 2013 (7 pages).
USPTO Office Action for U.S. Appl. No. 13/019,897 dated Dec. 2, 2013 (17 pages).
USPTO Office Action for U.S. Appl. No. 13/025,833 dated Jul. 12, 2012 (15 pages).
USPTO Office Action for U.S. Appl. No. 13/135,087 dated Sep. 27, 2013 (7 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/163,482 dated Jul. 31, 2012 (5 pages).
USPTO Office Action for U.S. Appl. No. 13/179,346 dated Aug. 17, 2012 (17 pages).
USPTO Office Action for U.S. Appl. No. 13/179,346 dated Dec. 13, 2012 (20 pages).
USPTO Office Action for U.S. Appl. No. 13/210,769 dated Apr. 3, 2013 (13 pages).
USPTO Office Action for U.S. Appl. No. 13/210,769 dated Oct. 28, 2013 (9 pages).
USPTO Office Action for U.S. Appl. No. 13/281,221 dated Jun. 21, 2013 (6 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/281,221 dated Nov. 12, 2013 (10 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/298,905 dated Jun. 11, 2013 (8 pages).
USPTO Office Action for U.S. Appl. No. 13/328,978 dated May 15, 2013 (24 pages).
USPTO Office Action for U.S. Appl. No. 13/328,978 dated Sep. 26, 2013 (25 pages).
USPTO Office Action for U.S. Appl. No. 13/357,315 dated Oct. 15, 2013 (12 pages).
USPTO Office Action for U.S. Appl. No. 13/465,976 dated Aug. 16, 2012 (16 pages).
USPTO Office Action for U.S. Appl. No. 13/465,976 dated Dec. 20, 2012 (16 pages).
USPTO Office Action for U.S. Appl. No. 13/482,956 dated Aug. 17, 2012 (9 pages).
USPTO Office Action for U.S. Appl. No. 13/482,956 dated Feb. 14, 2013 (15 pages).
USPTO Office Action for U.S. Appl. No. 13/482,956 dated Jul. 22, 2013 (16 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/482,956 dated Oct. 28, 2013 (9 pages).
USPTO Office Action for U.S. Appl. No. 13/548,635 dated Jun. 14, 2013 (5 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/548,635 dated Sep. 16, 2013 (6 pages).
USPTO Office Action for U.S. Appl. No. 13/548,770 dated Mar. 12, 2013 (5 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/548,770 dated Jun. 25, 2013 (6 pages).
USPTO Office Action for U.S. Appl. No. 13/600,988 dated Jul. 18, 2013 (12 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/600,988 dated Sep. 16, 2013 (9 pages).
USPTO Office Action for U.S. Appl. No. 13/629,366 dated Oct. 31, 2013 (7 pages).
USPTO Office Action for U.S. Appl. No. 13/723,968 dated Nov. 29, 2013 (23 pages).
USPTO Notice of Allowance for U.S. Appl. No. 12/785,953 dated Mar. 20, 2014 (8 pages).
USPTO Office Action for U.S. Appl. No. 12/861,765 dated Mar. 28, 2014 (12 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/012,674 dated Apr. 30, 2014 (8 pages).
USPTO Office Action for U.S. Appl. No. 13/019,897 dated Jun. 12, 2014 (8 pages).
USPTO Office Action for U.S. Appl. No. 13/304,182 dated May 9, 2014 (12 pages).
USPTO Office Action for U.S. Appl. No. 13/357,578 dated May 13, 2014 (8 pages).
USPTO Office Action for U.S. Appl. No. 13/629,366 dated Apr. 18, 2014 (7 pages).
USPTO Office Action for U.S. Appl. No. 13/904,237 dated May 22, 2014 (13 pages).
USPTO Office Action for U.S. Appl. No. 14/171,885 dated Mar. 28, 2014 (8 pages).
Motoki et al., ‘Dislocation reduction in GaN crystal by advanced-DEEP’, Journal of Crystal Growth, vol. 305, Apr. 1, 2007, pp. 377-383.
Communication from the Japanese Patent Office re 2013515583 dated Feb. 27, 2014, 2 pages.
USPTO Office Action for U.S. Appl. No. 12/569,841 dated Feb. 14, 2014, 20 pages.
USPTO Office Action for U.S. Appl. No. 13/012,674 dated Jan. 17, 2014, 15 pages.
USPTO Office Action for U.S. Appl. No. 13/781,633 dated Mar. 6, 2014, 12 pages.
Enya, ‘531nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {20-21} Free-Standing GaN Substrates’, Applied Physics Express, Jul. 17, 2009, vol. 2, pp. 082101.
Fujii et al., ‘Increase in the Extraction Efficiency of GaN-Based Light-Emitting Diodes Via Surface Roughening’, 2Applied Physics Letters, vol. 84, No. 6, 2004, pp. 855-857.
Kendall et al., ‘Energy Savings Potential of Solid State Lighting in General Lighting Applications’, Report for the Department of Energy, 2001, pp. 1-35.
PCT Communication Including Partial Search and Examination Report for PCT/US2011/041106, dated Oct. 4, 2011, 4 pages total.
International Search Report of PCT Application No. PCT/US2011/023622, dated Apr. 1, 2011, 2 pages total.
International Preliminary Report & Written Opinion of PCT Application No. PCT/US2011/037792, dated Dec. 6, 2012, 8 pages total.
International Search Report of PCT Application No. PCT/US2011/041106, dated Jan. 5, 2012, 4 pages total.
Schmidt et al., ‘High Power and High External Efficiency m-Plane InGaN Light Emitting Diodes’, Japanese Journal of Applied Physics, vol. 46, No. 7, 2007, pp. L126-L128.
Shchekin et al., ‘High Performance Thin-film Flip-Chip InGaN-GaN Light-Emitting Diodes’, Applied Physics Letters, vol. 89, 2006, pp. 071109-1-071109-3.
Tyagi et al., ‘High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (1011) Bulk GaN Substrates’, Japanese Journal of Applied Physics, vol. 46, No. 7, 2007, pp. L129-L131.
Communication from the German Patent Office re 11 2010 003 697.7 dated Apr. 11, 2013, (6 pages).
Communication from the Japanese Patent Office re 2012-529905 dated Apr. 19, 2013, (4 pages).
Communication from the Chinese Patent Office re 201180029188.7 dated Sep. 29, 2014 (7 pages).
Communication from the Japanese Patent Office re 2013-515583 dated Sep. 12, 2014 (4 pages).
Wierer et al., ‘High-Power AlGaInN Flip-Chip Light-Emitting Diodes’, Applied Physics Letters, vol. 78, No. 22, 2001, pp. 3379-3381.
Yamaguchi, ‘Anisotropic Optical Matrix Elements in Strained GaN-Quantum Wells With Various Substrate Orientations’, Physica Status Solidi (PSS), vol. 5, No. 6, 2008, pp. 2329-2332.
Yoshizumi et al., ‘Continuous-Wave Operation of 520nm Green InGaN-Based Laser Diodes on Semi- Polar {2021} GaN Substrates’, Applied Physics Express, vol. 2, 2009, pp. 092101-1-092101-3.
Zhong et al., ‘High Power and High Efficiency Blue Light Emitting Diode on Freestanding Semipolar (1011) Bulk GaN Substrate’, Applied Physics Letter, vol. 90, No. 23, 2007, pp. 233504-1-233504-3.
Zhong et al., ‘Demonstration of High Power Blue-Green Light Emitting Diode on Semipolar (1122) Bulk GaN Substrate’, Electronics Letters, vol. 43, No. 15, 2007, pp. 825-826.
USPTO Office Action for U.S. Appl. No. 12/883,652 dated Jan. 11, 2013 (11 pages).
USPTO Office Action for U.S. Appl. No. 12/942,817 dated Feb. 20, 2013 (11 pages).
USPTO Office Action for U.S. Appl. No. 13/019,897 dated Dec. 5, 2014 (18 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/108,645 dated Jan. 28, 2013 (8 pages).
USPTO Office Action for U.S. Appl. No. 13/210,769 dated Oct. 10, 2014 (10 pages).
USPTO Office Action for U.S. Appl. No. 13/291,922 dated Feb. 20, 2013 (9 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/425,304 dated Aug. 22, 2012 (7 pages).
USPTO Office Action for U.S. Appl. No. 13/425,354 dated Feb. 14, 2013 (12 pages).
USPTO Office Action for U.S. Appl. No. 13/606,894 dated Feb. 5, 2013 (7 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/781,633 dated Nov. 28, 2014 (9 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/909,752 dated Sep. 30, 2014 (9 pages).
Communication from the Japanese Patent Office re 2013-263760 dated Nov. 14, 2014 (11 pages).
USPTO Office Action for U.S. Appl. No. 14/181,386 dated Oct. 28, 2014 (10 pages).
USPTO Notice of Allowance for U.S. Appl. No. 14/301,520 dated Nov. 25, 2014 (8 pages).
USPTO Office Action for U.S. Appl. No. 13/014,622 dated Jun. 20, 2014 (15 pages).
USPTO Office Action for U.S. Appl. No. 13/135,087 dated Aug. 15, 2014 (12 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/304,182 dated Aug. 27, 2014 (8 pages).
USPTO Office Action for U.S. Appl. No. 13/465,976 dated Aug. 25, 2014 (21 pages).
USPTO Office Action for U.S. Appl. No. 13/553,691 dated Sep. 17, 2014 (14 pages).
USPTO Notice of Allowance for U.S. Appl. No. 13/973,213 dated Sep. 16, 2014 (7 pages).
USPTO Office Action for U.S. Appl. No. 14/022,587 dated Jul. 30, 2014 (9 pages).
Tyagi et al., “Partial strain relaxation via misfit dislocation generation at heterointerfaces in (Al,In)GaN expitaxial layers grown on semipolar (112) GaN free standing substrates”, Applied Physics Letters 95, 2510905 (2009).
Cartwright, ‘Quantum Electronics: III_Nitrides Bandgap Calculator’, University of Buffalo, Jan. 5, 2015, p. 1.
Communication from the Japanese Patent Office re 2012-5520086 dated Nov. 28, 2014 (6 pages).
USPTO Office Action for U.S. Appl. No. 13/357,578 dated Jan. 28, 2015 (10 pages).
USPTO Office Action for U.S. Appl. No. 13/904,237 dated Dec. 29, 2014 (20 pages).
USPTO Notice of Allowance for U.S. Appl. No. 14/181,386 dated Mar. 2, 2015 (9 pages).
USPTO Office Action for U.S. Appl. No. 14/212,547 dated Jan. 16, 2015 (19 pages).
Related Publications (1)
Number Date Country
20140103356 A1 Apr 2014 US
Provisional Applications (1)
Number Date Country
61714693 Oct 2012 US