This application is related to U.S. patent applications Ser. No. 09/998,355 filed Nov. 20, 2001, entitled “Acoustic Wave Touch Actuated Switch” and Ser. No. 10/245,246 filed Sep. 17, 2002, entitled “Acoustic Wave Sensor With EMAT Drive.”
N/A
The present invention relates to an acoustic wave touch sensor and more particularly to an individual acoustic wave switch.
There is a substantial need for finger touch actuated switches that are rugged and explosion proof, operate in the presence of liquids, have low power consumption, withstand aggressive sterilization procedures and are inexpensive. Known switches that attempt to meet these needs but fail include the following. A Qprox switch made by Quantum Research Group senses the presence of touch through a charge transfer effect. This switch is sensitive to conductive fluids and/or an ionizing atmosphere and can be made inoperable thereby. Further, the enclosure through which touch is sensed cannot be made of an electrically conducting material, so that metals and the like cannot be used. Piezoelectric switches such as supplied by Schurter or Wilson-Hurd, operate by transferring finger pressure via a metal overlay to a piezoelectric element which generates a voltage when compressed. This type of switch is expensive compared to a standard membrane switch and shares the disadvantages of membrane switches in that holes in the housing or enclosure are required to accommodate the switch. Further, the metal overlay is necessarily thin, so that the piezoelectric element is relatively unprotected against blows to the overlay. Another type of switch shown in U.S. Pat. No. 5,149,986 is based on the absorption of sound in a glass, ball-shaped button when the button is touched. In operation, a transducer sends sound waves into the glass balls and then receives back the echoes in a sonar type fashion. A circuit analyzes the echoes to determine whether the echoes have been reduced indicating a touch. This type of switch is relatively expensive and again requires openings in the housing or enclosure in which the switch is to be mounted.
An acoustic wave switch such as shown in U.S. Pat. No. 5,673,041 includes an ultrasonic piezoelectric transducer mounted on a surface of a substrate opposite a touch surface of the substrate. The transducer generates an ultrasonic wave that propagates in a direction across the thickness of the substrate to the touch surface and reflects off of the touch surface back to the transducer. The ultrasonic wave appears to be a compressional wave. A touch on the touch surface changes the acoustic reflectivity of the surface and changes the impedance of the transducer. The acoustic energy in this switch is not confined and spreads out into the plane of the substrate. As such, the ratio of the stored energy to lost or dissipated energy over a complete cycle, referred to as the Q of the switch, is inherently low and an extremely complex touch detection circuit is required to discriminate between a touch and the absence of a touch. Moreover, the use of compressional waves in this switch is undesirable due to their sensitivity to liquids and other contaminants which can render the switch inoperable.
Also known are acoustic wave touch panels that employ reflective gratings or arrays to reflect portions of an acoustic wave across a touch surface along parallel paths of differing lengths. These devices use a transparent substrate that can overlay a display to provide a touch screen or the like. Examples of such touch sensors are shown in U.S. Pat. Nos. 4,645,870 and 4,700,176 which utilize surface acoustic waves. These systems are undesirable, however, because surface acoustic waves are sensitive to liquids, sealing compounds and other contaminants that can render the panel inoperable and difficult to seal effectively. Another acoustic wave touch panel using reflective arrays is shown in U.S. Pat. No. 5,177,327. This touch panel uses shear waves and in particular the zeroth order horizontally polarized shear wave. Although this touch position sensor is insensitive to liquids and contaminants, touch position sensors that use reflective gratings or arrays and the associated touch detection circuitry are, in general, too expensive to use for an individual switch or for a small number of switches on a panel. Moreover, because the shear wave transducer in this latter system is mounted on a side of the panel to generate a shear wave that propagates in the plane of the substrate, an opening in the enclosure or housing is required to accommodate the panel. U.S. Pat. No. 5,573,077 also uses zeroth order horizontally polarized shear waves, but instead of reflective gratings, discrete transducers are used to propagate the shear waves along parallel paths extending across the substrate.
In accordance with the present invention, the disadvantages of prior switches as discussed above have been overcome. In accordance with the present invention, an individual acoustic wave switch includes a body having a top surface with an acoustic wave cavity formed therein with a touch surface for actuating the switch. The body also includes a base extending downwardly from the top surface so that the switch can easily be mounted in an aperture of a substrate.
In one embodiment of the present invention, a portion of the base includes a threaded outer surface for retaining the switch in the substrate by means of a nut or the like. Alternatively, the threads of the base can engage a threaded aperture so that an additional retaining member is not required.
In a further embodiment of the present invention, the top surface also includes a flange that extends beyond the base of the switch so as to limit the extent to which the switch can extend into the substrate aperture. Moreover, the flange can be formed with a tapered outer surface so as to make the switch extremely difficult to remove from the touch side of the substrate.
The acoustic wave switch of the present invention is extremely rugged, easy to manufacture and easy to mount in a substrate so that one or many acoustic wave switches may be readily mounted for use.
These and other advantages and novel features of the present invention, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.
An individual acoustic wave switch 10 in accordance with the present invention, as illustrated in
The acoustic wave cavity 12 is defined by a mass differential between the cavity 12 and the immediately adjacent area of the top section 11. In a preferred embodiment, the mass differential is such that the mass per unit surface area of the acoustic wave cavity is greater than the mass per unit surface area of the top section 11 immediately adjacent the acoustic wave cavity. As shown in
It is noted, that the raised area defining the acoustic wave cavity 12 may be formed of a shape other than a dome. For example, the raised area may be formed of a thin plateau having a non-circular periphery if desired. Further, the raised area may be formed on the surface 19 opposite the touch surface of the switch 10. In such an embodiment, the touch surface 14 could be flat and the surface on which the transducer 15 is mounted would extend slightly below the adjacent area of the top section 11. Moreover, although the raised area defining the acoustic wave cavity may be integrally formed with the top section 11, the raised area may also be formed of a separate piece of material that is bonded onto the top section 11 of the switch 10. In this embodiment the acoustic wave cavity extends through the separate piece of material and through the area of the top section of the switch underlying or overlying the separate piece of material. Numerous configurations of the raised area defining the acoustic wave cavity are described in U.S. patent application Ser. No. 09/998,355 filed Nov. 20, 2001, entitled “Acoustic Wave Touch Actuated Switch,” which patent application is incorporated herein by reference. It should also be noted that the present invention is not limited to acoustic wave cavities formed by a mass differential as discussed above. The acoustic wave cavity may be formed by any known method. Further, the acoustic wave cavity may also extend into the base of the switch 10, but the cavity and substrate 22 should be such that when the switch 10 is mounted in the substrate 22, minimal, if any, acoustic wave energy propagates into the substrate 22 from the switch 10 so that the acoustic wave energy will be substantially trapped in the body of the switch 10.
As noted above, the acoustic wave transducer 15 is capable of generating an acoustic wave in the acoustic wave cavity 12. The acoustic wave switch 10 of the present invention can use any type of acoustic wave. In a preferred embodiment, the acoustic wave generated in the cavity 12 is a shear wave because a shear wave is insensitive to liquids and other contaminants on the touch surface 14 of the switch 10. Because the fundamental or zeroth order mode of a horizontally polarized shear wave cannot be substantially trapped in the cavity 12, higher order shear wave modes are preferably used in accordance with the present invention. It should be appreciated that because the acoustic wave used in accordance with the present invention is trapped, the wave is a standing wave. A standing wave is resonant so that the wave is reinforced and prolonged. As a result, the standing wave has a much greater amplitude than a wave that is not confined in a cavity but propagates into the substrate 22. The preferred shear wave transducer materials are Lead Zirconium, Titanate (PZT) types and more specifically, PZT4D, PZT5A and PZT8 supplied by Morgan Matroc Transducer Products Ltd. These transducers are preferred due to their combination of high coupling factors, low acoustic and electrical losses and impedance levels. However, other types of acoustic wave transducers may be used in accordance with the present invention. Similarly, acoustic waves other than shear waves can be used in accordance with the present invention.
As shown in
In another embodiment of the present invention, as shown in
Many modifications and variations of the present invention are possible in light of the above teachings. Thus, it is to be understood that, within the scope of the appended claims, the invention may be practiced otherwise than as described hereinabove.
Number | Name | Date | Kind |
---|---|---|---|
4441001 | Miyano et al. | Apr 1984 | A |
4645870 | Adler | Feb 1987 | A |
4700176 | Adler | Oct 1987 | A |
4945357 | Tal | Jul 1990 | A |
5095302 | McLean et al. | Mar 1992 | A |
5149986 | Jalbert | Sep 1992 | A |
5162780 | Solhjell | Nov 1992 | A |
5177327 | Knowles | Jan 1993 | A |
5296839 | Lu | Mar 1994 | A |
5451723 | Huang et al. | Sep 1995 | A |
5573077 | Knowles | Nov 1996 | A |
5673041 | Chatigny et al. | Sep 1997 | A |
5813280 | Johnson et al. | Sep 1998 | A |
5856820 | Weigers et al. | Jan 1999 | A |
5861823 | Strauch et al. | Jan 1999 | A |
5986224 | Kent | Nov 1999 | A |
6078315 | Huang | Jun 2000 | A |
6085576 | Sunshine et al. | Jul 2000 | A |
6087599 | Knowles | Jul 2000 | A |
6091406 | Kambara et al. | Jul 2000 | A |
6107722 | Thurn | Aug 2000 | A |
6369806 | Endo et al. | Apr 2002 | B1 |
6393921 | Grimes et al. | May 2002 | B1 |
6473075 | Gomes et al. | Oct 2002 | B1 |
6492978 | Selig et al. | Dec 2002 | B1 |
7026943 | Knowles et al. | Apr 2006 | B2 |
20020126104 | Knowles et al. | Sep 2002 | A1 |
20020149570 | Knowles et al. | Oct 2002 | A1 |
20040051701 | Knowles | Mar 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20040227740 A1 | Nov 2004 | US |