The following disclosure relates to droplet ejection devices.
Inkjet printers are one type of apparatus employing droplet ejection devices. In one type of inkjet printer, ink drops are delivered from a plurality of linear inkjet print head devices oriented perpendicular to the direction of travel of the substrate being printed. Each print head device includes a plurality of droplet ejection devices formed in a monolithic body that defines a plurality of pumping chambers (one for each individual droplet ejection device) in an upper surface and has a flat piezoelectric actuator covering each pumping chamber. Each individual droplet ejection device is activated by a voltage pulse to the piezoelectric actuator that distorts the shape of the piezoelectric actuator and discharges a droplet at the desired time in synchronism with the movement of the substrate past the print head device.
Each individual droplet ejection device is independently addressable and can be activated on demand in proper timing with the other droplet ejection devices to generate an image. Printing occurs in print cycles. In each print cycle, a fire pulse (e.g., 150 volts) is applied to all of the droplet ejection devices at the same time, and enabling signals are sent to only the individual droplet ejection devices that are to jet ink in that print cycle.
The systems and techniques described here relate to features, in general, a method to control a response of a droplet ejection device that includes one or more switches and a piezoelectric actuator. The method involves connecting the switches to the piezoelectric actuator. Each switch includes an input terminal to connect to a waveform signal, an output terminal to connect to the piezoelectric actuator, a control signal terminal to control a connection of the switch with a control signal, and a resistance between the input terminal and output terminal. The method includes selecting a waveform signal to apply to the input terminal of each the switches, and applying the selected waveform signal on the input terminal of each of the switches. Each of the switches are connected at a common output terminal at the piezoelectric actuator. The method also involves controlling the control signal terminal of each switch with the control signal.
Also described is an implementation for an apparatus with a number of droplet ejection devices. Each droplet ejection device has multiple switches connected in parallel to a piezoelectric actuator. Each switch has an input terminal to connect to an input waveform signal, an output terminal to connect to the piezoelectric actuator, a control signal terminal to control a connection of the switch with a control signal, and a resistance between the input terminal and output terminal. The apparatus may include a set waveform information to distribute the input waveform signal to an input of each of the droplet ejection devices. The waveform signal information includes information for a step pulse, a sawtooth waveform, and/or a combination of two or more waveform patterns. The apparatus includes an amplifier connected to the input terminal of at least one of the switches to drive the piezoelectric actuator connected to the output terminal with the input waveform signal. The amplifier is configured to charge and discharge a capacitance of the piezoelectric actuator. The apparatus also has a controller to provide respective charge control signals to respective control signal terminals to control the extent of change in charge on the capacitance for the piezoelectric actuator. The apparatus may include a waveform table associated with the set of waveform information.
In another implementation, a system controls printing of an inkjet printer. The system includes a filter circuit to filter high-frequency signals in input waveform signals, in which the filter circuit provides stable firing waveform signals for an actuator for ink droplet ejection. The filter circuit includes an effective resistance formed from multiple resistors electrically connected in parallel, in which a first end of the parallel connection is connected to an input waveform terminal and a second end of the parallel connection is connected to the actuator for ink droplet ejection. The filter circuit also has multiple switches. At least one switch is configured to connect at least one of the resistors to be in parallel with another resistor, and is configured so that each switch is to be electrically connected in series with a resistor. The system includes a controller to control which of the switches are electrically connected to determine a resistance value for the effective resistance. A frequency response of the filter circuit is related to the effective resistance and a capacitance of the actuator.
Particular implementations may provide one or more of the following advantages. The charging up of an actuator to a desired charge and then disconnecting the electric source can result in power savings in comparison to driving a device to a constant voltage and maintaining the voltage. Individual control can be provided for the charge on devices, the slope of the change in charge, and the timing and slope of discharge to achieve various effects such as uniform droplet volume or velocity and gray scale control. The control circuitry can serve as a low-pass filter for incoming waveforms. The low-pass filter can filter high-frequency harmonics to result in a more predictable and consistent firing sequence for a given input waveform pattern.
Different firing waveforms (e.g., step pulse, sawtooth, etc.) may be applied to an inkjet to produce different responses, and to provide different spot sizes. A field-programmable gate array (FGPA) on a print head can store data for a waveform table of available firing waveforms. Each image scan line packet transmitted from a computer to the print head can include a pointer to the waveform table to specify which firing waveform should be used for that scan line. Alternatively, the image scan line packet could include multiple points, such as one for each nozzle in the scan line, to specify on a nozzle-specific basis which firing waveform should be used to produce the desired spot size. As a result, print control can be increased over the desired spot size.
Each droplet ejection device can include one or more resistances connected in parallel between the electric source and the electrically actuated displacement device. A switch can be placed in the path of the electric source and each of the one or more resistances to control the effective resistance of the parallel resistances when charging the device. Alternatively, the switch may be a field-effect transistor (FET) that has an internal resistance. Each droplet ejection device can include one or more resistances connected in parallel between the discharging electrical terminal and the electrically actuated displacement device. A switch can be placed in the path of the discharging electric terminal and each of the one or more resistances to control the effective resistance of the parallel resistances when discharging the device.
In one implementation, the effective resistance of the resistors that are connected in parallel, Reff, and the capacitance of the printing device can determine the response of the low-pass filter. Because the effective resistance can be adjusted depending on which switches are actively connected in parallel, the time constant of the low-pass filter can vary and the resulting waveform across the capacitor can be adjusted (e.g., shaped) accordingly.
A single waveform can be carried across all of the resistances in each resistor's respective path in which the switch of the path is activated. Alternatively, the path of each resistor may use a different waveform in which the switch of the respective path is activated. In this case, the resultant waveform at the device can be a superposition of multiple waveforms. In this aspect, waveforms can be provided that are not stored in the waveform table. Hence, waveforms can be supplied from waveform data stored in the waveform table, as well as waveforms that are generated as a result of waveforms that are superimposed across a set of parallel resistor paths. As one benefit, the amount of memory to store a waveform table on the print head can be minimized to an amount to generate certain waveform patterns, and the control switches can be use to generate additional waveform patterns. As another benefit, a droplet ejection device can have a response that is trimmed or adjusted based on stored waveform data and/or mechanical data for control switches.
The waveform table can also include several parameters to increase print control, and produce different responses and spot sizes for each print job. These parameters may be based, for example, on different types of substrates (e.g., plain paper, glossy paper, transparent film, newspaper, magazine paper) and the ink absorption rate on those substrates. Other parameters may depend on the type of print head, such as a print head with an electromechanical transducer or piezoelectric transducer (PZT), or a thermal inkjet print head with a heat generating element. The waveform table may have parameters that depend on different types of ink (e.g., photo-print ink, plain paper ink, ink of particular colors, ink of particular ink densities) or the resonant frequency of the ink chamber. The waveform table can have parameters to compensate for inkjet direction variability between ink nozzles, as well as other parameters to calibrate the printing process, such as correcting for differences in humidity.
The details of one or more implementations of the disclosure are set forth in the accompanying drawings and the description below. Other features, and advantages will be apparent from the description and drawings, and from the claims.
As shown in
Referring to
Referring to
In one implementation, the charge voltage applied to droplet ejection device 10 includes a unipolar voltage, in which a DC charge voltage Xvdc is applied at line 14, and a ground potential is applied at line 15. In another implementation, the charge voltage applied to the ejection device 10 includes a bipolar voltage, in which a DC charge voltage Xvdc is applied at line 14 and a DC charge voltage that is opposite in potential (e.g., −Xvdc or 180° difference in phase) is applied at line 15. In another implementation, the charge voltage applied to line 14 could be a waveform. The waveforms may be square pulses, sawtooth (e.g., triangular) waves, and sinusoidal waves. The waveforms can be waveforms of varying cycles, waveforms with one or more DC offset voltages, and waveforms that are the superposition of multiple waveforms.
Different firing waveforms (e.g., step pulse, sawtooth, etc.) may be applied to an inkjet to produce different responses, and provide different spot sizes. A field-programmable gate array (FGPA) on a print head can store a waveform table of available firing waveforms. Each image scan line packet transmitted from a computer to the print head can include a pointer to the waveform table to specify which firing waveform should be used for that scan line. Alternatively, the image scan line packet could include multiple points, such as one for each device in the scan line, to specify on a device-specific basis which firing waveform should be used to produce the desired spot size. As a result, print control can be increased over the desired spot size.
The waveform table can also include several parameters to increase print control, and produce different responses and spot sizes for each print job. These parameters may be based on different types of substrates (e.g., plain paper, glossy paper, transparent film, newspaper, magazine paper) and the ink absorption rate on those substrates. Other parameters may depend on the type of print head, such as a print head with an electromechanical transducer or piezoelectric transducer (PZT), or a thermal inkjet print head with a heat generating element. The waveform table may have parameters that depend on different types of ink (e.g., photo-print ink, plain paper ink, ink of particular colors, ink of particular ink densities) or the resonant frequency of the ink chamber. The waveform table can have parameters to compensate for inkjet direction variability between ink nozzles, as well as other parameters to calibrate the printing process, such as correcting for variations in humidity.
Referring to
FPGAs 80 each include logic to provide pulses 64, 66 for respective piezoelectric actuators 38 at the desired times. D0–D7 data inputs 70 are used to set up the timing for individual switches 50, 54 in FPGAs 80 so that the pulses start and end at the desired times in a print cycle 68. Where the same size droplet will be ejected from an ejection device throughout a run, this timing information only needs to be entered once, over inputs D0–D7, prior to starting a run. If droplet size will be varied on a drop-by-drop basis, e.g., to provide gray scale control, the timing information will need to be passed through D0–D7 and updated in the FPGAs at the beginning of each print cycle. Input D0 alone is used during printing to provide the firing information, in a serial bit stream, to identify which droplet ejection devices 10 are operated during a print cycle. Instead of FPGAs other logic devices, e.g., discrete logic or microprocessors, can be used.
Resistor arrays 84 include resistors 52, 56 for the respective droplet ejection devices 10. There are two inputs and one output for each of 64 ejection devices controlled by an array 84.
Programming port 76 can be used instead of D0–D7 data input 70 to input data to set up FPGAs 80. Memory 88 can be used to buffer or prestore timing information for FPGAs 80.
In operation under a normal printing mode, the individual droplet ejection devices 10 can be calibrated to determine appropriate timing for pulses 64, 66 for each device 10 so that each device will eject droplets with the desired volume and desired velocity, and this information is used to program FPGAs 80. This operation can also be employed without calibration so long as appropriate timing has been determined. The data specifying a print job are then serially transmitted over the D0 terminal of data input 72 and used to control logic in FPGAs to trigger pulses 64, 66 in each print cycle in which that particular device is specified to print in the print job.
In a gray scale print mode, or in operations employing drop-by-drop variation, information setting the timing for each device 10 is passed over all eight terminals D0–D7 of data input 70 at the beginning of each print cycle so that each device will have the desired drop volume during that print cycle.
FPGAs 80 can also receive timing information and be controlled to provide so-called tickler pulses of a voltage that is insufficient to eject a droplet, but is sufficient to move the meniscus and prevent it from drying on an individual ejection device that is not being fired frequently.
FPGAs 80 can also receive timing information and be controlled to eject noise into the droplet ejection information so as to break up possible print patterns and banding.
FPGAs 80 can also receive timing information and be controlled to vary the amplitude (i.e., Vpzt_finish) as well as the width (time between charge and discharge pulses 64, 66) to achieve, e.g., a velocity and volume for the first droplet out of an ejection device 10 as for the subsequent droplets during a job.
The use of two resistors 52, 56, one for charge and one for discharge, permits one to independently control the slope of ramping up and down of the voltage on piezoelectric actuator 38. Alternatively, the outputs of switches 50, 54 could be joined together and connected to a common resistor that is connected to piezoelectric actuator 38 or the joined together output could be directly connected to the actuator 38 itself, with resistance provided elsewhere in series with the actuator 38.
By charging up to the desired voltage (Vpzt_finish) and maintaining the voltage on the piezoelectric actuators 38 by disconnecting the source voltage Xvdc and relying on the actuator's capacitance, less power is used by the print head than would be used if the actuators were held at the voltage (which would be Xvdc) during the length of the firing pulse.
For example, a switch and resistor could be replaced by a current source that is switched on and off. Also, common circuitry (e.g., a switch and resistor) could be used to drive a plurality of droplet ejection devices. Also, the drive pulse parameters could be varied as a function of the frequency of droplet ejection to reduce variation in drop volume as a function of frequency. Also, a third switch could be associated with each pumping chamber and controlled to connect the electrode of the piezoelectric actuator 38 to ground, e.g., when not being fired, while the second switch is used to connect the electrode of the piezoelectric actuator 38 to a voltage lower than ground to speed up the discharge.
It is also possible to create more complex waveforms. For example, switch 50 could be closed to bring the voltage up to V1, then opened for a period of time to hold this voltage, then closed again to go up to voltage V2. A complex waveform can be created by appropriate closings of switch 50 and switch 54.
Multiple resistors, voltages, and switches could be used per droplet ejection device to get different slew rates as shown in
The control circuit 100 can serve as a low-pass filter for incoming waveforms. The low-pass filter can filter high-frequency harmonics to result in a more predictable and consistent firing sequence for a given input. In one implementation, the time constant of the low-pass filter can be stated as “Reff×C”, in which Reff is the effective resistance of the resistors that are connected in parallel and C is the capacitance of capacitor 110. Because Reff can be adjusted depending on which switches are actively connected in parallel, the time constant of the low-pass
In one implementation, the switches that are activated in the circuit are selected before the waveform is applied to the input of the circuit. In this implementation, effective resistance is fixed during the entire duration of the firing interval. Alternatively, the switches can be activated during the duration of the firing interval. In this alternative implementation, a waveform applied at the input of the circuit can shaped by varying the response of the circuit. The response of the circuit can vary according to the effective resistance, Reff, which can be selected at various instances during the firing interval by selecting which switches are connected in the circuit.
In another implementation, a single waveform can be applied across all of the resistances in each resistor's respective path in which the respective switch of the path is activated. Alternatively, the path of each resistor may use a different waveform in which the respective switch of the respective path is activated. In this case, the resultant waveform at the device can be a superposition of multiple waveforms. In this aspect, waveforms can be provided that are not stored in the waveform table. Hence, waveforms can be supplied from waveform data stored in the waveform table, as well as waveforms that are generated as a result of waveforms that are superimposed across a set of parallel resistor paths. In this aspect, the amount of memory to store a waveform table on the print head can be minimized to generate a limited number of basic waveform patterns, and the control switches can be use to generate additional and/or complex waveform patterns. As a result, a droplet ejection device can have a response that is trimmed or adjusted based on stored waveform data and/or mechanical data for control switches.
The slope of the ramp during the charging phase can be determined by the amount of current that can be delivered to charge or discharge the capacitor 110. The charging (or discharging) of the capacitor 110 is limited by the amount of current that the internal circuitry (not shown) driving the control circuit 100 can deliver to the control circuit 100 to charge (or discharge) the capacitor 110. The “slew rate” can refer to the rate the capacitor 110 charges (or discharges), and can determine the slope of the charging (or discharging). In one aspect, the slew rate can be stated as the ratio of the current to capacitance (Slew rate=I/C). Alternatively, the slew rate can be stated as the change in voltage across the capacitor 110 divided by the effective resistance multiplied by the capacitance (Slew Rate=ΔV/(Reff*C)). Therefore, the slew rate and the slope of the charging and discharging can be adjusted by varying Reff. For example, if switches 102 and 104 are closed, Reff may represent the effective resistance of the parallel combination of resistors 106 and 108. However, if switch 102 is open and switch 104 is closed, then Reff can represent the resistance of resistor 108.
In one implementation, all the resistors in the control circuit 850 are of the same resistance. In another implementation, the resistors in the control circuit 850 are of different resistances. For example, the charging resistors Rc_1810, Rc_2816, and Rc_N 814 and corresponding discharging resistors Rd_1840, Rd_2842, and Rd_N 844 discharging resistors are binary-weighted resistors, in which a resistance in a (parallel) path can vary by a factor of two from a resistor in another (parallel) path. Alternatively, each resistor can have a resistance to allow the effective resistance, Reff, to vary by factors of 2 (e.g., Reff can be R, 2R, 4R, 8R, 32R, etc.).
In
In one implementation, the parallel switches may not increase an overall area of the die of the circuit in
Other implementations of the disclosure are within the scope of the appended claims. For example, the switch and resistor can be discrete elements or may be part of a single element, such as the resistance of a field-effect transistor (FET) switch. The resistances shown in
Number | Name | Date | Kind |
---|---|---|---|
5361084 | Paton et al. | Nov 1994 | A |
5369420 | Bartky | Nov 1994 | A |
5438350 | Kerry | Aug 1995 | A |
5463414 | Temple et al. | Oct 1995 | A |
5463416 | Paton et al. | Oct 1995 | A |
5512796 | Paton | Apr 1996 | A |
5512922 | Paton | Apr 1996 | A |
5663217 | Kruse | Sep 1997 | A |
5731048 | Ashe et al. | Mar 1998 | A |
5779837 | Harvey | Jul 1998 | A |
5837046 | Schofield et al. | Nov 1998 | A |
5842258 | Harvey et al. | Dec 1998 | A |
5843219 | Griffin et al. | Dec 1998 | A |
5855713 | Harvey | Jan 1999 | A |
5910372 | Griffin et al. | Jun 1999 | A |
5959643 | Temple et al. | Sep 1999 | A |
5975672 | Wen | Nov 1999 | A |
6010202 | Arnott | Jan 2000 | A |
6014153 | Harvey | Jan 2000 | A |
RE36667 | Michaelis et al. | Apr 2000 | E |
6046822 | Wen et al. | Apr 2000 | A |
6089698 | Temple et al. | Jul 2000 | A |
6102513 | Wen | Aug 2000 | A |
6106092 | Norigoe et al. | Aug 2000 | A |
6123405 | Temple et al. | Sep 2000 | A |
6193343 | Norigoe et al. | Feb 2001 | B1 |
6217141 | Nakamura et al. | Apr 2001 | B1 |
6228311 | Temple et al. | May 2001 | B1 |
6232135 | Ashe et al. | May 2001 | B1 |
6260951 | Harvey et al. | Jul 2001 | B1 |
6281913 | Webb | Aug 2001 | B1 |
6286943 | Ashe et al. | Sep 2001 | B1 |
6312076 | Taki et al. | Nov 2001 | B1 |
6331045 | Harvey et al. | Dec 2001 | B1 |
6352328 | Wen et al. | Mar 2002 | B1 |
6379440 | Tatum et al. | Apr 2002 | B1 |
6399402 | Ashe et al. | Jun 2002 | B2 |
6402278 | Temple | Jun 2002 | B1 |
6402282 | Webb | Jun 2002 | B1 |
6412924 | Ashe et al. | Jul 2002 | B1 |
6422690 | Harvey et al. | Jul 2002 | B1 |
6437879 | Temple | Aug 2002 | B1 |
6460991 | Temple et al. | Oct 2002 | B1 |
6476096 | Molloy et al. | Nov 2002 | B1 |
6505918 | Condie et al. | Jan 2003 | B1 |
6517195 | Koeda | Feb 2003 | B1 |
6468779 | Pulman et al. | May 2003 | B1 |
6572221 | Harvey et al. | Jun 2003 | B1 |
Number | Date | Country |
---|---|---|
0 876 915 | Nov 1998 | EP |
Number | Date | Country | |
---|---|---|---|
20060092201 A1 | May 2006 | US |