An embodiment of the subject matter described herein provides a final dosage form for delivering a medicament to an animal. The final dosage form includes an outer layer. The final dosage form includes a release element configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to a stimulus. The final dosage form includes a chamber at least substantially within the outer layer and configured to carry the medicament. The final dosage form includes the medicament. The final dosage form may include an indicator element configured to indicate an exposure of the release element to the stimulus.
In an embodiment, a final dosage form for delivering a medicament to an animal is described herein. The final dosage form includes an outer layer. The final dosage form includes a release element configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to a stimulus. The final dosage form includes a chamber at least substantially within the outer layer and configured to carry the medicament. The final dosage form includes the medicament. The final dosage form includes a containment element configured to retain the medicament within the final dosage form at least until the dosage form is administered to the animal. The final dosage form may include an indicator element configured to indicate an exposure of the release element to the stimulus.
In an embodiment, an article of manufacture is described herein that includes a package containing a final dosage form. The final dosage form includes a medicament, an outer layer, and a chamber at least substantially within the outer layer and configured to carry the medicament. The final dosage form includes a release element configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to a stimulus. The article of manufacture includes an instruction for preparation of the final dosage form for an efficacious administration to an animal by an ex vivo exposure of the release element of the final dosage form to the stimulus. The final dosage form may include a containment element configured to retain the medicament within the final dosage form at least until the final dosage form is introduced into the animal. The final dosage form may include an indicator element configured to indicate an exposure of the release element to the stimulus.
An embodiment includes a method of modulating a medicament-release characteristic of a final dosage form. The method includes providing an ex vivo stimulus to a release element of the final dosage form. The final dosage form includes a medicament, and an outer layer. The final dosage form also includes a release element configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to a stimulus. The final dosage form further includes a chamber defined at least substantially within the outer layer and configured to carry the medicament. The final dosage form may include a containment element configured to retain the medicament within the final dosage form at least until administration of the final dosage form into the animal.
An embodiment includes a method of fulfilling a request specifying a dose of a medicament for an individual animal. The method includes choosing, pursuant to the request, an instance of a final dosage form that includes the medicament. The method includes selecting a stimulus effective to change a medicament-release state of a release element of the final dosage form. The method includes initiating an ex vivo exposure of the release element of the chosen instance of the final dosage form to the selected stimulus. The final dosage form includes an outer layer, the medicament, and a chamber defined at least substantially within the outer layer and configured to carry the medicament. The final dosage form includes the release element configured in a first medicament-release state and changeable to a second medicament-release state upon an ex vivo exposure to a stimulus. The method may include verifying the ex vivo exposure of the release element of the chosen instance of the final dosage form to the selected stimulus. The method may include dispensing the chosen instance of the final dosage form after the ex vivo exposure of the release element of the chosen instance of the final dosage form to the selected stimulus as described above. The final dosage form may include a containment element configured to retain the medicament within the final dosage form at least until administration of the final dosage form into the animal.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrated embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
The final dosage form 102 includes an outer layer 110, a release element 130, and a chamber 120. The release element 130 is configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to a stimulus. For example, the stimulus may include the stimulus 192. The chamber 120 includes a chamber wall 122, which is at least substantially within the outer layer 110, and is configured to carry the medicament 190. In an embodiment, the final dosage form 102 includes an intermediate outer layer (not shown) with the release element interposed between the outer layer and the intermediate outer layer, and the chamber is at least substantially within the intermediate outer layer (not shown).
In an embodiment, the outer layer 110 of the final dosage form 102 includes an outer layer of at least one of a tablet, capsule, particle, or solid final dosage form. In an embodiment, the outer layer 110 includes an outer peripheral layer.
In an embodiment, the outer layer 110 of the final dosage form 102 includes an erodible outer layer. Formulations of erodible dosage forms are known in the art. In an embodiment, the erodible outer layer includes an erodible outer layer that is at least one of soluble, permeable, or disintegrable within the animal 198. In an embodiment, the erodible outer layer includes an erodible outer layer having at least a portion that is at least one of soluble, permeable, or disintegrable in response to an acidic environment within the animal. In an embodiment, the erodible outer layer includes an erodible outer layer having at least a portion that is at least one of soluble, permeable, or disintegrable in response to a basic environment within the animal.
In an embodiment, the outer layer 110 of the final dosage form 102 includes an outer portion of a particle. Examples of such a particle include hydrogels, microspheres, polymeric microspheres, and nanoparticles as described in Lin et al., Hydrogels in controlled release formulations: Network design and mathematical modeling, Advanced Drug Delivery Reviews 58 (2006) (1379-1408). In an embodiment, the outer layer 110 of the final dosage form 102 includes an outer portion of a molecule. An embodiment includes an outer layer 110 configured to allow an in vivo discharge of at least a portion of the medicament 190 from the chamber 120 after an exposure of the release element 130 to the stimulus 192. An embodiment includes an outer layer 110 configured in cooperation with the release element 130 to allow an in vivo discharge of at least a portion of the medicament 190 from the chamber 120 after an exposure of the release element 130 to the stimulus. In an embodiment, the outer layer 110 includes an outer layer of at least a portion of the release element. In an embodiment, the release element forms the outer layer. An embodiment includes an outer layer configured to contain the medicament until the final dosage form is administered into the animal.
In an embodiment of the release element 130, the first medicament-release state is configured to retard medicament release in vivo and the second medicament-release state is configured to allow medicament release in vivo. In an embodiment of the release element 130, the first medicament-release state is configured to allow medicament release in vivo and the second medicament-release state is configured to retard medicament release in vivo.
Returning to
In an embodiment, the release element 130 includes a release element configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to a non-ionizing radiation, illustrated as the stimulus 192. In an embodiment, the release element 130 is configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to an electromagnetic radiation, illustrated as the stimulus 192. In an embodiment, the release element 130 is configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to a light radiation, also illustrated as the stimulus 192. For example, light radiation may include at least one of the spectrum of ultraviolet (UV), visible light, and/or infrared (IR). In an embodiment, the release element 130 includes, but is not limited to, at least one of a poly(vinyl alcohol), gel, gel matrix, hydrogel, or azopolymer membrane. Examples of poly(vinyl alcohol) are described in (S. P. Vijayalakshmi, et al., Photodegradation of poly(vinyl alcohol) under UV and pulsed-laser irradiation in aqueous solution, JOURNAL OF APPLIED POLYMER SCIENCE, Vol. 102, No. 2, 958-966, 2006). Examples of photoresponsive polymers are described in (J. Kyoo Lee, et. al., Photo-Triggering of the Membrane Gates in Photo-Responsive Polymer for Drug Release, ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, (27th Annual International Conference) 2005 Pages:5069-5072 (2005). In an embodiment, the release element includes a photo-labile bond between a molecule of the medicament 190 and a bioactivity inhibiting molecule that is configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure of the labile bond to a stimulus. Examples of such a photo-labile bond are described in M. Scwarcznski, et al., Development of first photo responsive prodrug of paclitaxel, 16 BIOORGANIC & MEDICAL CHEMISTRY LETTERS, Issue 17 4492-4496 (September 2006): Epub 27 Jun. 2006. In addition, the release element may include at least one of an additional appropriate photodegradable and/or biocompatible barrier forming material.
In an embodiment, the release element 130 includes a release element configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to an energetic stimulus, also illustrated as stimulus 192. In an embodiment, an energetic stimulus may include at least one of a mechanical stimulus, a non-ionizing radiation stimulus, an ionizing radiation stimulus, a chemical stimulus, an acoustic stimulus, an ultrasound stimulus, a radio wave stimulus, a microwave stimulus, a light wave stimulus, or a thermal stimulus.
In an embodiment, the release element 130 is configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to at least one of terahertz radiation, microwave radiation, and radio wave radiation, also illustrated as the stimulus 192. For example, radio wave radiation may include, for example, at least one of ultra-high frequency radio waves (UHF), very high frequency radio waves (VHF), radio frequency (RF), and/or extremely low frequency (ELF) radio waves. In an embodiment, the release element 130 includes at least one of a foil, gold foil, a liposome, wax, dielectric/wax composite. An example of a microwave responsive liposome is described in U.S. Pat. No. 4,801,459 to R. Liburdy. An example of a microwave responsive material, including a wax and a wax/dielectric composite, is described in United States Patent Application Publication No. 2005/0191708 to R. Saul, et al. In an embodiment, the release element is configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to a magnetic stimulus. In an embodiment, the release element is configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to an electric field stimulus.
In an embodiment, the release element is configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to a chemical stimulus (not shown). For example, a chemical stimulus may include at least one of a stimulus based on pH change, enzymatic exposure or catalysis. In an embodiment, a chemical stimulus may include a stimulus operable to release or reverse a cooperative or a reversible molecular binding, or a stimulus operable to form an irreversible binding.
In an embodiment, the release element 130 is configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to a mechanical agitation stimulus (not shown). For example, a mechanical agitation stimulus may include a shaking or spinning to rupture a membrane or foil. In an embodiment, a release element is configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to a mechanical stimulus (not shown). For example, a mechanical stimulus may include shaking a piercing member against a foil release element. In an embodiment, the release element is configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to a stimulus, the release element including a mechanically activatable structure (not shown). For example, the mechanically activatable structure may include a foil or a pressure-rupturable membrane, or a heat-activatable structure.
In an embodiment, the release element 130 is permeated, dissolved, or disintegrated in response to the stimulus. In an embodiment, a release element is changed such that it is permeated, dissolved, or disintegrated in response to an in vivo environment of the animal 198 where it would not have been so before exposure to the stimulus. In an embodiment, a release element is changed such that it forms a barrier, or is impermeable, solid, or integral in response to the exposure to the stimulus where it would not have been so before the exposure to the stimulus.
In an embodiment, the release element 130 is configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to at least one of a thermal, acoustic stimulus and ultrasound. Examples of an acoustically active release element formed by conjugating liposomes and microbubbles are described in A. Kheirolomoom, et al., Acoustically-active microbubbles conjugated to liposomes: Characterization of a proposed drug delivery vehicle, 118 J CONTROL RELEASE, Issue 3, April 23; 118(3):275-284. Epub 2006 December 23.
In an embodiment, the release element 130 includes a release element configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to at least one of an activation stimulus, or an actuation stimulus. In an embodiment, the release element is configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to a de-activation stimulus.
In an embodiment, the release element 130 includes a release element configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to an ultrasound stimulus. For example, the release element may include at least one of liposomes, lipid microspheres, microbubbles, lipospheres, or liposomes responsive to an ultrasound stimulus, which are described in U.S. Pat. No. 6,416,740 to Unger. In an embodiment, the release element includes at least one of polyanhidrides, polyglycolides, polyactides, poly(vinyl acetate), poly(glycolic acid), poly(ethylene), poly(lactic acid), or chitosan. An example of ultrasound-responsive polymer is described in J. Kost, et al., Ultrasound-enhanced polymer degradation and release of incorporated substances, 86 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, 7663-7666 (1989). An example of ultrasound-responsive polymer is described in J. Kost, et al., Ultrasonically controlled polymeric drug delivery, Makromolekulare Chemie 19 MACROMOLECULAR SYMPOSIA 275-285 (1988). An example of ultrasound-responsive chitosan is described in M. Tsaih, et al., Effect of the degree of deacetylation of chitosan on the kinetics of ultrasonic degradation of chitosan; 90 JOURNAL OF APPLIED POLYMER SCIENCE 3526-3531 (2003).
In an embodiment, the release element 130 includes at least one of polymeric micelle, liposomes, lipid microsomes, polymeric microsphere, nanoparticles, cyclodextrin, gel, gel matrix, hydrogel, or cellulose. Examples of polymeric micelles are described in U.S. Pat. No. 7,229,973 to Bae, et al. Examples of polymer microspheres are described in U.S. Pat. No. 5,718,921 to Mathiowitz, et al. Examples of cyclodextrin are described in U.S. Pat. No. 7,270,808 to Cheng, et al., titled “Cyclodextrin-based polymers for therapeutics delivery.” Examples of hydrogels are described in Lin et al., Hydrogels in controlled release formulations. Network design and mathematical modeling, ADVANCED DRUG DELIVERY REVIEWS 58 (2006) 1379-1408). Examples of cellulose are described in U.S. Pat. No. 6,821,531 to Kumar.
In an embodiment, the release element 130 includes a release element enclosing the chamber 120, configured in a first medicament-release state, and modifiable to a second medicament-release state upon an ex vivo exposure to a stimulus, illustrated as the stimulus 192. For example,
In an embodiment, the release element 130 includes a release element encapsulating the chamber. In an embodiment, the release element includes a release element encapsulating the medicament 190 in cooperation with the chamber wall 122, configured in a first medicament-release state, and modifiable to a second medicament-release state upon an ex vivo exposure to a stimulus. For example,
In an embodiment, the release element includes a labile bond between a molecule of the medicament and a bioactivity inhibiting molecule configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure of the labile bond to a stimulus (not shown).
Referring again to
In an embodiment (not shown), the release element and chamber both may be formed by a particle, such as a liposome, or a hydrogel. In such embodiment, the chamber includes at least one chamber at least substantially within the outer layer of the particle and configured to carry the medicament. In an embodiment (not shown), the chamber includes at least two chambers at least substantially within a particle and configured to carry respective instances of the medicament.
In an embodiment (not shown), the chamber 120 includes a first chamber configured to carry a first medicament and a second chamber configured to carry a second medicament. In an embodiment, the chamber includes a chamber configured to confine the medicament in cooperation with the release element. In an embodiment (not shown), the chamber includes at least one chamber configured to confine the medicament in a structural cooperation with the release element. In an embodiment (not shown), the chamber is configured to initially carry the medicament. The chamber is also configured to release at least a portion of the medicament upon at least one of a reconfiguration, bursting, puncture, permeation, dissolution, and disintegration of the release element 130. In an embodiment (not shown), the chamber includes a first chamber configured to carry a first constituent of the medicament and a second chamber configured to carry a second constituent of the medicament. In an embodiment (not shown), the chamber includes a first chamber configured to carry a first reactant of the medicament and a second chamber configured to carry a second reactant of the medicament. In an embodiment (not shown), a combination of the first reactant and the second reactant in response to an ex vivo exposure of the release element initiates a chemical activation of the medicament and a physical releasability of the medicament. In an embodiment (not shown), a combination of the first reactant and the second reactant in response to an ex vivo exposure of the release element initiates a chemical activation of the medicament but does not provide a physical releasability of the medicament. The physical releasability of the medicament by another ex vivo exposure of the dosage form to a stimulus.
In an embodiment shown in
In an embodiment, the containment element may be formed by a combination of the outer layer 110 and the release element 130.
In an embodiment, the containment element 140 includes a containment layer configured to encapsulate the medicament 190 within the final dosage form 102 until the final dosage form is administered to the animal 198. For example, the containment element 140 may include a coating covering the outer layer 110 of the final dosage form 102, such as an enteric coating configured to prevent a release of the medicament from the final dosage form until the final dosage form is administered to the animal. In another example, the containment element 140 may include a coating covering the release element 130 of the final dosage form 102. In an embodiment, the containment element includes a containment envelope configured to retain the medicament within the final dosage form until the dosage form is administered to the animal.
In an embodiment illustrated in
Returning to
In an embodiment, the final dosage form 102 may further include an indicator element 180 configured to indicate an exposure of the release element 130 to the stimulus 192. In an embodiment, the indicator element 180 includes an indicator element 180 configured to optically indicate an exposure of the release element to the stimulus 192 by at least one of dielectric, a conductivity, or ultrasonic profile responsive to an exposure of the release element to the stimulus. The indicator element 180 including, for example, at least one of 4-keto-bacteriorhodopsin films, cinnamylidene acetyl chloride, α-methylcinnamylidene acetyl chloride, α,γ-dimethylcinnamylidene acetyl chloride, α-phenylcinnamylidene acetyl chloride, α-phenoxycinnamylidene acetyl chloride, and cyanocinnamylidene acetyl chloride, leuco dye-serum albumin albumin complexes, azo dyes, or poly(ethylene glycol). Examples of bacteriorhodopsin films are described in A. Druzhko, et al., 4-Keto-bacteriorhodopsin films as a promising photochromic and electrochromic biological material, BIOSYSTEMS. 1995; 35(2-3): 129-32. Examples of hydrophilic photosensitive polymers are described in U.S. Pat. No. 5,990,193 to Russell, et al. Examples of photosensitive compositions for detection of radiation in the ultraviolet wavelength, including leuco dye-serum albumin complexes, are described in U.S. Pat. No. 4,466,941 to Cerami, et al. Examples of using azo dye for an indicator is described in U.S. Pat. No. 5,679,442. Examples of poly(ethylene glycol) are described in U.S. Pat. No. 5,990,193 to Russell, et al., and in Zhong, et al., Photodegradation Behavior of Polycaprolactone-Poly(ethylene glycol) Block Copolymer, Vol. 10, No. 4 CHINESE CHEMICAL LETTERS 327-330 (1999).
In an embodiment depicted in
In an embodiment, the indicator element 180 includes an electronically-detectable indicator element 180 configured to indicate an exposure of the release element 130 to the stimulus 192. For example, the electronically-detectable indicator element 180 may include a dielectric element having a property that makes an electronically-detectable change in response to an exposure to the stimulus 192. An example of such a dielectric element may include a one-time programmable memory cell described in U.S. Pat. No. 7,256,446, to Hu, et al., or a switch comprising microelectromechanical elements described in U.S. Pat. No. 7,336,474 to Lerche, et al.
In an example, the electronically-detectable indicator element 180 may include an element having a permittivity that makes an electronically-detectable change in response to an exposure of the release element to the stimulus 192. An example of such an element having a permittivity may include photonic crystals whose permittivity changes through the addition of photonic and/or electrical energy as described in U.S. Pat. No. 6,859,304 to Miller, et al.
In another example, the electronically-detectable indicator element 180 may include an element having an ultrasonic profile that makes an ultrasound-discernable change in response to an exposure of the release element to the stimulus 192. An example of an element having an ultrasonic profile that includes a polymer monitorable using the continuous wave ultrasonic process monitor is described in U.S. Pat. No. 7,017,412 to Thomas, et al. Another example of an element having an ultrasonic profile that includes a polymer monitorable using the apparatus for degree on doneness is described in U.S. Pat. No. 7,191,698 to Bond, et al. A further example of an element having an ultrasonic profile that includes a degradable metal film or metal foil.
In another example, the electronically-detectable indicator element 180 may include a carrier, admixture, or excipient having a property that makes an ultrasound-discernable change in response to an exposure of the release element to the stimulus 192. For example, an admixture may include a phase change material (PCM) as an inert filler and having a property that makes an ultrasound-discernable change in response to an exposure of the release element to ultrasound. Examples of such PCMs include polyvinyl alcohol (PVA)-stearic acid (SA) and polyvinyl chloride (PVC)-stearic acid (SA). An example of Polymer-stearic acid blend is described in Ahmet Sari, et al., Polymer-stearic acid blends as form-stable phase change material for thermal energy storage, 64 JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, at pp. 991-996 (December 2005). Other examples are described in United States Patent Application No. 2007/0249753 to Lin, et al. (polyether fatty-acid ester (polyethylene glycol or polytetramethylene glycol base polymer), and U.S. Pat. No. 5,565,132 to Salyer (Addition of microwave absorber to make PCM materials sensitive to microwaves). Ultrasonic detection or discernment of phase changes in a PCM may be implemented using techniques described by A. W. Aziz, & S. N. Lawandy, Ultrasonic detection of segmental relaxations in thermoplastic polyurethanes, 31 JOURNAL OF APPLIED POLYMER SCIENCE 1585 (Issue 6, 2003) or S. L. Morton, Ultrasonic cure monitoring of photoresist during pre-exposure bake process, ULTRASONICS SYMPOSIUM, 1997. PROCEEDINGS., 1997 IEEE Volume 1, at 837-840 (October 1997).
The final dosage form 202 includes an outer layer 210, the release element 230, and the chamber 220 as expressed by the chamber wall 222. The release element is configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to a stimulus. For example, the stimulus may include the stimulus 192. The chamber includes a chamber wall 222, is at least substantially within the outer layer, and is configured to carry the medicament 190. In an embodiment, the final dosage form may include an indicator element 280. In an embodiment, the final dosage form may include a containment element 240.
The environment 200 illustrates an embodiment where the release element 230 encapsulates the medicament 190 in cooperation with the chamber 220 as expressed by the chamber wall 222. The outer layer 210 and the release-element 230 are cooperatively configured to retain the medicament 190 if the release-element is in a first medicament-release state and allow an in vivo discharge of at least a portion of the medicament from the chamber if the release-element is in a second medicament release state. In an embodiment of this example, the release element may include at least one of a poly(vinyl alcohol), gel, gel matrix, hydrogel, and azopolymer photo or light modifiable substance as described above. In an embodiment of this example, the release element may include at least one of a polyanhidride, polyglycolide, polyactide, poly(vinyl acetate), poly(glycolic acid), poly (ethylene), poly(lactic acid), chitosan, or an acoustic or ultrasound modifiable substance as described above. For example, when the first medicament-release state is configured to retard medicament release and the second medicament-release state is configured to allow medicament release in vivo, the release element when configured in the first medicament-release state will retard medicament release from the final dosage form upon delivery of the final dosage form into the animal. For example, in a first medicament release state, the release element is impermeable to the environment outside the final dosage form, and impermeable to the medicament in the chamber. Following exposure to an appropriately configured stimulus, the release element achieves a second medicament release state that is, for example, permeable to the medicament. The second medicament release state may include, for example, a state where the release element dissolves or dissipates upon exposure to an aqueous environment, gastric juices or a certain pH environment.
The final dosage form 302 includes an outer layer 310, a chamber 320, and a release element 330. The final dosage form also includes a release passageway 332 configured to provide a medicament communication pathway between the chamber and the environment through an aperture 334 in the outer layer. The release element is configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to a stimulus. For example, the stimulus may include the stimulus 192. The chamber includes a chamber wall 322, is at least substantially within the outer layer, and is configured to carry the medicament 190. In an embodiment, the final dosage form may include an indicator element 380. In an embodiment, the final dosage form may include a containment element 340.
In an embodiment, the release element may include at least one of a poly(vinyl alcohol), gel, gel matrix, hydrogel, and azopolymer photo or light modifiable substance as described above. In an embodiment, the release element may include at least one of a foil, gold foil, wax, or dielectric/wax composite microwave modifiable substance. In an embodiment of this example, the release element may include at least one of a polyanhidride, polyglycolide, polyactide, poly(vinyl acetate), poly(glycolic acid), poly (ethylene), poly(lactic acid), chitosan, or an acoustic or ultrasound modifiable substance as described above. For example, when the first medicament-release state is configured to retard medicament release and the second medicament-release state is configured to allow medicament release in vivo, the release element when configured in the first medicament-release state will retard medicament release from the release passageway 332 and the aperture 334 of the final dosage form upon delivery of the final dosage form into the animal.
The final dosage form 402 includes an outer layer 410, a chamber 420, and a release element 430. The release element is configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to a stimulus. For example, the stimulus may include the stimulus 192. The chamber includes a chamber wall 422, is at least substantially within the outer layer, and is configured to carry the medicament 190. In an embodiment, the final dosage form 402 may include an indicator element 480. In an embodiment, the final dosage form 402 may include a containment element 440.
In an embodiment, the chamber 420 includes a chamber at least substantially within the outer layer 410 and configured to carry the medicament 190. The chamber includes at least two pores, interstitial cavities, smaller chambers, interstices of a molecular structure, or amorphous cavities. In an embodiment, the chamber may include respective chambers formed by at least one of an absorbent, liposome, or hydrogel. For example, at least two particles may be located in a cavity, such as the chamber 120, and in themselves constitute a distributed chamber by an aggregation of their pores, interstitial cavities, smaller chambers, interstices of a molecular structure, or amorphous cavities. In another example, at least two microparticles may be throughout a carrier having an outer layer, each microparticle having an effective chamber. In an embodiment, the chamber is located at least substantially within the release element 430. In an embodiment, the distributed chamber is located at least substantially within the outer layer 410.
The final dosage form 402 may include a release element 430 that is proximate to the medicament 190 in the chamber 420. In an embodiment, the release element 430 may include a carrier, admixture, or excipient configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure to a stimulus. Particles of such a carrier, admixture, or excipient may be configured to retain or bind to particles of the medicament 190 and reduce its bioavailability if the release-element 430 is in a first medicament-release state, and release from or unbind particles of the medicament 190 and allow an in vivo discharge of at least a portion of the medicament 190 from the chamber 420 if the release-element 430 is in a second medicament release state.
In an embodiment, an instance of the final dosage form 402 may carry at least two particles, small particles, or microparticles that each include a portion that forms a release element 430 modifiable by exposure to a stimulus 192, and a chamber (not shown). The chambers of the at least two particles, small particles, or microparticles each configured to carry a respective instance of the medicament, and collectively forming a distributed chamber. For example, the at least two particles, small particles, or microparticles may include hydrogels, liposomes, or dendrimers having pores, interstitial cavities, structural interstices, bonds, or amorphous cavities configurable to carry molecules of the medicament. The at least two particles, small particles, or microparticles are configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure of the at least two particles, small particles, or microparticles to a stimulus. For example, photosensitive hydrogel particles may carry the medicament. In an embodiment, microwave sensitive liposomes may carry the medicament. In an embodiment, the release element includes a labile bond between a molecule of the medicament and molecule of a bioactivity inhibiting molecule configured in a first medicament-release state and modifiable to a second medicament-release state upon an ex vivo exposure of the labile bond to a stimulus (not illustrated).
The final dosage form 502 includes an outer layer 510, and at least two dosage elements. The at least two dosage elements are illustrated as A Portion and B Portion, and by “A” and “B” after certain reference numbers in
In an embodiment, the A Portion of the final dosage form 502 may be at least substantially similar to the chamber 120, the release element 130, the containment element 140, and the indicator element 180 of
In an embodiment, the first medicament 190A and the second medicament 190B may be at least substantially similar instances of one medicament. In an embodiment, the first medicament 190A and the second medicament 190B may be at least substantially similar instances of one medicament, but in at least substantially differing dosage amounts. For example, the first medicament 190A may be a 50-milligram dose of a medicament and the second medicament 190B may be a 100-milligram dose of the same medicament. In an embodiment, the first medicament 190A and the second medicament 190B may be at least substantially similar instances of one medicament, but in at least substantially differing dosage characteristics, such as a regular release formulation and a sustained release formulation. In an embodiment, the first medicament 190A and the second medicament 190B may be at least substantially different medicaments.
In use, the A Portion and the B Portion of the final dosage form 502 may be individually or collectively exposed ex vivo to a stimulus, illustrated as the stimulus 192. For example, where the first medicament 190A is a 50-milligram dose of a medicament and the second medicament 190B is a 100-milligram dose of a same medicament, where the release element 530A and release element 530B are modifiable by the same stimulus such as microwave energy, and where the first medicament-release state is configured to retard medicament release in vivo and the second medicament-release state is configured to allow medicament release in vivo, irradiation of the A Portion with microwave energy will actuate the A Portion and make 50-milligrams of the medicament available upon delivery of the final dosage form to the animal 198. Similarly, irradiation of the B Portion with microwave energy will actuate the B Portion and make 100-milligrams of the medicament available upon delivery of the final dosage form to the animal. Further, irradiation of both the A Portion and the B Portion with microwave energy will actuate both Portions and make 150-milligrams of the medicament available upon delivery of the final dosage form to the animal. In another example, the first medicament 190A is a 100-milligram dose of a first medicament and the second medicament 190B is a 100-milligram dose of a second medicament. Selective irradiation of the A Portion or the B Portion will make one or both of the medicaments bioavailable upon delivery of the final dosage form to the animal. In a further example, the release element 530A is modifiable by a first stimulus and the release element 530B is modifiable by the second and different stimulus.
In an embodiment, the final dosage form 602 may be at least substantially similar to the final dosage form 102 of
In an embodiment, the instruction 670 includes at least one of information indicating an actuation-stimulus type, an actuation-stimulus wavelength, an actuation-stimulus intensity, an actuation-stimulus duration, a spatial distribution of the stimulus relative to the final dosage form, a target-value for an exposure indicator, or a combination thereof. For example, the information indicating a spatial distribution of the stimulus relative to the final dosage form may include information corresponding to aiming the stimulus, such as toward a right hand portion, a center portion, or a left hand portion of the final dosage form. In an embodiment, the instruction includes an instruction presented by at least one of a label (not shown) on the package 660, an insert in the package, illustrated as the instruction 670, or an address to electronically published content (not shown). In an embodiment, the instruction includes instruction for preparation of the final dosage form for an efficacious administration to an animal by a human-initiated ex vivo exposure of the release element of the final dosage form to the actuation-stimulus.
In an embodiment, the final dosage form 602 further includes a containment element 640 configured to retain the medicament within the final dosage form until the final dosage form is introduced into the animal. In an embodiment, the final dosage form includes an indicator element 680 configured to indicate an exposure of the release element to the stimulus. In an embodiment, the instruction 670 includes information indicating an expected value of the indicator element.
In use of an embodiment, a person such as a pharmacist working in a pharmacy may receive a prescription specifying a dose of a medicament for a patient. A pharmacy typically may have available several different final dosage forms capable of delivering the prescribed medicament dose. For example, the available different dosage forms may include at least one of the embodiments of final dosage forms illustrated in
The operation 870 includes verifying the ex vivo exposure of the release element of the chosen instance of the final dosage form to the selected stimulus. The operation 890 includes dispensing the chosen instance of the final dosage form after the ex vivo exposure of the release element of the chosen instance of the final dosage form to the selected stimulus as described above. The operation 890 may include at least one additional operation, such as an operation 892. The operation 892 (not shown) includes dispensing the ex vivo exposed instance of the final dosage form in a package bearing an identifier of the individual animal. For example, the identifier may include a name, or identification number of the animal.
All references are hereby incorporated by reference herein in their entirety to the extent such subject matter is not inconsistent herewith.
In some embodiments, “configured” includes at least one of designed, set up, shaped, implemented, constructed, or adapted for at least one of a particular purpose, application, or function.
It will be understood that, in general, terms used herein, and especially in the appended claims, are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of introductory phrases such as “at least one” or “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a receiver” should typically be interpreted to mean “at least one receiver”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, it will be recognized that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “at least two chambers,” or “a plurality of chambers,” without other modifiers, typically means at least two chambers).
Furthermore, in those instances where a phrase such as “at least one of A, B, and C,” “at least one of A, B, or C,” or “an [item] selected from the group consisting of A, B, and C,” is used, in general such a construction is intended to be disjunctive (e.g., any of these phrases would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B, and C together, and may further include more than one of A, B, or C, such as A1, A2, and C together, A, B1, B2, C1, and C2 together, or B1 and B2 together). It will be further understood that virtually any disjunctive word or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase “A or B” will be understood to include the possibilities of “A” or “B” or “A and B.”
The herein described aspects depict different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely examples, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality. Any two components capable of being so associated can also be viewed as being “operably couplable” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable or physically interacting components or wirelessly interactable or wirelessly interacting components.
While various aspects and embodiments have been disclosed herein, the various aspects and embodiments are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
The present application is related to and claims the benefit of the earliest available effective filing date(s) from the following listed application(s) (the “Related Applications”) (e.g., claims earliest available priority dates for other than provisional patent applications or claims benefits under 35 USC § 119(e) for provisional patent applications, for any and all parent, grandparent, great-grandparent, etc. applications of the Related Application(s)). For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of United States patent application No. To be assigned, titled MODIFIABLE DOSAGE FORM, naming Mahalaxmi Gita Bangera, Edward S. Boyden, Roderick A. Hyde, Muriel Y. Ishikawa, Dennis J. Rivet, Elizabeth A. Sweeney, Lowell L. Wood, Jr., and Victoria Y. H. Wood as inventors, filed Sep. 16, 2008, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date. For purposes of the USPTO extra-statutory requirements, the present application constitutes a continuation-in-part of United States patent application No. To be assigned, titled PERSONALIZABLE DOSAGE FORM, naming Mahalaxmi Gita Bangera, Edward S. Boyden, Roderick A. Hyde, Muriel Y. Ishikawa, Dennis J. Rivet, Elizabeth A. Sweeney, Lowell L. Wood, Jr., and Victoria Y. H. Wood as inventors, filed Sep. 16, 2008, which is currently co-pending, or is an application of which a currently co-pending application is entitled to the benefit of the filing date. The United States Patent Office (USPTO) has published a notice to the effect that the USPTO's computer programs require that patent applicants reference both a serial number and indicate whether an application is a continuation or continuation-in-part. Stephen G. Kunin, Benefit of Prior-Filed Application, USPTO Official Gazette Mar. 18, 2003, available at http://www.uspto.gov/web/offices/com/sol/og/2003/week11/patbene.htm. The present Applicant Entity (hereinafter “Applicant”) has provided above a specific reference to the application(s)from which priority is being claimed as recited by statute. Applicant understands that the statute is unambiguous in its specific reference language and does not require either a serial number or any characterization, such as “continuation” or “continuation-in-part,” for claiming priority to U.S. patent applications. Notwithstanding the foregoing, Applicant understands that the USPTO's computer programs have certain data entry requirements, and hence Applicant is designating the present application as a continuation-in-part of its parent applications as set forth above, but expressly points out that such designations are not to be construed in any way as any type of commentary or admission as to whether or not the present application contains any new matter in addition to the matter of its parent application(s). All subject matter of the Related Applications and of any and all parent, grandparent, great-grandparent, etc. applications of the Related Applications is incorporated herein by reference to the extent such subject matter is not inconsistent herewith.