Indoor comfort control system and method with multi-party access

Information

  • Patent Grant
  • 10921008
  • Patent Number
    10,921,008
  • Date Filed
    Monday, June 11, 2018
    6 years ago
  • Date Issued
    Tuesday, February 16, 2021
    3 years ago
Abstract
An indoor comfort control system for controlling an indoor comfort system includes a microprocessor, a display, wireless transceiver and a specialized control system computer program. The control is accessible over the Internet via the transceiver. The control is diagnosed and configured by a third-party operating a third-party communication device. The control communicates with the third-party communication device over the Internet. The multi-party access is granted by a principal of the control, and communicated to the third-party communication device by a cloud server system. The control receives connection requests and commands from the third-party communication device over the Internet. The control further communicates responses to the third-party communication device over the Internet. The connection can be timed out based on an access time limit set by the principal. The date and time of the multi-party access is configured by the principal via the principal communication device and the cloud server system.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

NONE.


FIELD OF THE DISCLOSURE

The present invention generally relates to indoor comfort control systems, and more particularly relates to an indoor comfort control system that supports multi-party access. More particularly still, the present disclosure relates to an indoor comfort control system connecting to the Internet for supporting multi-party access.


DESCRIPTION OF BACKGROUND

Heating, ventilation and air conditioning (“HVAC”) are well-known indoor comfort systems. Humidity regulation systems are another example of indoor comfort systems. Indoor comfort control systems are used to configure, operate and control indoor comfort systems that regulate the environment within buildings and are more frequently linked via the Internet for web-enabled building control. The Internet connection allows receipt of instructions from a remote and/or mobile device. However, there are many levels of complexity that can lead to problems with the operation of the indoor comfort control systems and require repair by a contractor. Many wireless network communication protocols exist, such as Bluetooth®, DSRC®, EnOcean®, IrDA®, Redlink®, RFC®, Wi-Fi® or Zigbee®. These wireless network communications can provide a link to components such as routers, hubs, sensors, computers, mobile phones or tablets and thermostats. A multitude of software and graphical user interfaces may be used to attempt to set-up and control the indoor comfort control systems. All of this complexity can lead to layers of technical problems for the systems' principal users. As used herein, a principal user of an indoor comfort control system (such as a thermostat) can be an owner, a property manager, a house keeper, a tenant or any other types of users with access of a house or a building.


In particular, many users have difficulty with set-up and repair procedures when there are a multitude of steps required to fix the components of the systems. The present invention overcomes many of such difficulties and provides for access to the system by third parties such as contractors who are provided with easy connection between a remote device and an indoor comfort control.


OBJECTS OF THE DISCLOSED SYSTEM, METHOD, AND APPARATUS

Accordingly, it is an object of this disclosure to provide an indoor comfort control that supports multi-party access over the Internet.


Another object of this disclosure is to provide an indoor comfort control that controls an indoor comfort system and supports multi-party access over the Internet.


Another object of this disclosure is to provide an indoor comfort control that is accessible by a third-party over the Internet.


Another object of this disclosure is to provide an indoor comfort control that is accessible by a third-party over the Internet with the multi-party access granted by a principal.


Another object of this disclosure is to provide an indoor comfort control that is accessible by a third-party over the Internet with the multi-party access granted by a principal communication device.


Another object of this disclosure is to provide an indoor comfort control that is accessible by a third-party communication device with an access time limit.


Another object of this disclosure is to provide an indoor comfort control that is accessible by a third-party communication device on a predetermined date and time with an access time limit.


Another object of this disclosure is to provide an indoor comfort control that is accessible by a third-party communication device via a cloud server system.


Another object of this disclosure is to provide an indoor comfort control that is accessible by a third-party communication device via a cloud server system that bridges the communication between a principal communication device and the third-party communication device.


Other advantages of this disclosure will be clear to a person of ordinary skill in the art. It should be understood, however, that a system or method could practice the disclosure while not achieving all of the enumerated advantages, and that the protected disclosure is defined by the claims.


SUMMARY OF THE DISCLOSURE

Generally speaking, pursuant to the various embodiments, the present disclosure provides an indoor comfort control for controlling an indoor comfort system. The thermostat includes a processing unit, a display device operatively coupled to the processing unit, a user input device operatively coupled to the processing unit, and a wireless transceiver operatively coupled to the processing unit. The wireless transceiver is adapted to communicate with a wireless router to access the Internet. The thermostat also includes an indoor comfort control computer program running on the processing unit. The thermostat computer program is adapted to receive a connection request from a third-party communication device over the Internet. The connection request is made at a date and a time that are received from a cloud server system. The connection request also includes an access token. The thermostat computer program is further adapted to authenticate the connection request based on the access token. When the authentication is successful, the thermostat computer program sends a connection confirmation to the third-party communication device over the Internet, receives a command from the third-party communication device, processes the command; and provides a response to the command to the third-party communication device over the Internet.


Further in accordance with the present teachings is a method for providing multi-party access to an indoor comfort control over the Internet. The method is performed by a cloud server system and includes receiving a service request for a third-party to access an indoor comfort control over the Internet from a principal communication device over the Internet. The thermostat is adapted to control an indoor comfort system. The method also includes, in response to the service request, generating a third-party request based on the service request. The third-party request indicates the thermostat. Moreover, the method includes sending the third-party request to a third-party communication device over the Internet; receiving a confirmation from the third-party request over the Internet that the third-party request has been accepted, the third-party request indicates the thermostat; and forwarding the confirmation to the principal communication device over the Internet. The service request indicates a date and a time and the third-party request indicates the date and the time as well. In a further implementation, the service request indicates an access time limit and the third-party request also indicates the access time limit.





BRIEF DESCRIPTION OF THE DRAWINGS

Although the characteristic features of this disclosure will be particularly pointed out in the claims, the invention itself, and the manner in which it may be made and used, may be better understood by referring to the following description taken in connection with the accompanying drawings forming a part hereof, wherein like reference numerals refer to like parts throughout the several views and in which:



FIG. 1 is a simplified block diagram illustrating an environment regulation system in accordance with this disclosure.



FIG. 2 is a simplified block diagram illustrating an environment regulation system in accordance with this disclosure.



FIG. 3 is an illustrative screen of a principal communication device for configuring a third-party in accordance with this disclosure.



FIG. 4 is an illustrative screen of a principal communication device for configuring a third-party access to an indoor comfort control in accordance with this disclosure.



FIG. 5 is an illustrative screen of a principal communication device for selecting a third-party to grant multi-party to an indoor comfort control in accordance with this disclosure.



FIG. 6 is a sequence diagram illustrating a process by which multi-party access is granted and conducted in accordance with this disclosure.



FIG. 7 is a sequence diagram illustrating an indoor comfort control operation in accordance with this disclosure.



FIG. 8 is a block diagram illustrating communication between a third-party communication device and an indoor comfort control in accordance with this disclosure.





A person of ordinary skills in the art will appreciate that elements of the figures above are illustrated for simplicity and clarity, and are not necessarily drawn to scale. The dimensions of some elements in the figures may have been exaggerated relative to other elements to help understanding of the present teachings. Furthermore, a particular order in which certain elements, parts, components, modules, steps, actions, events and/or processes are described or illustrated may not be actually required. A person of ordinary skill in the art will appreciate that, for the purpose of simplicity and clarity of illustration, some commonly known and well-understood elements that are useful and/or necessary in a commercially feasible embodiment may not be depicted in order to provide a clear view of various embodiments in accordance with the present teachings.


DETAILED DESCRIPTION

Turning to the Figures and to FIG. 1 in particular, a block diagram of an environment regulation system is shown and generally indicated at 100. The illustrative environment regulation system 100 includes an indoor comfort system 102 (such as a heating system, a ventilation system, a humidity control system or an air conditioning system) that regulates an environment, an indoor comfort control 104 that operatively coupled to and controls the indoor comfort system 102, a wireless router 106 (such as a Wi Fi router) through which the thermostat 104 communicates with the Internet 108, a third-party communication device 110 accessing the Internet 108 via a wireless link (such as a Wi Fi network or a public cellular network) or a wired network connection, a principal communication device 112 (different from the device 110) operated by a principal 131 of an environment which the indoor comfort system 102 regulates, a cloud server system 114 operatively coupled to the Internet 108, and a database system 116 operatively coupled to the cloud server system 114.


The communication devices 110-112 can be smartphones, laptop computers, desktop computers, tablet computers, PDA computers or other types of computers allowing users to access the Internet and communicate with other computers and the cloud server system 114. Each of the communication devices 110-112 includes a processing unit, some amount of memory operatively coupled to the processing unit, a networking interface operatively coupled to the processing unit, an operating system running on the processing unit and a specialized computer software program.


The cloud server system 114 can be implemented as a single server, a server farm or a cloud based server system. The cloud server system 114 runs a specialized server software program to communicate with the communication devices 110-112. The cloud server system 114 accesses the database system 116 to store and retrieve data.


The environment regulation system 100 is further illustrated by reference to FIG. 2. Referring now to FIG. 2, the illustrative thermostat 104 includes a processing unit 202, a set of switches 204 operatively coupled to the processing unit 202 for operating the thermostat 104, a display device 206 operatively coupled to the processing unit 202, a transceiver 210 operatively coupled to the processing unit 202 and communicating with the wireless router 106, and a specialized indoor comfort control computer program 212 executed by the processing unit 202. In one implementation, the display device 206 includes a touchpad 208 as a user input device to the thermostat 104. The user input device can also be a keypad or rotary switch. In accordance with the present teachings, the display device 206 does not incorporate any user input device (such as the touchpad 208) in a different implementation. The specialized computer program 212 displays thermostat data (such as statuses, instructions, temperature, humidity level, etc.) on the display device 206. Furthermore, the specialized computer program 212 retrieves user input entered via the touchpad 208.


The interaction between the specialized computer program 212 and the display device 206 is further illustrated by reference to FIG. 7. Turning to FIG. 7, a sequence diagram depicting the operation of the thermostat 206 is shown and generally indicated at 700. At 702, the specialized thermostat computer program 212 retrieves a current setting of the thermostat 104. At 704, the specialized thermostat computer program 212 causes the display device 206 to display the retrieved current setting. For example, the program 212 calls an Application Programming Interface (“API”) provided by the thermostat 104 to display the setting. At 706, the display device 206 displays the setting. The elements 702-706 are usually performed frequently. For example, they are performed when the thermostat 104 is powered up or reset, and when the principal 131 operates the touchpad 208 to view and/or change current settings of the thermostat 104.


When the principal 131 operates the touchpad 208 to enter an input, such as a new temperature setting point, at 708, the specialized thermostat computer program 212 retrieves the user input. At 710, the specialized thermostat computer program 212 processes the retrieved user input. When the result of the processed user input needs to be displayed on the display device, at 712, the specialized thermostat computer program 212 causes the display device 206 to display the result. At 714, the display device 206 displays the result.


The specialized computer program running on the principal communication device 112 communicates with the cloud server system 114 over the Internet 108. The principal communication device 112 connects to the Internet 108 with a network link 122, which can be a wired or wireless link (such as a WiFi link). The cloud server system 114 associates the thermostat 104 with the principal's account maintained by the cloud server system 114 and stored in the database system 116. The account includes, for example, an identifier (such as serial number) of the thermostat 104, a model number of the thermostat 104, and identification information of the principal 131. The information of the principal 131 may include the address where the thermostat 104 is installed. As used herein, the identification information for identifying the thermostat 104 and the principal 131 is referred to as a personal identification (“PID”). In one implementation, the PID may also include an access code to the thermostat 104. The access code can be generated for each access to the thermostat. Alternatively, the access code remains consistent between different accesses to the thermostat 104.


A conventional thermostat is only accessible and configurable by people standing next to it, but not remotely. Furthermore, the conventional thermostat is not accessible remotely by third-parties, such as a professional repairing thermostats. The present teachings resolves this issue by providing multi-party access to the thermostat 104. To grant multi-party access to the thermostat 104, the principal 131 operates the principal communication device 112 to initiates the process. For example, the principal 131 operates the principal computer program (such as a mobile app) running on the device 112 to configure and grant multi-party access to the third-party 130 access to the thermostat 104. In one implementation, the principal 131 accesses the screen 300 shown in FIG. 3 and displayed on the device 112 to configure a third-party, such as an indoor comfort control repair professional or an indoor comfort control technical support professional. The screen 300 includes a name field 22, a phone field 24, an E-mail field 26, and a Website field 28 for specifying a dealer. The screen 300 also includes a button 32 for generating reports.


In addition to selecting a particular third-party (such as the dealer 130), the present teachings further allows the principal 131 to specify a particular date and time, and an access time for the third-party 130 to access the thermostat 104. Referring to FIG. 4, an illustrative screen 400 shown on the device 112 allows the principle 131 to select a date, a time and a maximum access time for the third-party 130 to access the thermostat 104. The third-party 130 is allowed to access the thermostat 104 only at the specified date and time for the specified maximum amount of time. Once the maximum amount of is reached, the third-party 130 is timed out and can no longer access the thermostat 104 unless a new access is granted. The access time limit can be in, for example, minutes. The selection of a third-party is illustrated in FIG. 5, which shows a simplified screen 500 for the principle 131 to select a particular dealer to access the thermostat 104. The multi-party access process is further illustrated by reference to FIG. 6.


Turning to FIG. 6 now, a sequence diagram depicting the process by which the thermostat 104 allows multi-party access is shown and generally indicated at 600. At 602, the principal computer program (such as a mobile app) running on the device 112 retrieves a user input indicating a request to engage the third-party 130 to access the thermostat 104. At 604, the principal computer program sends the service request to the cloud server system 114. The service request indicates the selected third-party 130, the access date and time, and the access time limit. At 606, the server software application running on the cloud server system 114 receives the service request, and generates a third-party request.


The cloud server software application determines the account of the principal 131 and associates account data with the service request. The third-party request indicates the access date and time, the access time limit. In addition, the third-party request identifies the thermostat 104. The identification of the thermostat 104 is, for example, a PID that provides sufficient information to enable the third-party device 110 to connect and communicate with the thermostat 104. In one implementation, the third-party request includes an access authentication and/or authorization token. The access token allows the thermostat 104 to authenticate and/or authorizes the third-party device 110 when the thermostat 104 is accessed remotely by the third-party device 110. The access token includes the PID. In a further implementation, the access token also includes a security check that is generated by the cloud server system 114 and can be interpreted by the thermostat 104.


At 608, the cloud server software application sends the third-party request to the third-party communication device 110. The third-party request can be implemented in one message or multiple messages. At 610, the third-party computer software program running on the device 110 receives the third-party request, and processes it. For example, the program displays an indication of the request to the third-party 130. The third-party 130 may accept or deny the request. When the third-party 130 accepts the third-party request, at 612, the third-party computer software program sends a confirmation message to the cloud server system 114. In response, at 614, the cloud server software application forwards the confirmation to the principal device 112. At 616, the principal computer program receives the confirmation, and indicates that the service request has been accepted to the principal 131.


At the access date and time indicated by the third-party request, the third-party 130 operates the third-party computer program to access the thermostat 104. At 652, third-party computer program initiates a connection to the thermostat 104 over the Internet. The connection request includes, for example, the access token. At 654, the thermostat 104 receives the connection request, and authenticates and/or authorizes the connection request. At 656, the thermostat 104 notifies the third-party device 110 that the connection has been made. At 658, the third-party computer program sends one or more commands to the thermostat 104 over the Internet. Each command can direct the thermostat 104 to perform an action, return certain data, or both. At 659, the commands are then received and processed by the thermostat 104. At 660, in response to the one or more commands, the thermostat 104 returns a response to the third-party device 110 over the Internet.


At 662, the third-party computer program analyzes the response. In a further implementation, the third-party computer program indicates the response by displaying it to on a screen of the device 110. At 664, the third-party computer program configures the thermostat 104. For instance, the third-party computer program sends commands and corresponding parameters to the thermostat 104. After the access to the thermostat 104 is done, at 668, the third-party computer program terminates the connection to the thermostat 104.


When an access time limit is specified, the third-party computer program monitors the time of access to the thermostat 104. When the limit is reached, at 666, the third-party computer program times out. In such a case, the third-party computer program can no longer communicate with the thermostat 104. In alternate implementation, the access time limit is enforced by the thermostat 104.


Obviously, many additional modifications and variations of the present disclosure are possible in light of the above teachings. Thus, it is to be understood that, within the scope of the appended claims, the disclosure may be practiced otherwise than is specifically described above. As an example, the communication between the third-party communication device 110 and the thermostat 104 is bridged by the cloud server system 114 as shown in FIG. 8.


The foregoing description of the disclosure has been presented for purposes of illustration and description, and is not intended to be exhaustive or to limit the disclosure to the precise form disclosed. The description was selected to best explain the principles of the present teachings and practical application of these principles to enable others skilled in the art to best utilize the disclosure in various embodiments and various modifications as are suited to the particular use contemplated. It should be recognized that the words “a” or “an” are intended to include both the singular and the plural. Conversely, any reference to plural elements shall, where appropriate, include the singular.


It is intended that the scope of the disclosure not be limited by the specification, but be defined by the claims set forth below. In addition, although narrow claims may be presented below, it should be recognized that the scope of this invention is much broader than presented by the claim(s). It is intended that broader claims will be submitted in one or more applications that claim the benefit of priority from this application. Insofar as the description above and the accompanying drawings disclose additional subject matter that is not within the scope of the claim or claims below, the additional inventions are not dedicated to the public and the right to file one or more applications to claim such additional inventions is reserved.

Claims
  • 1. An indoor comfort control for controlling an indoor comfort system, the indoor comfort control comprising: i) a processing unit;ii) a display device operatively coupled to said processing unit;iii) a wireless transceiver operatively coupled to said processing unit, said wireless transceiver adapted to communicate with a wireless router to access the Internet;iv) a specialized indoor comfort control computer program running on said processing unit;v) said specialized indoor comfort control computer program adapted to: 1) receive a remote connection request from a third-party mobile communication device over the Internet to form a connection between said indoor comfort control and said third-party mobile communication device, said connection request corresponding to a third-party request, wherein: a) said third-party request is initiated by a principal communication device and indicates an access date and time, an access time limit and said indoor comfort control;b) said third-party mobile communication device is not said principal communication device;c) said connection corresponds to said access date and time and is subjected to said access time limit for said third-party mobile communication device to access said indoor comfort control, and whereind) said third-party mobile communication device is adapted to confirm said third-party request to a cloud server system over the Internet;2) receive a command from said third-party mobile communication device remotely over the Internet through said cloud server system, wherein said command directs said indoor comfort control to perform an action or return data;3) process said command; and4) provide a response to said command to said third-party mobile communication device remotely over the Internet through said cloud server system.
  • 2. The indoor comfort control of claim 1 wherein said indoor comfort control is a thermostat.
  • 3. The indoor comfort control of claim 1 wherein said third-party request further includes an access token for said indoor comfort control to authenticate or authorize said third-party mobile communication device when said third-party mobile communication device attempts to connect to said indoor comfort control remotely over the Internet through said cloud server system.
  • 4. The indoor comfort control of claim 1 further comprising a user input device operatively coupled to said processing unit wherein said user input device is a touchpad.
  • 5. The indoor comfort control of claim 1 wherein said indoor comfort system is one of a heating system, a ventilation system, a humidity control, or an air conditioning system.
  • 6. The indoor comfort control of claim 1 wherein said indoor comfort control is a thermostat.
  • 7. The indoor comfort control of claim 6 wherein said indoor comfort system is one of a heating system, a ventilation system, a humidity control, or an air conditioning system.
  • 8. A method for providing multi-party access to an indoor comfort control, the method performed within a cloud server system and comprising: i) receiving a service request for a third-party to remotely access an indoor comfort control over the Internet through said cloud server system, said indoor comfort control adapted to control an indoor comfort system, remotely communicate with both a principal communication device and a third-party communication device via said cloud server system over the Internet, wherein said service request is initiated by the Principal communication device and indicates an access date and time, an access time limit, and said indoor comfort control;ii) generating a third-party request based on said service request, said third-party request indicating said indoor comfort control; andiii) confirming said third-party request with said third-party communication device wherein: 1) said third-party communication device is adapted to remotely initiate a connection with said indoor comfort control over the Internet through said cloud server system, wherein said connection is subjected to said access date and time and access time limit;2) said third-party communication device is adapted to remotely send a command to said indoor comfort control over the Internet through said cloud server system;3) in response to said command, said indoor comfort control is adapted to perform an action against said indoor comfort system or return data; and4) said indoor comfort control is adapted to return a response to said third-party communication device over the Internet through said cloud server system.
  • 9. The method for providing multi-party access of claim 8 wherein said indoor comfort control is a thermostat.
  • 10. The method for providing multi-party access of claim 8 wherein said indoor comfort system is one of a heating system, a ventilation system, a humidity control, or an air conditioning system.
US Referenced Citations (274)
Number Name Date Kind
2054039 Persons Sep 1936 A
2060636 Persons Nov 1936 A
2253418 Crandall et al. Aug 1941 A
2703228 Fleisher Mar 1955 A
3309021 Powers Mar 1967 A
3385574 Lohman May 1968 A
3481588 Lobb Dec 1969 A
3705479 McPherson Dec 1972 A
3724824 Mitich Apr 1973 A
3733062 Bracich May 1973 A
3774588 Yeagle Nov 1973 A
3799517 Tamm Mar 1974 A
3823922 McElreath Jul 1974 A
4036597 Filss Jul 1977 A
4056582 Chow Nov 1977 A
4075864 Schrader Feb 1978 A
4185687 Stockman Jan 1980 A
4316256 Hendricks et al. Feb 1982 A
4382544 Stewart May 1983 A
4399031 Imano et al. Aug 1983 A
4420794 Anderson Dec 1983 A
4606401 Levine Aug 1986 A
4730941 Levine et al. Mar 1988 A
4733719 Levine Mar 1988 A
4838482 Vogelzang Jun 1989 A
4948040 Kobayashi et al. Aug 1990 A
4967382 Hall Oct 1990 A
5023432 Boykin Jun 1991 A
5038851 Mehta Aug 1991 A
5171486 Penno Dec 1992 A
5230482 Ratz et al. Jul 1993 A
5259445 Pratt et al. Nov 1993 A
5289362 Liebl et al. Feb 1994 A
5428964 Lobdell Jul 1995 A
5482209 Cochran et al. Jan 1996 A
5491615 Nichols Feb 1996 A
5547017 Rudd Aug 1996 A
5566879 Longtin Oct 1996 A
5673850 Uptegraph Oct 1997 A
5697552 McHugh et al. Dec 1997 A
5765636 Meyer et al. Jun 1998 A
5782296 Mehta Jul 1998 A
5795505 Penno Aug 1998 A
5873519 Beilfuss Feb 1999 A
5924486 Ehlers et al. Jul 1999 A
5937942 Bias et al. Aug 1999 A
5983146 Sarbach Nov 1999 A
6116512 Dushane Sep 2000 A
6196467 Dushane Mar 2001 B1
6205533 Margolous et al. Mar 2001 B1
6211782 Sandelman et al. Apr 2001 B1
6213404 Dushane Apr 2001 B1
6241156 Kline et al. Jun 2001 B1
6304803 Dao Oct 2001 B1
6315211 Sartain Nov 2001 B1
6318639 Toth Nov 2001 B1
6415023 Iggulden Jan 2002 B2
6435418 Toth et al. Aug 2002 B1
6478233 Shah Nov 2002 B1
6499038 Kitayama Dec 2002 B2
6502758 Cottrell Jan 2003 B2
6549870 Proffitt et al. Apr 2003 B2
6595430 Shah Jul 2003 B1
6617954 Firestine Sep 2003 B2
6621507 Shah Sep 2003 B1
6628997 Fox et al. Sep 2003 B1
6714222 Bjorn et al. Mar 2004 B1
6783079 Carey et al. Aug 2004 B2
6814299 Carey Nov 2004 B1
6824069 Rosen Nov 2004 B2
6851621 Wacker et al. Feb 2005 B1
6892547 Strand May 2005 B2
6988671 DeLuca Jan 2006 B2
7003378 Poth Feb 2006 B2
7028912 Rosen Apr 2006 B1
7047092 Wimsatt May 2006 B2
7050026 Rosen May 2006 B1
7055759 Wacker et al. Jun 2006 B2
D524663 Moore Jul 2006 S
D525154 Moore Jul 2006 S
D527288 Moore Aug 2006 S
D527658 Moore Sep 2006 S
D530633 Moore Oct 2006 S
7114554 Bergman et al. Oct 2006 B2
D531528 Moore Nov 2006 S
7142948 Metz Nov 2006 B2
D533793 Moore Dec 2006 S
D534088 Moore Dec 2006 S
7146253 Hoog et al. Dec 2006 B2
D534443 Moore Jan 2007 S
7156317 Moore Jan 2007 B1
7156318 Rosen Jan 2007 B1
D536271 Moore Feb 2007 S
7181317 Amundson et al. Feb 2007 B2
7222800 Wruck May 2007 B2
7225054 Amundson et al. May 2007 B2
7274972 Amundson et al. Sep 2007 B2
7287709 Proffitt et al. Oct 2007 B2
7302642 Smith et al. Nov 2007 B2
7306165 Shah Dec 2007 B2
7320110 Shah Jan 2008 B2
7360717 Shah Apr 2008 B2
7438469 Moore Oct 2008 B1
7454269 Dushane et al. Nov 2008 B1
7489303 Pryor Feb 2009 B1
7513438 Mueller Apr 2009 B2
7556207 Mueller et al. Jul 2009 B2
7565813 Pouchak Jul 2009 B2
7575179 Morrow et al. Aug 2009 B2
7584897 Schultz et al. Sep 2009 B2
7593212 Toth Sep 2009 B1
7604046 Bergman et al. Oct 2009 B2
7614567 Chapman, Jr. et al. Nov 2009 B2
7636604 Bergman et al. Dec 2009 B2
7693582 Bergman et al. Apr 2010 B2
7693583 Wolff et al. Apr 2010 B2
7703694 Mueller et al. Apr 2010 B2
7706923 Amundson et al. Apr 2010 B2
7748225 Butler et al. Jul 2010 B2
7702421 Sullivan et al. Aug 2010 B2
7775454 Mueller et al. Aug 2010 B2
7784291 Butler et al. Aug 2010 B2
7784705 Kasper et al. Aug 2010 B2
7801646 Amundson et al. Sep 2010 B2
7802618 Simon et al. Sep 2010 B2
7845576 Siddaramanna Dec 2010 B2
7861941 Schultz et al. Jan 2011 B2
7867646 Rhodes Jan 2011 B2
7941819 Stark May 2011 B2
7954726 Siddaramanna et al. Jun 2011 B2
7963454 Sullivan Jun 2011 B2
D643318 Moore Aug 2011 S
7992794 Leen et al. Aug 2011 B2
8066263 Soderlund Nov 2011 B1
8083154 Schultz et al. Dec 2011 B2
8091795 McLellan Jan 2012 B1
8167216 Schultz et al. May 2012 B2
8175782 Gepperth et al. May 2012 B2
D662837 Morrow Jul 2012 S
D662838 Morrow Jul 2012 S
D662839 Morrow Jul 2012 S
D662840 Morrow Jul 2012 S
D663224 Morrow Jul 2012 S
8219251 Amundson et al. Jul 2012 B2
8239067 Amundson et al. Aug 2012 B2
8239922 Sullivan Aug 2012 B2
8244383 Bergman et al. Aug 2012 B2
8280536 Fadell et al. Oct 2012 B1
8346396 Amundson et al. Jan 2013 B2
8387892 Koster et al. Mar 2013 B2
8517088 Moore et al. Aug 2013 B2
8538588 Kasper Sep 2013 B2
8549658 Kolavennu et al. Oct 2013 B2
8620460 Eergman et al. Dec 2013 B2
8689353 Bünter Apr 2014 B2
8690074 Moore et al. Apr 2014 B2
8701210 Cheng et al. Apr 2014 B2
8733667 Moore et al. May 2014 B2
8950687 Bergman Feb 2015 B2
8978994 Moore et al. Mar 2015 B2
9014860 Moore et al. Apr 2015 B2
9201431 Lyle Dec 2015 B2
9304676 Poplawski Apr 2016 B2
9989273 Read et al. Jun 2018 B2
20010003451 Armstrong Jun 2001 A1
20020065809 Kitayama May 2002 A1
20020096572 Chene et al. Jul 2002 A1
20040133314 Ehlers Jul 2004 A1
20040193324 Hoog Sep 2004 A1
20040230402 Jean Nov 2004 A1
20040245352 Smith Dec 2004 A1
20040256472 DeLuca Dec 2004 A1
20040260427 Wimsatt Dec 2004 A1
20050027997 Ueno et al. Feb 2005 A1
20050033707 Ehlers Feb 2005 A1
20050040248 Wacker Feb 2005 A1
20050040249 Wacker Feb 2005 A1
20050044906 Spielman Mar 2005 A1
20050082836 Lagerwey Apr 2005 A1
20050108620 Allyn et al. May 2005 A1
20050119793 Amundson et al. Jun 2005 A1
20050194457 Dolan Sep 2005 A1
20050198591 Jarrett Sep 2005 A1
20060030954 Bergman Feb 2006 A1
20060290140 Yoshida Jun 2006 A1
20060220386 Wobben Oct 2006 A1
20070045429 Chapman, Jr. Mar 2007 A1
20070045441 Ashworth Mar 2007 A1
20070114291 Pouchak May 2007 A1
20070221741 Wagner Sep 2007 A1
20070228182 Wagner et al. Oct 2007 A1
20070228183 Kennedy Oct 2007 A1
20070257120 Chapman, Jr. et al. Nov 2007 A1
20070278320 Lunacek et al. Dec 2007 A1
20080271475 Wuesthoff Nov 2008 A1
20090001182 Siddaramanna Jan 2009 A1
20090024965 Zhdankin Jan 2009 A1
20090045263 Mueller et al. Feb 2009 A1
20090057424 Sullivan et al. Mar 2009 A1
20090057427 Geadelmann Mar 2009 A1
20090062964 Sullivan Mar 2009 A1
20090129931 Stiesdal May 2009 A1
20090140056 Leen Jun 2009 A1
20090140064 Schultz Jun 2009 A1
20100031193 Stark Feb 2010 A1
20100070089 Harrod et al. Mar 2010 A1
20100117975 Cho et al. May 2010 A1
20100127502 Uchino et al. May 2010 A1
20100145528 Bergman et al. Jun 2010 A1
20100261465 Rhoads et al. Oct 2010 A1
20100318200 Foslien Dec 2010 A1
20110004825 Wallaert et al. Jan 2011 A1
20110031806 Altonen et al. Feb 2011 A1
20110046791 Sakae Feb 2011 A1
20110054710 Imes Mar 2011 A1
20110112998 Abe May 2011 A1
20110261002 Verthein Oct 2011 A1
20110273394 Young Nov 2011 A1
20120067561 Bergman Mar 2012 A1
20120074710 Yoshida Mar 2012 A1
20120131504 Fadell May 2012 A1
20120168524 Moore et al. Jul 2012 A1
20120169675 Moore et al. Jul 2012 A1
20120203379 Sloo Aug 2012 A1
20120221149 Kasper Aug 2012 A1
20120229521 Hales, IV Sep 2012 A1
20120232703 Moore Sep 2012 A1
20120239221 Mighdoll Sep 2012 A1
20120329528 Song Dec 2012 A1
20130024685 Kolavennu et al. Jan 2013 A1
20130032414 Yilmaz Feb 2013 A1
20130056989 Sabhapathy Mar 2013 A1
20130090767 Bruck et al. Apr 2013 A1
20130123991 Richmond May 2013 A1
20130211783 Fisher et al. Aug 2013 A1
20130215088 Son et al. Aug 2013 A1
20130263034 Bruck Oct 2013 A1
20130338838 Moore Dec 2013 A1
20130345883 Sloo Dec 2013 A1
20140081465 Wang et al. Mar 2014 A1
20140098247 Rao Apr 2014 A1
20140152631 Moore et al. Jun 2014 A1
20140156087 Amundson Jun 2014 A1
20140163746 Drew Jun 2014 A1
20140200718 Tessier Jul 2014 A1
20140254577 Wright et al. Sep 2014 A1
20140316581 Fadell et al. Oct 2014 A1
20140319233 Novotny Oct 2014 A1
20150081568 Land, III Mar 2015 A1
20150095843 Greborio et al. Apr 2015 A1
20150100167 Sloo et al. Apr 2015 A1
20150127174 Quam May 2015 A1
20150167995 Fadell Jun 2015 A1
20150233595 Fadell Aug 2015 A1
20150280935 Poplawski et al. Oct 2015 A1
20150370615 Pi-Sunyer Dec 2015 A1
20160047569 Fadell et al. Feb 2016 A1
20160062618 Fagan Mar 2016 A1
20160123618 Hester et al. May 2016 A1
20160124828 Moore et al. May 2016 A1
20160131385 Poplawski et al. May 2016 A1
20160154576 Moore et al. Jun 2016 A1
20160241566 Khurana Aug 2016 A1
20170102681 Verhoeven et al. Apr 2017 A1
20170103689 Moore et al. Apr 2017 A1
20170131825 Moore et al. May 2017 A1
20170223005 Birgisson Aug 2017 A1
20170300025 Moore et al. Oct 2017 A1
20170314797 Blair Nov 2017 A1
20170337522 Bennett Nov 2017 A1
20170364104 Poplawski et al. Dec 2017 A1
20180005195 Jacobson Jan 2018 A1
20180031266 Atchison Feb 2018 A1
20180074471 Poplawski Mar 2018 A1
Foreign Referenced Citations (3)
Number Date Country
58065977 Apr 1983 JP
2004218436 Aug 2004 JP
2006009596 Jan 2006 JP
Non-Patent Literature Citations (4)
Entry
ComfortLink II XL950 Control, User Guide, Trane U.S. Inc., 2011.
Cardio lie Installer's Guide, System Version 2.5xx, 5th edition, 2008, Secant Home Automation Inc.
What you should know about flexible displays (FAQ); http://news.cnet.com/8301-1035_3-57607171-94/what-you-should-know-about-flexible-d . . . ; Nov. 25, 2013.
Brae8urn Systems LLC, “Temperature Limiting Adjustments for heating and Cooling (1000 Series)”, Mportant Installation Instructions.