The present invention relates to an indoor unit of, for example, an air-conditioning apparatus, and more particularly, to an adjustment of a positional relationship between a bellmouth and a fan.
In air-conditioning apparatus and similar apparatus, an indoor unit installed on an indoor side includes a blower configured to blow air by rotating a fan (impeller). Specifically, in an indoor unit of a ceiling concealed type, air flows into the indoor unit through an air inlet at a center on a lower surface side (indoor side), and flows out through air outlets on lateral sides of the lower surface side via the fan, an indoor heat exchanger, and other components. In this case, the indoor unit includes a bellmouth so that the inflow air through the air inlet is rectified and delivered to the fan. The bellmouth is formed, for example, into an annular shape (cylindrical shape) in conformity with the fan to be rotated. Further, the indoor unit of the ceiling concealed type includes a drain pan that is installed below the indoor heat exchanger so as to receive drain water generated as a result of condensation by the heat exchanger. The bellmouth is mounted to the drain pan through fixation with screws, and the drain pan is mounted to lateral plates of a casing (outer shell) of the indoor unit through fixation with screws. Meanwhile, the fan is fixed to a rotary shaft of a motor, and the motor is mounted to a top plate of the casing of the indoor unit (see, for example, Patent Literature 1).
Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2011-153749
In order to fix the bellmouth to the drain pan with screws, screw fixing brackets having threaded holes are mounted to the drain pan. Further, screw fixing brackets for allowing the drain pan to be fixed to the casing of the indoor unit are also mounted to the drain pan. In this case, the fixing brackets for allowing fixation of the bellmouth, and the fixing brackets for allowing the casing of the indoor unit and the drain pan to be fixed to each other are independent of each other. The drain pan is formed through molding of a synthetic resin, such as, polystyrene foam. Those fixing brackets are embedded at the time of, for example, molding the drain pan.
Note that, in conventional techniques, there has been no reference for mounting positions of the casing of the indoor unit and the drain pan, and for mounting positions of the drain pan and the bellmouth. For example, in the course of manufacture, when relationships between those positions vary at the time of operations of fixing the casing of the indoor unit and the drain pan to each other, and fixing the drain pan and the bellmouth to each other, there is a possibility in that a positional relationship between the casing of the indoor unit and the bellmouth widely varies in each indoor unit. The positional relationship between the casing of the indoor unit and the bellmouth has an influence on a clearance (gap) between the bellmouth and the fan. As a result, there is a risk in that indoor units 100 having nonuniform performance (unit performance) are manufactured.
The present invention has been made to overcome the problems as described above, and it is an object of the present invention to provide, for example, an indoor unit having a configuration capable of suppressing variation of a clearance formed between a bellmouth and a fan.
According to one embodiment of the present invention, there is provided an indoor unit, including: a casing comprising a top plate and lateral plates; a motor mounted to a central part on an inner surface side of the top plate; a fan fixed to a rotary shaft of the motor and configured to rotate through drive of the motor; a drain pan received in the casing and mounted to the lateral plates of the casing; and a bellmouth mounted to the drain pan and configured to rectify a fluid flowing into the casing, the drain pan comprising a positioning fitting having a casing-fixing threaded hole for allowing the drain pan to be fixed to the casing with a screw; and a bellmouth-fixing threaded hole for allowing the bellmouth to be fixed to the drain pan with a screw.
Further, according to one embodiment of the present invention, there is provided an air-conditioning apparatus, including: the above-mentioned indoor unit; and an outdoor unit configured to supply heat to the indoor unit side.
According to the present invention, by having the positioning fitting having the casing-fixing threaded hole and the bellmouth-fixing threaded hole, a positional reference for the casing and the bellmouth can be directly set. With this, variation of a clearance between the turbohan and the bellmouth can be suppressed, thereby being capable of stabilizing unit performance of each indoor unit.
Now, with reference to the drawings, description is made of embodiments of the present invention. Note that, in the following drawings, the same or corresponding parts are denoted by the same reference symbols, and the same applies hereinafter. Then, the embodiments of components described herein are merely illustrative, and are not intended to be limited to those described herein. In particular, the combination of components is not limited to the combinations in the respective embodiments, and a component described in one embodiment may be applied to another embodiment. Further, only a representative one of a plurality of blades is denoted by their reference symbol. Still further, the number of the blades illustrated, for example, in the drawings is merely illustrative. In addition, the “upper side” and the “lower side” in the following description correspond respectively to the upper side and the lower side of the drawing sheets. In addition, the sizes of components relative to one another in the drawings may differ from their relative sizes in actuality.
The indoor unit 100 has a casing (main unit) 120 including built-in devices configured to perform air circulation and other operations. As described later, the casing 120 includes a top plate 121 and lateral plates 122, and is opened at a side facing an indoor side (lower side). Further, a decorative panel 130 having a substantially quadrangular shape in plan view is mounted to an opening portion of the casing 120. The decorative panel 130 faces the indoor side (lower side), that is, a space to be air-conditioned (air-conditioning target space), for example. A grille 131 being an air inlet for air (gas) into the indoor unit 100 is arranged near a center of the decorative panel 130. The air that has flowed through the grille 131 is subjected to dust removal by filters (not shown).
On four sides of the decorative panel 130, the air outlets 132 are formed respectively along the four sides of the decorative panel 130. To each of the air outlets 132, an air outlet vane (flap) 150 is provided that serves as a louver configured to change a direction of airflow. Shafts of the air outlet vanes 150 are driven by motors (not shown) so that the air outlet vanes 150 are rotationally moved about their shafts. With this, positions of the air outlet vanes 150 are controlled. Further, in the indoor unit 100 of this embodiment, an electrical component box 101 is mounted to an outer surface side of the casing 120.
A drain pan 140 is configured to collect drain water generated from an indoor heat exchanger 110 described later. The drain pan 140 is formed through molding of materials such as a synthetic resin including polystyrene foam. The bellmouth 160 is mounted to the drain pan 140, specifically, around a position corresponding to a central portion of the lower surface of the indoor unit 100. With this, there is formed a through-hole serving as a main-unit air inlet 124a configured to allow the inflow air from the grille 131 to flow therethrough. Further, there are formed through-holes serving as main-unit air outlets 124b configured to allow outflow air from the indoor heat exchanger 110 to flow therethrough so as to allow the outflow air to the air outlets 132. The grille 131, the bellmouth 160 (main-unit air inlet 124a), the main-unit air outlets 124b, and the air outlets 132 communicate to each other to form air passages in the indoor unit 100.
As illustrated, for example, in
Note that, in this embodiment, a positioning fitting 143 configured to allow the bellmouth 160 and the drain pan 140 to be fixed to each other with screws is arranged instead of at least one of the normal drain-pan fixing brackets 142 (at one of the corners in
Further, the turbofan 170 illustrated in
Further, the positioning fitting 143 has not only the bellmouth-fixing threaded hole 143b but also an oblong hole 143c for allowing the bellmouth 160 to be positioned. In addition, the drain pan 140 has a recessed portion 144 formed in conformity with the oblong hole 143c.
Note that, in this embodiment, although the oblong hole 143c is formed into a rectangular shape, and the projection portion 163 is formed into a rectangular parallelepiped shape, those shapes of the oblong hole 143c and the projection portion 163 are not particularly limited. However, a columnar shape needs to be avoided because, even when the columnar projection portion 163 is inserted into the oblong hole 143c, the rotation of the bellmouth 160 cannot be restricted. Further, for example, an effect of the restriction is increased as one side of the oblong hole 143c is formed so as to be longer than another side.
As described above, in the indoor unit 100 of this embodiment, the drain pan 140 includes the single positioning fitting 143 having the casing-fixing threaded hole 143a for allowing the drain pan 140 and the lateral plate 122 of the casing 120 to be fixed to each other with a screw, and the bellmouth-fixing threaded hole 143b for allowing the drain pan 140 and the bellmouth 160 to be fixed to each other with a screw. With this, the positional reference between the casing 120 and the bellmouth 160 can be directly set. Thus, a relationship between positions at which the drain pan 140 and the lateral plates 122 of the casing 120 are fixed to each other with screws and positions at which the drain pan 140 and the bellmouth 160 are fixed to each other with screws does not vary in each indoor unit 100. As a result, the variation of the clearance 190 between the turbofan 170 and the bellmouth 160 can be suppressed, thereby being capable of stabilizing the unit performance of each indoor unit 100.
Further, the projection portion 163 formed on the bellmouth 160 side is fitted into the oblong hole 143c and the recessed portion 144 formed on the drain pan 140 side. With this, the rotational movement of the bellmouth 160 can be restricted, and a positional relationship between the bellmouth 160 and the drain pan 140 can be maintained.
In Embodiment 1 described above, the positioning fitting 143 is formed through processing of a sheet metal. However, the present invention is not limited thereto. For example, the positioning fitting 143 may be formed through molding of a resin material.
The compressor 210 is configured to compress and discharge sucked refrigerant. Note that, the compressor 210 is not particularly limited, but may include, for example, an inverter circuit so that an operating frequency thereof is arbitrarily changed, thereby being capable of changing a capacity of the compressor 210 (amount of refrigerant sent per unit time). The four-way valve 220 is a valve configured to switch flow of the refrigerant during the cooling operation and flow of the refrigerant during the heating operation to each other, for example.
The outdoor heat exchanger 230 of this embodiment is configured to exchange heat between the refrigerant and the air (outside air). Specifically, the outdoor heat exchanger 230 functions as an evaporator during the heating operation so as to evaporate and gasify the refrigerant, and functions as a condenser during the cooling operation so as to condense and liquefy the refrigerant.
The expansion valve 240 such as an expansion device (flow rate control unit) is configured to decompress and expand the refrigerant. For example, when the expansion valve 240 is constructed by an electronic expansion valve, an opening degree thereof is controlled in response to instructions from a controller (not shown), for example. The indoor heat exchanger 110 is configured to exchange heat between the air to be air-conditioned and the refrigerant, for example. The indoor heat exchanger 110 functions as the condenser during the heating operation so as to condense and liquefy the refrigerant, and functions as the evaporator during the cooling operation so as to evaporate and gasify the refrigerant.
First, description is made of how the refrigerant flows during the cooling operation in the refrigeration cycle apparatus. During the cooling operation, the four-way valve 220 is switched so as to establish a connection relationship as indicated by the solid arrows. Gas refrigerant that has been increased in temperature and pressure through compression by the compressor 210 is discharged therefrom, and then flows into the outdoor heat exchanger 230 via the four-way valve 220. Next, the gas refrigerant is condensed and liquefied into liquid refrigerant through the heat exchange with the outside air by flowing through the outdoor heat exchanger 230, and then flows into the expansion valve 240. The liquid refrigerant turns into refrigerant in a two-phase gas-liquid state through decompression by the expansion valve 240, and then flows out of the outdoor unit 200.
The two-phase gas-liquid refrigerant that has flowed out of the outdoor unit 200 flows into the indoor unit 100 through the liquid refrigerant pipe 400. Next, the two-phase gas-liquid refrigerant is distributed by a distributor and a flow rate control capillary tube (not shown), and then flows into the indoor heat exchanger 110. The two-phase gas-liquid refrigerant turns into gas refrigerant through evaporation and gasification by the heat exchange with, for example, the air to be air-conditioned by flowing through the indoor heat exchanger 110 as described above, and then flows out of the indoor unit 100.
The gas refrigerant that has flowed out of the indoor unit 100 flows into the outdoor unit 200 through the gas refrigerant pipe 300. Then, the gas refrigerant is sucked again into the compressor 210 via the four-way valve 220. Air-conditioning (cooling) is performed by circulating the refrigerant in the air-conditioning apparatus in this way.
Next, description is made of how the refrigerant flows during the heating operation. During the heating operation, the four-way valve 220 is switched so as to establish a connection relationship as indicated by the dotted arrows. Gas refrigerant that has been increased in temperature and pressure through compression by the compressor 210 is discharged therefrom, and then flows out of the outdoor unit 200 via the four-way valve 220. The gas refrigerant that has flowed out of the outdoor unit 200 flows into the indoor unit 100 through the gas refrigerant pipe 300.
The gas refrigerant is condensed and liquefied through the heat exchange with, for example, the air to be air-conditioned by flowing through the indoor heat exchanger 110, and then flows out of the indoor unit 100 through the distributor and the flow rate control capillary tube (not shown).
The liquid refrigerant that has flowed out of the indoor unit 100 flows into the outdoor unit 200 through the liquid refrigerant pipe 400. Then, the liquid refrigerant turns into refrigerant in the two-phase gas-liquid state through the decompression by the expansion valve 240, and then flows into the outdoor heat exchanger 230. Next, the refrigerant is gasified (gas refrigerant) through evaporation and the heat exchange with the outside air by flowing through the outdoor heat exchanger 230. Then, the refrigerant is sucked again into the compressor 210 via the four-way valve 220. Air-conditioning (heating) is performed by circulating the refrigerant in the air-conditioning apparatus in this way.
As described above, in the air-conditioning apparatus (refrigeration cycle apparatus) of this embodiment, the indoor unit 100 described above is used. With this, air-conditioning apparatus having stable unit performance can be provided.
The indoor unit 100 of the embodiments described above is an indoor unit of the four-way cassette type having the four air outlets 132 and the four air outlet vanes 150 so as to flow out air to four sides. However, the present invention is not limited thereto, and is applicable also to, for example, indoor units of other ceiling concealed types adaptable to two-way or three-way air stream. Further, the present invention is applicable not only to the indoor units of such ceiling concealed types, but also to indoor units of other types. In addition, the present invention is applicable also to fans other than the centrifugal fan.
Still further, in the embodiments described above, the air-conditioning apparatus is described as an example of the refrigeration cycle apparatus. However, the present invention is not limited thereto, and is applicable also to, for example, other refrigeration cycle apparatus such as a dehumidifier. In addition, the present invention is applicable not only to the refrigeration cycle apparatus, but also to, for example, blowers and ventilation systems.
This application is a U.S. national stage application of International Application No. PCT/JP2015/064426, filed on May 20, 2015, the contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/064426 | 5/20/2015 | WO | 00 |