The present disclosure relates to an indoor unit of a refrigeration apparatus configured to detect refrigerant leakage.
In recent years, air conditioners adopting refrigerants having low global warming potential (GWP) (hereinafter, called low GWP refrigerants) in view of environmental protection. Examples of the low GWP refrigerants include a refrigerant disclosed in Patent Literature 1 (JP 2019-11914 A).
An indoor unit of a refrigeration apparatus, according to one or more embodiments of the invention, is to be installed in a ceiling, and includes a casing and a plate-shaped member. The casing has a plurality of blow-out ports and a blow-in port provided in a lower surface. The plate-shaped member is installed below the blow-in port. The casing accommodates a heat exchanger, a control board, a support member, and a gas sensor. The heat exchanger allows a refrigerant larger in specific gravity than air to flow therein. The support member supports the control board. The gas sensor is installed at or adjacent to the support member, and detects refrigerant leakage. The gas sensor is removable when the plate-shaped member is shifted.
Description is made herein to an air conditioner 10 as an exemplary refrigeration apparatus.
The outdoor unit 11 is provided with a compressor 12, an outdoor heat exchanger 13, an outdoor expansion valve 14, and a four-way switching valve 15.
The compressor 12 compresses a low-pressure refrigerant and discharges a high-pressure refrigerant obtained by compression. The compressor 12 includes a compression mechanism of a scroll type, a rotary type, or the like driven by a compressor motor 12a. The compressor motor 12a has an operating frequency variable by means of an inverter device.
As depicted in
The outdoor heat exchanger 13 is of a fin and tube type. There is installed an outdoor fan 16 adjacent to the outdoor heat exchanger 13. The outdoor heat exchanger 13 causes heat exchange between air conveyed by the outdoor fan 16 and a refrigerant flowing in the outdoor heat exchanger 13.
As depicted in
The outdoor expansion valve 14 is an electronic expansion valve having a variable opening degree. The outdoor expansion valve 14 is installed downstream of the outdoor heat exchanger 13 in a refrigerant flow direction in the refrigerant circuit C during cooling operation.
The opening degree of the outdoor expansion valve 14 is fully opened during cooling operation. In contrast, during heating operation, the opening degree of the outdoor expansion valve 14 is adjusted such that a refrigerant flowing into the outdoor heat exchanger 13 is decompressed to pressure enabling evaporation (evaporation pressure) in the outdoor heat exchanger 13.
The four-way switching valve 15 has first to fourth ports. At the four-way switching valve 15, a first port P1 is connected to the discharge pipe 121 of the compressor 12, a second port P2 is connected to the suction pipe 122 of the compressor 12, a third port P3 is connected to the first pipe 131 of the outdoor heat exchanger 13, and a fourth port P4 is connected to a gas shutoff valve 5.
The four-way switching valve 15 is switched between a first state (state indicated by solid lines in
The outdoor fan 16 is constituted as a propeller fan driven by an outdoor fan motor 16a. An operating frequency of the outdoor fan motor 16a is variable by means of an inverter device.
The two connection pipes include the liquid connection pipe 2 and the gas connection pipe 3. The liquid connection pipe 2 has a first end connected to a liquid shutoff valve 4 and a second end connected to a liquid connecting pipe 6 of an indoor heat exchanger 32. As depicted in
The gas connection pipe 3 has a first end connected to the gas shutoff valve 5 and a second end connected to a gas connecting pipe 7 of the indoor heat exchanger 32. As depicted in
In
As depicted in
The decorative panel 40 is attached to the bottom of the body 21. The decorative panel 40 includes a panel portion 41 and a suction grill 60.
The panel portion 41 is provided with a single blow-in flow path 42 and four blow-out flow paths 43. As depicted in
The opening 41a has a quadrilateral shape in a planar view, and the suction grill 60 is attached to prevent an interior of the indoor unit 20 from being visible via the opening 41a.
The opening 41a and the blow-in port 42a interpose a filter 45 configured to capture dust in air sucked via the opening 41a.
The blow-out flow paths 43 are provided outside the blow-in flow path 42 to surround the blow-in flow path 42. The blow-out flow paths 43 respectively extend along four sides of the blow-in flow path 42. The body 21 and each of the blow-out flow paths 43 interpose a blow-out port 37a. The blow-out flow paths 43 in the panel portion 41 each have a lower end provided with an opening 43a corresponding to the blow-out port 37a.
The casing 22 has a plurality of side walls, and has an octagonal shape obtained by alternately connecting four short sides and four long sides in a planar view.
The first corner 221 is formed by the first long side wall 22b and the fourth long side wall 22h, faces the first short side wall 22a, and an end part 32a of the indoor heat exchanger 32 is installed at the first corner 221.
The end part of the indoor heat exchanger 32 is connected with the liquid connecting pipe 6 and the gas connecting pipe 7 that penetrate the first short side wall 22a as described above. The liquid connecting pipe 6 is connected with the liquid connection pipe 2 and the gas connecting pipe 7 is connected with the gas connection pipe 3.
The casing 22 accommodates the indoor fan 30, a bell mouth 31, the indoor heat exchanger 32, and the drain pan 36.
The indoor fan 30 is a centrifugal fan driven by an indoor fan motor 30a. An operating frequency of the indoor fan motor 30a is variable by means of an inverter device.
As depicted in
The bell mouth 31 is disposed below the indoor fan 30. The bell mouth 31 has a circular opening at each of upper and lower ends, and has a tubular shape with an opening area gradually increased toward the decorative panel 40. The bell mouth 31 has an arc surface that smoothly connects from the upper end to the lower end and the portion forming the arc surface is called an arc plate 31a.
The bell mouth 31 has an internal space communicating with an accommodation space of the indoor fan 30. The bell mouth 31 can thus guide air introduced from the opening 41a via the blow-in port 42a into the indoor unit 20.
The indoor heat exchanger 32 is of a fin and tube type. The indoor heat exchanger 32 is installed adjacent to the indoor fan 30. As depicted in
The indoor heat exchanger 32 is installed on an upper surface of the drain pan 36 to rise upward. The indoor heat exchanger 32 allows passage of air blown laterally from the indoor fan 30. The indoor heat exchanger 32 constitutes an evaporator configured to cool air during cooling operation, and constitutes a radiator configured to heat air during heating operation.
The drain pan 36 is installed around the bell mouth 31. The indoor heat exchanger 32 is installed above the drain pan 36 that receives water condensed by the indoor heat exchanger 32 and falling downward. The drain pan 36 has a first surface 36a facing a bottom of the indoor heat exchanger 32, and a second surface 36b other than the first surface 36a.
The indoor expansion valve 39 is connected to a liquid end part of the indoor heat exchanger 32 in the refrigerant circuit C. The indoor expansion valve 39 is constituted by an electronic expansion valve having a variable opening degree.
The casing 22 accommodates an electric component box 50. The electric component box 50 is installed at a position visible by a user or a service person when the user or the service person shifts the suction grill 60.
Specifically, the electric component box 50 is installed along at least one of the first long side wall 22b and the fourth long side wall 22h forming the first corner 221 of the casing 22.
The electric component box 50 accommodates a control board 501 that is also disposed along at least one of the first long side wall 22b and the fourth long side wall 22h forming the first corner 221 of the casing 22.
The control board 501 is equipped with a microcomputer MC that is configured to determine whether or not a refrigerant is leaking in accordance with a signal inputted from the gas sensor 55 or the like.
The sensor element 552a is mounted on the substrate 551 and detects whether or not there is refrigerant gas. The cylindrical pipe 552b has an upper end surface provided with a hole 552c allowing entry of refrigerant gas.
The wiring unit 553 includes a female connector 553a mounted on the substrate 551, a male connector 553b inserted to the female connector 553a, and a cable 553c connected to the male connector 553b. The wiring unit 553 electrically connects the sensor element 552a and the control board 551.
At least the sensor unit 552 of the gas sensor 55 is covered with the protective case 56. The case 56 has a first opening 561 for ventilation. The first opening 561 is provided in a surface called a ventilation surface 56a.
The ventilation surface 56a, according to one or more embodiments, crosses a side surface 56b provided with a second opening 562.
When a refrigerant leaks, part of refrigerant gas entered via the first opening 561 can flow to the sensor unit 552 of the gas sensor 55 and the remaining can exit via the second opening 562. Alternatively, when the refrigerant leaks, part of refrigerant gas entered via the second opening 562 can flow to the sensor unit 552 of the gas sensor 55 and the remaining can exit via the first opening 561.
According to one or more embodiments, the ventilation surface 56a has a plurality of first openings 561 and the side surface 56b has a plurality of second openings 562. There may alternatively be provided a single first opening 561 and a single second opening 562.
The case 56 exerts two functions of protecting the sensor unit 552 and introducing refrigerant gas as a leaking refrigerant.
The air conditioner 10 according to one or more embodiments will be described next in terms of its operation. The air conditioner 10 switchingly executes cooling operation and heating operation.
During cooling operation, the four-way switching valve 15 depicted in
Specifically, a high pressure refrigerant compressed by the compressor 12 flows in the outdoor heat exchanger 13 to exchange heat with outdoor air. The high pressure refrigerant radiates heat to the outdoor air in the outdoor heat exchanger 13. A refrigerant condensed by the outdoor heat exchanger 13 is sent to the indoor unit 20. The refrigerant in the indoor unit 20 is decompressed by the indoor expansion valve 39 and then flows in the indoor heat exchanger 32.
In the indoor unit 20, indoor air blown out of the indoor fan 30 passes the indoor heat exchanger 32 to exchange heat with the refrigerant. The refrigerant in the indoor heat exchanger 32 is evaporated by absorbing heat from the indoor air. The indoor air is cooled by the refrigerant.
The air cooled by the indoor heat exchanger 32 is supplied into an indoor space. The refrigerant evaporated in the indoor heat exchanger 32 is sucked into the compressor 12 to be compressed again.
During heating operation, the four-way switching valve 15 depicted in
Specifically, a high pressure refrigerant compressed by the compressor 12 flows in the indoor heat exchanger 32 of the indoor unit 20. In the indoor unit 20, indoor air blown out of the indoor fan 30 passes the indoor heat exchanger 32 to exchange heat with the refrigerant. The refrigerant in the indoor heat exchanger 32 is condensed by radiating heat to the indoor air. The indoor air is heated by the refrigerant.
The air heated in the indoor heat exchanger 32 is supplied into the indoor space. The refrigerant condensed in the indoor heat exchanger 32 is decompressed by the outdoor expansion valve 14 and then flows in the outdoor heat exchanger 13. The refrigerant in the outdoor heat exchanger 13 absorbs heat from outdoor air to be evaporated. The refrigerant evaporated in the outdoor heat exchanger 13 is sucked into the compressor 12 to be compressed again.
The gas sensor 55 is accommodated in the casing 22, but is positioned to be removable when the suction grill 60 is shifted. Specifically, the gas sensor 55 is installed at the second surface 36b of the drain pan 36 so as to be adjacent to the electric component box 50.
The second surface 36b of the drain pan 36 corresponds to the surface excluding the first surface 36a facing the bottom of the indoor heat exchanger 32. In view of maintainability for replacement of the gas sensor 55, the second surface 36b is desirably displaced along the blow-in port 42a.
One or more embodiments include a flat plate 31b disposed adjacent to a lower end of the arc plate 31a of the bell mouth 31 so as to surround the lower end. The flat plate 31b is positioned below a bottom wall of the drain pan 36. In order to avoid interference between the flat plate 31b and the bottom wall of the drain pan 36, the bottom wall of the drain pan 36 has a step 361 to be in contact with the flat plate 31b.
The step 361 (
The gas sensor 55 is positioned adjacent to the electric component box 50 as depicted in
As depicted in
Most of a refrigerant leaking from the indoor heat exchanger 32 accumulates at the drain pan 36, and refrigerant gas as a leaking refrigerant overflown therefrom flows beyond the bell mouth 31 and out of the blow-in port 42a to spread to a border between the body 21 and the decorative panel 40.
The refrigerant gas is blocked by the filter 45 to fill a space between the flat plate 31b and the filter 45. At the gas sensor 55, the refrigerant gas flows from the ventilation surface 56a of the case 56, reaches the sensor unit 552 via the first openings 561, and enters the cylindrical pipe 552b via the hole 552c of the cylindrical pipe 552b to come into contact with the sensor element 552a.
The sensor element 552a outputs different voltage values before and after the refrigerant gas comes into contact with the sensor element 552a. The microcomputer MC accordingly determines that refrigerant leakage has occurred in accordance with change in signal voltage inputted to the control board 501 via the wiring unit 553.
As depicted in
As described above, the gas sensor 55, according to one or more embodiments, is attached at a position facilitating attachment of the gas sensor 55 with excellent maintainability.
In the indoor unit 20 of the air conditioner 10, the gas sensor 55 configured to detect refrigerant leakage is positioned to be removable when the suction grill 60 is shifted. A user or a service person can thus easily attach and detach the gas sensor 55 with excellent maintainability.
In the indoor unit 20 of the air conditioner 10, the drain pan 36 has the first surface 36a facing the bottom of the indoor heat exchanger 32 and the second surface 36b other than the first surface 36a, and the gas sensor 55 is installed at the second surface 36b.
In the indoor unit 20 of the air conditioner 10, the drain pan 36 is installed around the bell mouth 31.
In the indoor unit 20 of the air conditioner 10, the end part 32a of the indoor heat exchanger 32 is disposed at the first corner 221 among the plurality of corners of the casing 22, and the electric component box 50 is installed along at least one of the first long side wall 22b and the fourth long side wall 22h forming the first corner 221.
In the indoor unit 20 of the air conditioner 10, the filter 45 is installed between the blow-in port 42a and the suction grill 60. The gas sensor 55 is exposed when the filter 45 is detached, and a user or a service person can thus easily attach and detach the gas sensor 55 with excellent maintainability.
In the indoor unit 20 of the air conditioner 10, a plurality of gas sensors 55 is installed at or adjacent to the electric component box 50.
In the indoor unit 20 of the air conditioner 10, the gas sensor 55 is covered with the case 56 having the first openings 561 for ventilation, and the case 56 exerts two functions of protecting the sensor unit 552 and introducing refrigerant gas as a leaking refrigerant.
In the indoor unit 20 of the air conditioner 10, the ventilation surface 56a of the case 56 is provided with the first openings 561. The ventilation surface 56a faces the suction grill 60.
In the indoor unit 20 of the air conditioner 10, the side surface 56b of the case 56 is provided with the second openings 562. When a refrigerant leaks, part of refrigerant gas entered via the first openings 561 can flow to the sensor unit 552 of the gas sensor 55 and the remaining can exit via the second openings 562. Alternatively, when a refrigerant leaks, part of refrigerant gas entered via the second openings 562 can flow to the sensor unit 552 of the gas sensor 55 and the remaining can exit via the first openings 561.
As described above, one or more embodiments include the single gas sensor 55. However, the present disclosure should not be limited to embodiments with a single gas sensor. Alternatively, the indoor unit 20 may further include a plurality of gas sensors 55 that is installed at a plurality of different positions.
For easier description, assume that the three gas sensors 55 include a first gas sensor 55A, a second gas sensor 55B, and a third gas sensor 55C. The first gas sensor 55A is installed at the second surface 36b of the drain pan 36, at a position adjacent to the electric component box 50 and also adjacent to the end part 32a of the indoor heat exchanger 32. The second gas sensor 55B is installed at a center of the surface, facing the suction grill 60, of the electric component box 50. The third gas sensor 55C is installed at the second surface 36b of the drain pan 36, at a position adjacent to the electric component box 50 and farther than the first gas sensor 55A from the end part 32a of the indoor heat exchanger 32.
A refrigerant leaking from the indoor heat exchanger 32 accumulates at the drain pan 36, and refrigerant gas as a leaking refrigerant overflown therefrom flows beyond the bell mouth 31 and out of the blow-in port 42a to spread to a border between the body 21 and the decorative panel 40. The gas sensor 55 is thus ideally installed to surround the arc plate 31a of the bell mouth 31. However, in view of economic efficiency and maintainability, the plurality of gas sensors 55 is desirably installed at or adjacent to the electric component box 50 as described above.
The above first modification example exemplifies the locations of the plurality of gas sensors 55, though there is no need to simultaneously use all the gas sensors 55 thus installed. With exemplary reference to
The first gas sensor 55A can be switched at timing that can be exemplarily determined in accordance with guarantee years of the gas sensor 55A. The first gas sensor 55A may alternatively be switched to a subsequent gas sensor 55 when abnormality different from refrigerant leakage is assumed in accordance with an output signal of the first gas sensor 55A.
In a similar manner, the second gas sensor 55B and the third gas sensor 55C may be used in this order.
The plurality of gas sensors 55 may alternatively be installed vertically.
Assumed examples of a method of use include a first use case of connecting each of the first gas sensor 55A and the second gas sensor 55B to the control board 501, and a second use case of connecting only one of the gas sensors.
According to the first use case, either one of the first gas sensor 55A and the second gas sensor 55B installed vertically detects any refrigerant leakage. Even in a condition where any one of the gas sensors is in trouble, the remaining gas sensor detects refrigerant leakage. This configuration achieves quick detection of refrigerant leakage.
Furthermore, according to the first use case, after elapse of a predetermined period from occurrence of refrigerant leakage, all the gas sensors operating normally detect refrigerant leakage. Any gas sensor not detecting refrigerant leakage after elapse of the predetermined period can thus be determined as being abnormal.
According to the second use case, only the first gas sensor 55A of the first gas sensor 55A and the second gas sensor 55B is connected to the control board 501 to be in use, whereas the remaining gas sensor is not in use.
When the first gas sensor 55A is in trouble, a user or a service person has only to connect, in place of the first gas sensor 55A, the second gas sensor 55B stored below the first gas sensor 55A to the control board 501 to complete replacement of the gas sensor.
The user or the service person can thus replace the gas sensor even when visiting for repair without carrying any gas sensor for replacement.
One or more embodiments and the modification examples described above exemplify the case where installation conditions of the gas sensor 55 are applied to an indoor unit of a ceiling embedded type for full blowoff. However, the present disclosure should not be limited to this case. The installation conditions are exemplarily applicable also to an indoor unit of the ceiling embedded type for four-way blowoff, and an indoor unit of the ceiling embedded type for two-way blowoff.
One or more embodiments and the modification examples described above have no limitation in terms of a refrigerant enclosed in the refrigerant circuit C. All refrigerants, irrespective of incombustible refrigerants or combustible refrigerants, can be adopted. In view of safety, one or more embodiments and the modification examples described above are useful to combustible refrigerants.
Examples of the combustible refrigerant include refrigerants categorized in Class 3 (higher flammability), Class 2 (lower flammability), and Subclass 2L (slight flammability) in the standards according to ASHRAE 34 Designation and safety classification of refrigerant in the U.S.A. or the standards according to ISO 817 Refrigerants—Designation and safety classification.
Exemplarily adopted as the combustible refrigerant is any one of R1234yf, R1234ze(E), R516A, R445A, R444A, R454C, R444B, R454A, R455A, R457A, R459B, R452B, R454B, R447B, R32, R447A, R446A, and R459A.
One or more embodiments and one or more modification examples described above adopt R32 as a refrigerant.
One or more embodiments and the modification examples described above refer to the air conditioner as an exemplary refrigeration apparatus. However, the present disclosure should not be limited to this case. Examples of the refrigeration apparatus include, as well as the air conditioner, a low temperature warehouse storing articles that need to be frozen, refrigerated, or kept at low temperature.
In the case 56, according to one or more embodiments and the modification examples described above, the ventilation surface 56a facing the suction grill 60 is provided with the first openings 561, and the side surface 56b crossing the ventilation surface 56a is provided with the second openings 562.
The first openings 561 and the second openings 562 are disposed in a mode that should not be limited to the above. For example, the ventilation surface 56a is provided with the plurality of first openings 561, part of which may serve as a refrigerant gas inflow port and the remaining may serve as a refrigerant gas outflow port. The second openings 562 in the side surface 56b can be eliminated in this case.
Although the disclosure has been described with respect to only a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that various other embodiments may be devised without departing from the scope of the present invention. Accordingly, the scope of the invention should be limited only by the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
2019-130646 | Jul 2019 | JP | national |
This is a continuation application of International Patent Application No. PCT/JP2020/026437, filed on Jul. 6, 2020, and claims priority to Japanese Patent Application No. 2019-130646, filed on Jul. 12, 2019. The content of these priority applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2020/026437 | Jul 2020 | US |
Child | 17573043 | US |