INDUCIBLE NUCLEIC ACID TARGETS FOR DETECTION OF PATHOGENS, METHODS AND COMPOSITIONS THEREOF

Information

  • Patent Application
  • 20120009575
  • Publication Number
    20120009575
  • Date Filed
    June 30, 2011
    13 years ago
  • Date Published
    January 12, 2012
    12 years ago
Abstract
The present application describes compositions, methods and kits for rapid detection and identification of various microorganisms using inducible RNA. Methods for rapidly detecting microorganisms by detecting expression of inducible RNA of target genes following induction of a target gene using an inducer are described. Some embodiments describe methods and workflows for rapidly detecting microbes such as, but not limited to, Salmonella spp, Listeria spp. and Vibrio spp. Compositions and kits comprise primer nucleic acid sequences having hybridization specificity for priming amplification of genes of microorganisms (or gene fragments) that are responsive to one or more RNA-inducing agents. In some embodiments, kits and compositions further comprise probe nucleic acid sequences having hybridization specificity for genes responsive to RNA-inducing agents or fragments thereof.
Description
EFS INCORPORATION PARAGRAPH RELATING TO SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Jun. 22, 2011, is named LT0267US.txt and is 404,503 bytes in size.


FIELD OF DISCLOSURE

The present teachings relate to compositions, methods and kits for rapid detection and identification of various microorganisms using inducible RNA. More particularly, the specification describes compositions and kits comprising primer nucleic acid sequences having hybridization specificity for priming amplification of genes of microorganisms that are responsive to one or more RNA-inducing agents and in some embodiments further comprising probe nucleic acid sequences having hybridization specificity for genes responsive to RNA-inducing agents. Methods for rapidly detecting microorganisms (such as, but not limited to, Salmonella spp, Listeria spp. and Vibrio spp) are also described.


BACKGROUND

Detection of bacteria, particularly pathogenic bacteria, is an important parameter used to monitor for quality control and consumer safety in the food and pharmaceutical industries as well as in environmental monitoring. Earlier detection is of great benefit for quality and safety testing in industries such as the food industry where a faster time-to-result can greatly reduce total testing time as well as storage time for food prior to release of safe product to the grocery stores.


Advances in technology make detection and identification faster, more convenient, more sensitive, and more specific than traditional culture assays, at least in theory. Such assays include biochemical kits, and antibody-based and DNA-based tests. Use of probes, PCR and bacteriophage has been developed commercially for detecting pathogens. Probe assays generally target ribosomal RNA (rRNA), since rRNA provides a naturally amplified target and greater assay sensitivity. With few exceptions, almost all assays used to detect specific pathogens require some growth of the test sample in an enrichment medium before analysis. Early detection of the presence of pathogens is extremely important both from a public health perspective and from an economic perspective. Therefore, improved methods that result in saving any of time-to-result, labor, and materials are desired.


SUMMARY OF DISCLOSURE

Embodiments herein demonstrate that detection of inducible RNA targets in addition to or in lieu of detection of corresponding DNA targets can shorten time-to-result when testing samples for presence of microorganisms such as bacteria and fungi.


Some embodiments herein identify inducible RNA target genes and induction conditions for detection of pathogenic microbes such as Listeria, a gram positive bacteria, and Salmonella and Vibrio, both gram negative bacteria.


Some embodiments provide compositions comprising one or more primer pairs operable to amplify one or more inducible RNA target genes. Some embodiments further provide compositions comprising one or more probes that are operable to hybridize to and identify an inducible RNA target gene.


Workflow methods using inducible RNA targets in assays for various bacteria are also described. Fast workflow methods are provided based on inducible transcription response in bacteria. An example workflow of the disclosure includes a shortened enrichment step, a rapid induction step, an automated sample preparation step, and specific detection of induced target genes using a reverse transcriptase-polymerase chain reaction (RT-PCR). Sample prep and RT-PCR in some embodiments are completed in less than 2 hours. Some embodiments comprise using real-time PCR and/or real-time RT-PCR.


A method of detecting presence of a microbe in a sample comprises exposing the sample to an RNA-inducing agent for a time to regulate a gene responsive thereto, detecting presence of RNA corresponding to the gene, and determining presence of the microbe as compared to a control sample based on the detection of RNA presence. In a further embodiment, the sample is cultured in a microbe enrichment medium to form enriched sample, and the enriched sample is exposed to the RNA-inducing agent.


Further embodiments herein include a method of detecting presence of a microbe in a sample, the method comprising culturing the sample in a microbe enrichment medium to form enriched sample, exposing the enriched sample to an inducing agent for a time to regulate a gene responsive thereto, measuring RNA expression levels of the responsive gene, and analyzing said expression levels of RNA to indicate the presence of the microbe as compared to at least one control sample, wherein a time for detecting presence of the microbe is shorter than a control method in which enriched samples are not exposed to the inducing agent.


Such methods of detecting presence of a pathogen are useful for food samples, for pharmaceutical quality control, for environmental samples, as well as in clinical samples and specimens.


In some embodiments, a microbe that is detected may be a gram positive or gram negative bacteria. In some embodiments, a microbe may be a pathogen.


In some embodiments, induced genes are stress responsive genes. In some embodiments, the pathogen is an organism of Salmonella spp. and the RNA-inducing agent-responsive gene is cspH, hilA, hsp60, dnaK, ibpAB, uspA, or agsA. In other embodiments, the pathogen is a Listeria spp. and the RNA-inducing agent-responsive gene is a inlA, a inlB, a inlC, a inlG, a inlJ, a lmo0539, a lmo2158, a lmo0596, a lmo0189, a lmo0880, a lmo1290, a lmo0514, a lmo0670, a bsh, a plcA, a clpE, a cspL, a lmo0699, a lmo0782, a lmo2230, a lmo2522, a opuCA, a cpn60, or a hlyA gene. In further embodiments, the pathogen is a Vibrio spp. and the RNA-inducing agent-responsive gene is a hsp60 gene. An RNA-inducing agent-responsive gene may be either up-regulated or down-regulated in response to exposure to the agent.


Measuring transcription may comprise measuring RNA expression levels using reverse transcriptase RT-PCR. In some embodiments, both RNA and DNA levels are measured using reverse transcriptase RT-PCR. In some embodiments, DNA expression levels are measured by RT-PCR. In further embodiments, the contribution of RNA to a signal can be determined by subtracting a CT value obtained from detecting both RNA and DNA from a CT value obtained from detecting just the DNA for a particular target. In some embodiments of the present methods, inclusion of the reverse transcriptase step improved the real time PCR signal by 4-7Ct's, enabling a shorter time-to-result in a workflow for detecting a microbe in a sample.


Several kits embodiments are also described. An example kit includes at least one primer pair having hybridization specificity for priming amplification of a RNA-inducing agent-responsive gene (or a fragment thereof) of a microbe. A kit may further comprise at least one probe specific to hybridize to and detect a RNA-inducing agent responsive gene or a fragment thereof. A kit of the disclosure may further comprise reagents for PCR, such as a PCR master mix which may include: any one of a reverse transcriptase, a DNA polymerase, dNTP's; ingredients for sample preparation including one or more of: a filtration medium, a surfactant, magnetic beads, spin columns; and various buffers.


One example kit may comprise at least one primer pair having hybridization specificity for priming amplification of a RNA-inducing agent-responsive gene (or a fragment thereof) of a Salmonella where the RNA-inducing agent-responsive gene is a cspH, a hilA, a hsp60, a dnaK, a ibpAB, a uspA, and/or a agsA gene.


Another example kit may comprise at least one primer pair having hybridization specificity for priming amplification of a RNA-inducing agent-responsive gene (or a fragment thereof) of a Listeria wherein the RNA-inducing agent-responsive gene is a inlA, a inlB, a inlC, a inlG, a inlJ, a lmo0539, a lmo2158, a lmo0596, a lmo0189, a lmo0880, a lmo1290, a lmo0514, a lmo0670, a bsh, a plcA, a clpE, a cspL, a lmo0699, a lmo0782, a lmo2230, a lmo2522, a opuCA, a cpn60, or a hlyA gene.


Yet another example kit includes at least one primer pair having hybridization specificity for priming amplification of a RNA-inducing agent-responsive gene (or a fragment thereof) of a Vibrio wherein the RNA-inducing agent-responsive gene is a hsp60 gene.


Exemplary kits described above may further comprise a probe (e.g., a TAQMAN® probe) having hybridization specificity for said RNA-inducing agent-responsive gene.


Use of inducible RNA targets provided by embodiments herein for detection of pathogens has advantages over traditional DNA targets typically used in real-time PCR based detection. For example, for RNA inducible targets, an increased copy number of the target is present upon induction. When DNA is transcribed into RNA, many copies of the target gene are generated and a greater copy number translates into more robust and potentially earlier detection of a pathogen.


Traditional culture methods as well as rapid PCR-based methods rely on an initial pre-enrichment in suitable media to revive stressed organisms in various matrices. The length of the pre-enrichment time depends on the sensitivity and limit of detection of the end assay method. Signal amplification using RNA targets, such as inducible RNA targets, allows for earlier detection of target. Workflow methods provided herein allowed for detection of 1-5 cfu of Salmonella in less then 8 hr and Listeria in less than 12 hr in food samples.


A further advantage of using inducible RNA targets for detection of pathogens is in an assessment of viability. Dead bacteria will not respond to induction. Inducible RNA targets are synthesized by living cells upon sensing a particular stimulus, such as heat, cold, acidic pH or chemical reagents. Use of inducible RNA targets therefore overcomes one disadvantage of using DNA targets, i.e., detection of dead bacteria that are incapable of causing disease. An additional advantage over traditional culture confirmation method is the ability to detect viable but non-culturable bacteria (VBNC) organisms that respond to induction.


These and other features of the present teachings will become more apparent from the description herein.





BRIEF OF DESCRIPTION OF DRAWINGS

The skilled artisan will understand that the drawings, described below, are for illustration purposes only. The drawings are not intended to limit the scope of the present teachings in any way.



FIG. 1A-FIG. 1B shows data of studies evaluating heat-inducible RNA target genes for detecting Salmonella enterica. FIG. 1A depicts Ct data vs various primer/probe sets specific to some heat-inducible RNA genes for both uninduced (negative control) and heat-induced cultures. Nucleic acids were extracted and assayed for induction by real-time reverse-transcriptase-PCR (hatched bars). To measure contribution due to DNA, control reactions were run without addition of the reverse transcriptase (solid bars). FIG. 1B depicts Delta Ct data vs. various primer/probe sets specific to some heat-inducible RNA genes for both uninduced (negative control) and induced cultures. Transcriptional activity was estimated by subtracting the CT value obtained for DNA and RNA (with reverse transcriptase reactions) from the CT value obtained for DNA alone (without reverse transcriptase reactions) for uninduced (solid bars) and induced (striped bars) samples.



FIG. 2A-FIG. 2B show data on heat-induction of Salmonella response genes in the presence of a food matrix (whole milk). FIG. 2A shows the Ct data vs various primer/probe sets specific to some heat-inducible RNA genes (see X-axis) for both uninduced (negative control) and heat induced cultures. The extracted nucleic acids were assayed for induction by real-time reverse-transcriptase-PCR (hatched bars). To measure contribution due to DNA, control reactions were run without addition of the reverse transcriptase (solid bars). FIG. 2B shows Delta Ct data vs. various primer/probe sets for specific to some heat-inducible RNA genes for both uninduced (negative control) and induced cultures. Transcriptional activity was estimated by subtracting the CT value obtained for DNA and RNA (with reverse transciptase reactions) from the CT value obtained for DNA alone (without reverse transcriptase reactions) for uninduced (solid bars) and induced (striped bars) samples.



FIG. 3A-FIG. 3J provide data for evaluating heat-induction of response genes in Salmonella during growth in a food matrix (whole milk) with respect to enrichment time. Duplicate aliquots of enriched samples were withdrawn after 4 hours, 6 hours, 8 hours and 24 hours of growth. One set was maintained at 37° C. (uninduced) and one set was incubated at 45° C. (induced) for 15 minutes. FIGS. 3A, 3C, 3E, 3G, and 3I show Ct data vs time for uninduced and induced cultures. The extracted nucleic acids were assayed for induction by real-time reverse-transcriptase-PCR (hatched bars). To measure contribution due to DNA, control reactions were run without addition of the reverse transcriptase (solid bars). FIGS. 3B, 3D, 3F, 3H, 3J show Delta Ct data vs. time for uninduced and induced cultures. Transcriptional activity was estimated by subtracting the CT value obtained for DNA and RNA (with reverse transciptase reactions) from the CT value obtained for DNA alone (without reverse transcriptase reactions) for uninduced (solid bars) and induced samples (striped bars).



FIG. 4A and FIG. 4B provide data for evaluating induction of response genes during growth of Salmonella in an additional food matrix (spinach) with respect to enrichment time. Duplicate enriched sample aliquots were withdrawn after 4 hours, 6 hours, 8 hours and 24 hours of growth. One set was maintained at 37° C. (uninduced) and one set was incubated at 45° C. (induced) for 15 minutes. FIG. 4A shows Ct data vs time for uninduced and induced cultures (probe/primer set agsA.6). The extracted nucleic acids were assayed for induction by real-time reverse-transcriptase-PCR (hatched bars). To measure contribution due to DNA, control reactions were run without addition of the reverse transcriptase (solid bars). FIG. 4B shows Delta Ct data vs. time for uninduced and induced cultures. Transcriptional activity was estimated by subtracting the CT value obtained for DNA and RNA (with reverse transciptase reactions) from the CT value obtained for DNA alone (without reverse transcriptase reactions) for uninduced (solid bars) and induced samples (striped and dotted bars).



FIG. 5A-FIG. 5F show data for evaluation of targets under various inducible conditions for various target genes in Listeria. FIG. 5A and FIG. 5B show expression of various inducible target genes (see y-axis for example genes tested) by heat-induction. Ct (FIG. 5A) or Delta Ct (FIG. 5B) values are provided for various target genes for uninduced (37° C.) and induced (48° C.) samples before processing for nucleic acids. FIG. 5C and FIG. 5D show expression of various inducible target genes (see y-axis for example genes tested) in response to activated charcoal induction. Samples were grown in enrichment media treated with 0.2% activated charcoal for 5 hours, along with parallel uninduced samples. FIG. 5E and FIG. 5F show expression of various inducible target genes (see y-axis for example genes tested) in response to high-salt induction.



FIG. 6A-FIG. 6B show data obtained by evaluation of several target inducible genes at different times using activated charcoal as an inducer for Listeria in a food matrix (raw milk). Enriched samples were incubated at 37° C. and withdrawn at 16 and 24 hours post-enrichment. FIG. 6A shows that extracted nucleic acids were assayed for induction by real-time reverse-transcriptase-PCR (hatched bars). To measure contribution due to DNA, control reactions were run without addition of the reverse transcriptase (solid bars). FIG. 6B. shows transcriptional activity was estimated by subtracting the Ct value obtained for DNA and RNA (with reverse transciptase reactions) from the Ct value obtained for DNA alone (without reverse transcriptase reactions) for uninduced (solid bars) and induced (striped bars) samples.



FIG. 7 provides data on use of heat-induction for detection of Vibrio cholerae by inducing a hsp60 target inducible gene. The x-axis numbers 1, 2, and 3 represent replicate samples.



FIG. 8A and FIG. 8B provide data on the use of heat-induction to detect Salmonella by measuring the target hilA.



FIG. 9A and FIG. 9B provide data on the use of heat-induction to detect Listeria monocytogenes by measuring the target hlyA.



FIG. 10A depicts an example workflow according to one embodiment of the disclosure.



FIGS. 10B and 10C demonstrate two example workflows for Salmonella that took less than 8 hours and where detection was 100% and enrichment time was 6 hours.



FIG. 11A and FIG. 11B demonstrate that methods of the disclosure comprising detection of inducible RNA targets detect only live cells and not dead cells. FIG. 11A shows live and viable Salmonella cells responding to the heat-induction by increase in target mRNA production, while in FIG. 11B heat-killed Salmonella cells do not increase target mRNA production.





DETAILED DESCRIPTION OF EMBODIMENTS

It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not intended to limit the scope of the current teachings. In this application, the use of the singular includes the plural unless specifically stated otherwise. Also, the use of “comprise”, “contain”, and “include”, or modifications of those root words, for example but not limited to, “comprises”, “contained”, and “including”, are not intended to be limiting. Use of “or” means “and/or” unless stated otherwise. The term “and/or” means that the terms before and after can be taken together or separately. For illustration purposes, but not as a limitation, “X and/or Y” can mean “X” or “Y” or “X and Y”.


Whenever a range of values is provided herein, the range is meant to include the starting value and the ending value and any value or value range there between unless otherwise specifically stated. For example, “from 0.2 to 0.5” means 0.2, 0.3, 0.4, 0.5; ranges there between such as 0.2-0.3, 0.3-0.4, 0.2-0.4; increments there between such as 0.25, 0.35, 0.225, 0.335, 0.49; increment ranges there between such as 0.26-0.39; and the like.


The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described in any way. All literature and similar materials cited in this application including, but not limited to, patents, patent applications, articles, books, treatises, and internet web pages, regardless of the format of such literature and similar materials, are expressly incorporated by reference in their entirety for any purpose. In the event that one or more of the incorporated literature and similar materials defines or uses a term in such a way that it contradicts that term's definition in this application, this application controls. While the present teachings are described in conjunction with various embodiments, it is not intended that the present teachings be limited to such embodiments. On the contrary, the present teachings encompass various alternatives, modifications, and equivalents, as will be appreciated by those of skill in the art.


The term “or combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term. For example, “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, ACB, CBA, BCA, BAC, or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, AAB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context. The term “surrogate” as used herein means a product that is indicative of presence of another product. For example, an amplification product is a surrogate for a nucleic acid that has been amplified.


Various embodiments herein provide compositions, methods and kits for detection of microorganisms comprising detecting inducible RNA target genes in microbes that may be induced (transcribed) in response to an inducer (e.g., heat, pH and/or a chemical or biological agent) and thereby be detectable much faster than detecting traditional DNA targets comprised of unique signature sequences. Some embodiments relate to detection of pathogenic microbes. Some exemplary candidate bacterial pathogens that may be detected by the methods and compositions of this disclosure include gram positive and gram negative bacteria including, but not limited to, species of E. coli, Salmonella, Shigella, Campylobacter, Yersinia, Vibrio, Listeria, Staphylococcus, Bacillus, Clostridium, Pseudomonas or Cronobacter.


The term “target gene” or “inducible target gene” or “inducible RNA target gene” refers to a gene of a microorganism that has been identified as a gene that can be induced (e.g., gene expressed, RNA expressed, transcription is induced) in the microorganism in response to an inducer (an inducing agent or inducing condition). Some exemplary inducible target genes identified in the present specification include: Salmonella target genes that are responsive to one or more RNA-inducing agents such as a cspH, a hilA, a hsp60, a dnaK, a ibpAB, a uspA, and/or a agsA gene; Listeria target genes that are responsive to one or more RNA-inducing agents such as a inlA, a inlB, a inlC, a inlG, a inlJ, a lmo0539, a lmo2158, a lmo0596, a lmo0189, a lmo0880, a lmo1290, a lmo0514, a lmo0670, a bsh, a plcA, a clpE, a cspL, a lmo0699, a lmo0782, a lmo2230, a lmo2522, a opuCA, a cpn60, or a hlyA gene; and Vibrio target genes that are responsive to one or more RNA-inducing agents such as hsp60. Accordingly, one or more compositions, methods and kits of the disclosure are described in relation to these inducible genes and to the detection of these organisms. However, as will be recognized by one of skill in the art, the teachings of specification are not limited to these exemplary embodiments, and any microorganism that has an inducible gene that is inducible by an inducer may be detected by the methods described in this application. In some embodiments, induced genes are stress responsive genes of a microbe, that are induced quickly to allow the microbe to adapt and/or survive the stress (extreme heat/cold; lack of nutrients etc.).


“Induction,” or “induce a gene responsive to an RNA-inducing agent” as used herein refers to exposing and/or contacting and/or adding and/or “subjecting to” an inducing agent and/or condition (collectively referred to as an “inducer”) to a sample, containing or suspected of containing a microbe, and/or to an enriched culture, containing or suspected of containing the microbe, in response to which an inducible target gene is stimulated and/or induced to express RNA (e.g. transcription is induced) corresponding to that target gene. Inducible target genes are normally not induced without presence of the inducing agent or condition. Exemplary “inducers” may include, but are not limited to, thermal conditions including heat or cold (i.e., temperatures that an microorganism normally is not exposed to during its normal growth), activated charcoal, protein or peptide inducers, inducing chemicals (such as but not limited to homoserine lactones), metal chelators, high salt concentrations, different salts, pH values (acidic or basic conditions), nutrient concentrations, or to a physical effect such as pressure, presence of chemotactants, or the presence of a suboptimal environment, or a stress agent.


When temperature is used as an inducer, induction by heat depends on the organism whose presence is being tested for; for example, Vibrio cholerae grows normally at 30° C., therefore, heat-induction may occur at any temperature greater than 30° C., such as 37° C., or 42° C. In another example. Salmonella normally grows at 37° C., therefore, heat induction may occur at any temperature greater than 37° C., such as 42° C., 45° C., 48° C., 50° C., or 55° C. To expose a microbe to a heat inducer cultures can be transferred to incubators at higher temperatures, or cultures can be grown at the higher temperatures when the induction is desired. In some embodiments, a culture may be exposed to a cold temperature to induce genes that may be induced by colder temperatures than an organism usually grow in.


Some embodiments describe designing probes and primers of the disclosure following the identification of target inducible genes. Primer and probe sequences of the disclosure were designed using a rigorous bioinformatics assay design pipeline and are described in the nucleic acid comprised in SEQ ID NO: 1-SEQ ID NO: 1769.


Some embodiments of the present disclosure describes various nucleic acid compositions such as primers, generally comprising a primer pair, each primer pair comprising a forward primer and a reverse primer that can be used to hybridize to an inducible target gene (for example, RNA expressed by an inducible gene may be reverse transcribed and the cDNA formed therefrom can be subject to hybridization by a primer pair of the disclosure and then subject to conditions to carry out a DNA amplification reaction to obtain an amplified inducible target gene product which may then be detected). In some embodiments, the present disclosure also describes compositions of various probe sequences that are operable to bind to an inducible target gene or a fragment thereof to enable its detection.


The present disclosure, in some embodiments, relates to isolated nucleic acid molecules having: the sequences of SEQ ID NO: 1-SEQ ID NO:1769; complementary sequences thereof; and/or nucleic acid sequences having at least 90% homology with the sequences of SEQ ID NO: 1-SEQ ID NO:1769; and/or or a labeled derivative of any of these sequences.


Some compositions of the disclosure may comprise primer pairs operable to amplify one target inducible gene and may further comprise in some embodiments a corresponding probe sequence that is operable to bind to and detect the amplified product produced by the primer pairs. Many such compositions are described. In one example, Tables 1-3 describe several primer pairs, comprising at least a first primer referred to as a forward primer and a second primer referred to as a reverse primer. In each row of Tables 1-3, each primer pair also has at least one corresponding probe sequence. Compositions comprising a primer pairs (and in some embodiments, a corresponding probe) may be used in assays for specific and efficient detection of genes identified in the Tables as well. Thus, for example, an exemplary composition of the disclosure operable for detecting Salmonella by detecting an inducible gene agsA may comprise: a forward primer having SEQ ID NO: 1, a reverse primer having SEQ ID NO: 134 and optionally a probe having SEQ ID NO: 267; complementary sequences thereof; and/or nucleic acid sequences having at least 90% homology with the sequences; and/or or a labeled derivative of any of these sequences. These and other compositions are described in Tables 1-3.


Some exemplary non-limiting compositions having primer sets of the disclosure comprise the following:


A compositions for detecting the presence of Salmonella in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Salmonella wherein the RNA-inducing agent-responsive gene is agsA and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:1 and SEQ ID NO:134, or SEQ ID NO:2 and SEQ ID NO:135, or SEQ ID NO:3 and SEQ ID NO:136, or SEQ ID NO: 4 and SEQ ID NO:137, or SEQ ID NO:5 and SEQ ID NO:138, or SEQ ID NO:6 and SEQ ID NO:139, or SEQ ID NO:7 and SEQ ID NO:140, or SEQ ID NO:8 and SEQ ID NO:141, or SEQ ID NO:9 and SEQ ID NO:142, or SEQ ID NO:10 and SEQ ID NO:143, or SEQ ID NO: 11 and SEQ ID NO:144, or SEQ ID NO:12 and SEQ ID NO:145, or SEQ ID NO:13 and SEQ ID NO:146, or SEQ ID NO:14 and SEQ ID NO:147, or SEQ ID NO:15 and SEQ ID NO:148, or SEQ ID NO:16 and SEQ ID NO:149, or SEQ ID NO:17 and SEQ ID NO:150, or SEQ ID NO: 18 and SEQ ID NO:151, or SEQ ID NO:19 and SEQ ID NO:152, or SEQ ID NO:20 and SEQ ID NO:153, or SEQ ID NO:21 and SEQ ID NO:154, or SEQ ID NO:22 and SEQ ID NO:155, or SEQ ID NO:23 and SEQ ID NO:156 or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 267-SEQ ID NO: 289.


A compositions for detecting the presence of Salmonella in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Salmonella wherein the RNA-inducing agent-responsive gene is cspH and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:24 and SEQ ID NO:157, or SEQ ID NO:25 and SEQ ID NO:158, or SEQ ID NO:26 and SEQ ID NO:159, or SEQ ID NO: 27 and SEQ ID NO:160, or SEQ ID NO:28 and SEQ ID NO:161, or SEQ ID NO:29 and SEQ ID NO:162, or SEQ ID NO:30 and SEQ ID NO:163, or SEQ ID NO:31 and SEQ ID NO:164, or SEQ ID NO:32 and SEQ ID NO:165, or SEQ ID NO:33 and SEQ ID NO:166, or SEQ ID NO: 34 and SEQ ID NO:167, or SEQ ID NO:35 and SEQ ID NO:168, or SEQ ID NO:36 and SEQ ID NO:169, or SEQ ID NO:37 and SEQ ID NO:170, or SEQ ID NO:38 and SEQ ID NO:171, or SEQ ID NO:39 and SEQ ID NO:172, or SEQ ID NO:40 and SEQ ID NO:173, or SEQ ID NO: 41 and SEQ ID NO:174, or SEQ ID NO:42 and SEQ ID NO:175, or SEQ ID NO:43 and SEQ ID NO:176, or SEQ ID NO:44 and SEQ ID NO:177 or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 290-SEQ ID NO:310.


A compositions for detecting the presence of Salmonella in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Salmonella wherein the RNA-inducing agent-responsive gene is dnaK and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:45 and SEQ ID NO:178, or SEQ ID NO:46 and SEQ ID NO:179, or SEQ ID NO:47 and SEQ ID NO:180, or SEQ ID NO:48 and SEQ ID NO:181, or SEQ ID NO:49 and SEQ ID NO:182, or SEQ ID NO: 50 and SEQ ID NO:183, or SEQ ID NO:51 and SEQ ID NO:184, or SEQ ID NO:52 and SEQ ID NO:185, or SEQ ID NO:53 and SEQ ID NO:186, or SEQ ID NO:54 and SEQ ID NO:187, or SEQ ID NO:55 and SEQ ID NO:188, or SEQ ID NO:56 and SEQ ID NO:189, or SEQ ID NO: 57 and SEQ ID NO:190, or SEQ ID NO:58 and SEQ ID NO:191, or SEQ ID NO:59 and SEQ ID NO:192, or SEQ ID NO:60 and SEQ ID NO:193, or SEQ ID NO:61 and SEQ ID NO:194, or SEQ ID NO:62 and SEQ ID NO:195, or SEQ ID NO:63 and SEQ ID NO:196, or SEQ ID NO: 64 and SEQ ID NO:197, or SEQ ID NO:65 and SEQ ID NO:198 or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 311-SEQ ID NO:331.


A compositions for detecting the presence of Salmonella in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Salmonella wherein the RNA-inducing agent-responsive gene is Hsp60 and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of or SEQ ID NO:66 and SEQ ID NO:199, or SEQ ID NO:67 and SEQ ID NO:200, or SEQ ID NO:68 and SEQ ID NO:201, or SEQ ID NO:69 and SEQ ID NO:202, and SEQ ID NO:70 and SEQ ID NO:203, or SEQ ID NO:71 and SEQ ID NO:204, or SEQ ID NO:72 and SEQ ID NO:205, or SEQ ID NO:73 and SEQ ID NO:206, or SEQ ID NO:74 and SEQ ID NO:207, or SEQ ID NO:75 and SEQ ID NO:208, or SEQ ID NO:76 and SEQ ID NO:209, or SEQ ID NO:77 and SEQ ID NO:210, or SEQ ID NO:78 and SEQ ID NO:211, or SEQ ID NO:79 and SEQ ID NO:212, or SEQ ID NO:80 and SEQ ID NO:213, or SEQ ID NO:81 and SEQ ID NO:214, or SEQ ID NO:82 and SEQ ID NO:215, or SEQ ID NO:83 and SEQ ID NO:216, or SEQ ID NO:84 and SEQ ID NO:217, or SEQ ID NO:85 and SEQ ID NO:218, or SEQ ID NO:86 and SEQ ID NO:219 or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 332-SEQ ID NO:352.


A compositions for detecting the presence of Salmonella in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Salmonella wherein the RNA-inducing agent-responsive gene is ibpAB and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:87 and SEQ ID NO:220, and SEQ ID NO:88 and SEQ ID NO:221, or SEQ ID NO:89 and SEQ ID NO:222, or SEQ ID NO:90 and SEQ ID NO:223, or SEQ ID NO:91 and SEQ ID NO:224, or SEQ ID NO:92 and SEQ ID NO:225, or SEQ ID NO:93 and SEQ ID NO:226, or SEQ ID NO:94 and SEQ ID NO:227, or SEQ ID NO:95 and SEQ ID NO:228, or SEQ ID NO:96 and SEQ ID NO:229, or SEQ ID NO:97 and SEQ ID NO:230, or SEQ ID NO:98 and SEQ ID NO:231, or SEQ ID NO:99 and SEQ ID NO:232, or SEQ ID NO:100 and SEQ ID NO:233, or SEQ ID NO:101 and SEQ ID NO:234, or SEQ ID NO:102 and SEQ ID NO:235, or SEQ ID NO:103 and SEQ ID NO:236, or SEQ ID NO:104 and SEQ ID NO:237, or SEQ ID NO:105 and SEQ ID NO:238, or SEQ ID NO:106 and SEQ ID NO:239, or SEQ ID NO:107 and SEQ ID NO:240, or SEQ ID NO:108 and SEQ ID NO:241, or SEQ ID NO:109 and SEQ ID NO:242 or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 353-SEQ ID NO:375.


A compositions for detecting the presence of Salmonella in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Salmonella wherein the RNA-inducing agent-responsive gene is uspA and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of or SEQ ID NO:110 and SEQ ID NO:243, or SEQ ID NO:111 and SEQ ID NO:244, or SEQ ID NO:112 and SEQ ID NO:245, or SEQ ID NO:113 and SEQ ID NO:246, or SEQ ID NO:114 and SEQ ID NO:247, or SEQ ID NO:115 and SEQ ID NO:248, or SEQ ID NO:116 and SEQ ID NO:249, or SEQ ID NO:117 and SEQ ID NO:250, or SEQ ID NO:118 and SEQ ID NO:251, or SEQ ID NO:119 and SEQ ID NO:252, or SEQ ID NO:120 and SEQ ID NO:253, or SEQ ID NO:121 and SEQ ID NO:254, or SEQ ID NO:122 and SEQ ID NO:255, or SEQ ID NO:123 and SEQ ID NO:256, or SEQ ID NO:124 and SEQ ID NO:257, or SEQ ID NO:125 and SEQ ID NO:258, or SEQ ID NO:126 and SEQ ID NO:259, or SEQ ID NO:127 and SEQ ID NO:260, or SEQ ID NO:128 and SEQ ID NO:261, or SEQ ID NO:129 and SEQ ID NO:262, or SEQ ID NO:130 and SEQ ID NO:263, or SEQ ID NO:131 and SEQ ID NO:264, or SEQ ID NO:132 and SEQ ID NO:265 or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 376-SEQ ID NO:398.


A compositions for detecting the presence of Salmonella in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Salmonella wherein the RNA-inducing agent-responsive gene is hilA and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of or SEQ ID NO:133 and SEQ ID NO:266 or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 399.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is inlA and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:400 and SEQ ID NO:855, or SEQ ID NO:401 and SEQ ID NO:856, or SEQ ID NO:402 and SEQ ID NO:857, or SEQ ID NO: 403 and SEQ ID NO:858, or SEQ ID NO:404 and SEQ ID NO:859, or SEQ ID NO:405 and SEQ ID NO:860, or SEQ ID NO:406 and SEQ ID NO:861, or SEQ ID NO:407 and SEQ ID NO:862, or SEQ ID NO:408 and SEQ ID NO:863, or SEQ ID NO:409 and SEQ ID NO:864, or SEQ ID NO: 410 and SEQ ID NO:865, or SEQ ID NO:411 and SEQ ID NO:866, or SEQ ID NO:412 and SEQ ID NO:867, or SEQ ID NO:413 and SEQ ID NO:868, or SEQ ID NO:414 and SEQ ID NO:869, or SEQ ID NO:415 and SEQ ID NO:870, or SEQ ID NO:416 and SEQ ID NO:871, or SEQ ID NO:417 and SEQ ID NO:872, or SEQ ID NO:418 and SEQ ID NO:873, or SEQ ID NO:419 and SEQ ID NO:874, or SEQ ID NO: 420 and SEQ ID NO:875, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1310-SEQ ID NO: 1330.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is lmo0539 and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:421 and SEQ ID NO:876, or SEQ ID NO:422 and SEQ ID NO:877, or SEQ ID NO:423 and SEQ ID NO:878, or SEQ ID NO:424 and SEQ ID NO:879, or SEQ ID NO:425 and SEQ ID NO:880, or SEQ ID NO:426 and SEQ ID NO:881, or SEQ ID NO:427 and SEQ ID NO:882, or SEQ ID NO:428 and SEQ ID NO:883, or SEQ ID NO:429 and SEQ ID NO:884, or SEQ ID NO: 430 and SEQ ID NO:885, or SEQ ID NO:431 and SEQ ID NO:886, or SEQ ID NO:432 and SEQ ID NO:887, or SEQ ID NO:433 and SEQ ID NO:888, or SEQ ID NO:434 and SEQ ID NO:889, or SEQ ID NO:435 and SEQ ID NO:890, or SEQ ID NO:436 and SEQ ID NO:891, or SEQ ID NO:437 and SEQ ID NO:892, or SEQ ID NO:438 and SEQ ID NO:893, or SEQ ID NO:439 and SEQ ID NO:894, or SEQ ID NO: 440 and SEQ ID NO:895, or SEQ ID NO: 441 and SEQ ID NO:896, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1331-SEQ ID NO:1351.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is lmo2158 and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of or SEQ ID NO:442 and SEQ ID NO:897, or SEQ ID NO:443 and SEQ ID NO:898, or SEQ ID NO:444 and SEQ ID NO:899, or SEQ ID NO:445 and SEQ ID NO:900, or SEQ ID NO:446 and SEQ ID NO:901, or SEQ ID NO:447 and SEQ ID NO:902, or SEQ ID NO:448 and SEQ ID NO:903, or SEQ ID NO:449 and SEQ ID NO:904, or SEQ ID NO: 450 and SEQ ID NO:905, or SEQ ID NO:451 and SEQ ID NO:906, or SEQ ID NO:452 and SEQ ID NO:907, or SEQ ID NO:453 and SEQ ID NO:908, or SEQ ID NO:454 and SEQ ID NO:909, or SEQ ID NO:455 and SEQ ID NO:910, or SEQ ID NO:456 and SEQ ID NO:911, or SEQ ID NO:457 and SEQ ID NO:912, or SEQ ID NO:458 and SEQ ID NO:913, or SEQ ID NO:459 and SEQ ID NO:914, or SEQ ID NO: 460 and SEQ ID NO:915, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1352-SEQ ID NO:1370.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is bsh and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:461 and SEQ ID NO:916, or SEQ ID NO:462 and SEQ ID NO:917, or SEQ ID NO:463 and SEQ ID NO:918, or SEQ ID NO:464 and SEQ ID NO:919, or SEQ ID NO:465 and SEQ ID NO:920, or SEQ ID NO:466 and SEQ ID NO:921, or SEQ ID NO:467 and SEQ ID NO:922, or SEQ ID NO:468 and SEQ ID NO:923, or SEQ ID NO:469 and SEQ ID NO:924, or SEQ ID NO: 470 and SEQ ID NO:925, SEQ ID NO:471 and SEQ ID NO:926, or SEQ ID NO:472 and SEQ ID NO:927, or SEQ ID NO:473 and SEQ ID NO:928, or SEQ ID NO:474 and SEQ ID NO:929, or SEQ ID NO:475 and SEQ ID NO:930, or SEQ ID NO:476 and SEQ ID NO:931, or SEQ ID NO:477 and SEQ ID NO:932, or SEQ ID NO:478 and SEQ ID NO:933, or SEQ ID NO:479 and SEQ ID NO:934, or SEQ ID NO: 480 and SEQ ID NO:935, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1371-SEQ ID NO:1390.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is inlB and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:481 and SEQ ID NO:936, or SEQ ID NO:482 and SEQ ID NO:937, or SEQ ID NO:483 and SEQ ID NO:938, or SEQ ID NO:484 and SEQ ID NO:939, or SEQ ID NO:485 and SEQ ID NO:940, or SEQ ID NO:486 and SEQ ID NO:941, or SEQ ID NO:487 and SEQ ID NO:942, or SEQ ID NO:488 and SEQ ID NO:943, or SEQ ID NO:489 and SEQ ID NO:944, or SEQ ID NO: 490 and SEQ ID NO:945, SEQ ID NO:491 and SEQ ID NO:946, or SEQ ID NO:492 and SEQ ID NO:947, or SEQ ID NO:493 and SEQ ID NO:948, or SEQ ID NO:494 and SEQ ID NO:949, or SEQ ID NO:495 and SEQ ID NO:950, or SEQ ID NO:496 and SEQ ID NO:951, or SEQ ID NO:497 and SEQ ID NO:952, or SEQ ID NO:498 and SEQ ID NO:953, or SEQ ID NO:499 and SEQ ID NO:954, or SEQ ID NO: 500 and SEQ ID NO:955, or SEQ ID NO: 501 and SEQ ID NO:956 or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1391-SEQ ID NO:1411.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is lmo0596 and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:502 and SEQ ID NO:957, or SEQ ID NO:503 and SEQ ID NO:958, or SEQ ID NO:504 and SEQ ID NO:959, or SEQ ID NO:505 and SEQ ID NO:960, or SEQ ID NO:506 and SEQ ID NO:961, or SEQ ID NO:507 and SEQ ID NO:962, or SEQ ID NO:508 and SEQ ID NO:963, or SEQ ID NO:509 and SEQ ID NO:964, or SEQ ID NO: 510 and SEQ ID NO:965, SEQ ID NO:511 and SEQ ID NO:966, or SEQ ID NO:512 and SEQ ID NO:967, or SEQ ID NO:513 and SEQ ID NO:968, or SEQ ID NO:514 and SEQ ID NO:969, or SEQ ID NO:515 and SEQ ID NO:970, or SEQ ID NO:516 and SEQ ID NO:971, or SEQ ID NO:517 and SEQ ID NO:972, or SEQ ID NO:518 and SEQ ID NO:973, or SEQ ID NO:519 and SEQ ID NO:974, or SEQ ID NO: 520 and SEQ ID NO:975, or SEQ ID NO: 521 and SEQ ID NO:976, or SEQ ID NO: 522 and SEQ ID NO:977, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1412-SEQ ID NO:1432.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is lmo2230 and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:523 and SEQ ID NO:978, or SEQ ID NO:524 and SEQ ID NO:979, or SEQ ID NO:525 and SEQ ID NO:980, or SEQ ID NO:526 and SEQ ID NO:981, or SEQ ID NO:527 and SEQ ID NO:982, or SEQ ID NO:528 and SEQ ID NO:983, or SEQ ID NO:529 and SEQ ID NO:984, or SEQ ID NO: 530 and SEQ ID NO:985, SEQ ID NO:531 and SEQ ID NO:986, or SEQ ID NO:532 and SEQ ID NO:987, or SEQ ID NO:533 and SEQ ID NO:988, or SEQ ID NO:534 and SEQ ID NO:989, or SEQ ID NO:535 and SEQ ID NO:990, or SEQ ID NO:536 and SEQ ID NO:991, or SEQ ID NO:537 and SEQ ID NO:992, or SEQ ID NO:538 and SEQ ID NO:993, or SEQ ID NO:539 and SEQ ID NO:994, or SEQ ID NO: 540 and SEQ ID NO:995, or SEQ ID NO: 541 and SEQ ID NO:996, or SEQ ID NO: 542 and SEQ ID NO:997, or SEQ ID NO: 543 and SEQ ID NO:998, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1433-SEQ ID NO:1453.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is clpE and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:544 and SEQ ID NO:999, or SEQ ID NO:545 and SEQ ID NO:1000, or SEQ ID NO:546 and SEQ ID NO:1001, or SEQ ID NO:547 and SEQ ID NO:1002, or SEQ ID NO:548 and SEQ ID NO:1003, or SEQ ID NO:549 and SEQ ID NO:1004, or SEQ ID NO: 550 and SEQ ID NO:1005, SEQ ID NO:551 and SEQ ID NO:1006, or SEQ ID NO:552 and SEQ ID NO:1007, or SEQ ID NO:553 and SEQ ID NO:1008, or SEQ ID NO:554 and SEQ ID NO:1009, or SEQ ID NO:555 and SEQ ID NO:1010, or SEQ ID NO:556 and SEQ ID NO:1011, or SEQ ID NO:557 and SEQ ID NO:1012, or SEQ ID NO:558 and SEQ ID NO:10013, or SEQ ID NO:559 and SEQ ID NO:1014, or SEQ ID NO: 560 and SEQ ID NO:1015, SEQ ID NO:561 and SEQ ID NO:1006, or SEQ ID NO:562 and SEQ ID NO:1017, or SEQ ID NO:563 and SEQ ID NO:1018, or SEQ ID NO:564 and SEQ ID NO:1019, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1454-SEQ ID NO:1474.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is inlC and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:565 and SEQ ID NO:1020, or SEQ ID NO:566 and SEQ ID NO:1021, or SEQ ID NO:567 and SEQ ID NO:1022, or SEQ ID NO:568 and SEQ ID NO:1023, or SEQ ID NO:569 and SEQ ID NO:1024, or SEQ ID NO: 570 and SEQ ID NO:1025, SEQ ID NO:571 and SEQ ID NO:1026, or SEQ ID NO:572 and SEQ ID NO:1027, or SEQ ID NO:573 and SEQ ID NO:1028, or SEQ ID NO:574 and SEQ ID NO:1029, or SEQ ID NO:575 and SEQ ID NO:1030, or SEQ ID NO:576 and SEQ ID NO:1031, or SEQ ID NO:577 and SEQ ID NO:1032, or SEQ ID NO:578 and SEQ ID NO:1033, or SEQ ID NO:579 and SEQ ID NO:1034, or SEQ ID NO: 580 and SEQ ID NO:1035, SEQ ID NO:581 and SEQ ID NO:1036, or SEQ ID NO:582 and SEQ ID NO:1037, or SEQ ID NO:583 and SEQ ID NO:1038, or SEQ ID NO:584 and SEQ ID NO:1039, or SEQ ID NO:585 and SEQ ID NO:1040, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1475-SEQ ID NO:1495.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is lmo0670 and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of or SEQ ID NO:586 and SEQ ID NO:1041, or SEQ ID NO:587 and SEQ ID NO:1042, or SEQ ID NO:588 and SEQ ID NO:1043, or SEQ ID NO:589 and SEQ ID NO:1044, or SEQ ID NO: 590 and SEQ ID NO:1045, SEQ ID NO:591 and SEQ ID NO:1046, or SEQ ID NO:592 and SEQ ID NO:1047, or SEQ ID NO:593 and SEQ ID NO:1048, or SEQ ID NO:594 and SEQ ID NO:1049, or SEQ ID NO:595 and SEQ ID NO:1050, or SEQ ID NO:596 and SEQ ID NO:1051, or SEQ ID NO:597 and SEQ ID NO:1052, or SEQ ID NO:598 and SEQ ID NO:1053, or SEQ ID NO:599 and SEQ ID NO:1054, or SEQ ID NO: 600 and SEQ ID NO:1055, SEQ ID NO:601 and SEQ ID NO:1056, or SEQ ID NO:602 and SEQ ID NO:1057, or SEQ ID NO:603 and SEQ ID NO:1058, or SEQ ID NO:604 and SEQ ID NO:1059, or SEQ ID NO:605 and SEQ ID NO:1060, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1496-SEQ ID NO:1515.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is lmo2522 and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:606 and SEQ ID NO:1061, or SEQ ID NO:607 and SEQ ID NO:1062, or SEQ ID NO:608 and SEQ ID NO:1063, or SEQ ID NO:609 and SEQ ID NO:1064, or SEQ ID NO: 610 and SEQ ID NO:1065, SEQ ID NO:611 and SEQ ID NO:1066, or SEQ ID NO:612 and SEQ ID NO:1067, or SEQ ID NO:613 and SEQ ID NO:1068, or SEQ ID NO:614 and SEQ ID NO:1069, or SEQ ID NO:615 and SEQ ID NO:1070, or SEQ ID NO:616 and SEQ ID NO:1071, or SEQ ID NO:617 and SEQ ID NO:1072, or SEQ ID NO:618 and SEQ ID NO:1073, or SEQ ID NO:619 and SEQ ID NO:1074, or SEQ ID NO: 620 and SEQ ID NO:1075, SEQ ID NO:621 and SEQ ID NO:1076, or SEQ ID NO:622 and SEQ ID NO:1077, or SEQ ID NO:623 and SEQ ID NO:1078, or SEQ ID NO:624 and SEQ ID NO:1079, or SEQ ID NO:625 and SEQ ID NO:1080, or SEQ ID NO:626 and SEQ ID NO:1081, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1516-SEQ ID NO:1536.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is cspL and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:627 and SEQ ID NO:1082, or SEQ ID NO:628 and SEQ ID NO:1083, or SEQ ID NO:629 and SEQ ID NO:1084, or SEQ ID NO: 630 and SEQ ID NO:1085, SEQ ID NO:631 and SEQ ID NO:1086, or SEQ ID NO:632 and SEQ ID NO:1087, or SEQ ID NO:633 and SEQ ID NO:1088, or SEQ ID NO:634 and SEQ ID NO:1089, or SEQ ID NO:635 and SEQ ID NO:1090, or SEQ ID NO:636 and SEQ ID NO:1091, or SEQ ID NO:637 and SEQ ID NO:1092, or SEQ ID NO:638 and SEQ ID NO:1093, or SEQ ID NO:639 and SEQ ID NO:1094, or SEQ ID NO: 640 and SEQ ID NO:1095, SEQ ID NO:641 and SEQ ID NO:1096, or SEQ ID NO:642 and SEQ ID NO:1097, or SEQ ID NO:643 and SEQ ID NO:1098, or SEQ ID NO:644 and SEQ ID NO:1099, or SEQ ID NO:645 and SEQ ID NO:1100, or SEQ ID NO:646 and SEQ ID NO:1101, or SEQ ID NO:647 and SEQ ID NO:1102, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1537-SEQ ID NO:1557.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is inlG and the at least one primer pair comprises isolated nucleic acid molecules having the sequences SEQ ID NO:648 and SEQ ID NO:1103, or SEQ ID NO:649 and SEQ ID NO:1104, or SEQ ID NO: 650 and SEQ ID NO:1105, SEQ ID NO:651 and SEQ ID NO:1106, or SEQ ID NO:652 and SEQ ID NO:1107, or SEQ ID NO:653 and SEQ ID NO:1108, or SEQ ID NO:654 and SEQ ID NO:1109, or SEQ ID NO:655 and SEQ ID NO:1110, or SEQ ID NO:656 and SEQ ID NO:1111, or SEQ ID NO:657 and SEQ ID NO:1112, or SEQ ID NO:658 and SEQ ID NO:1113, or SEQ ID NO:659 and SEQ ID NO:1114, or SEQ ID NO: 660 and SEQ ID NO:1115, SEQ ID NO:661 and SEQ ID NO:1116, or SEQ ID NO:662 and SEQ ID NO:1117, or SEQ ID NO:663 and SEQ ID NO:1118, or SEQ ID NO:664 and SEQ ID NO:1119, or SEQ ID NO:665 and SEQ ID NO:1120, or SEQ ID NO:666 and SEQ ID NO:1121, or SEQ ID NO:667 and SEQ ID NO:1122 or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1558-SEQ ID NO:1577.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is Lmo0699 and the at least one primer pair comprises isolated nucleic acid molecules having the SEQ ID NO:668 and SEQ ID NO:1123, or SEQ ID NO:669 and SEQ ID NO:1124, or SEQ ID NO: 670 and SEQ ID NO:1125, SEQ ID NO:671 and SEQ ID NO:1126, or SEQ ID NO:672 and SEQ ID NO:1127, or SEQ ID NO:673 and SEQ ID NO:1128, or SEQ ID NO:674 and SEQ ID NO:1129, or SEQ ID NO:675 and SEQ ID NO:1130, or SEQ ID NO:676 and SEQ ID NO:1131, or SEQ ID NO:677 and SEQ ID NO:1132, or SEQ ID NO:678 and SEQ ID NO:1133, or SEQ ID NO:679 and SEQ ID NO:1134, or SEQ ID NO: 680 and SEQ ID NO:1135, or SEQ ID NO:681 and SEQ ID NO:1136, or SEQ ID NO:682 and SEQ ID NO:1137, or SEQ ID NO:683 and SEQ ID NO:1138, or SEQ ID NO:684 and SEQ ID NO:1139, or SEQ ID NO:685 and SEQ ID NO:1140, or SEQ ID NO:686 and SEQ ID NO:1141, or SEQ ID NO:687 and SEQ ID NO:1142, SEQ ID NO:688 and SEQ ID NO:1143, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1578-SEQ ID NO:1598.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is opuCA and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:689 and SEQ ID NO:1144, or SEQ ID NO: 690 and SEQ ID NO:1145, SEQ ID NO:691 and SEQ ID NO:1146, or SEQ ID NO:692 and SEQ ID NO:1147, or SEQ ID NO:693 and SEQ ID NO:1148, or SEQ ID NO:694 and SEQ ID NO:1149, or SEQ ID NO:695 and SEQ ID NO:1150, or SEQ ID NO:696 and SEQ ID NO:1151, or SEQ ID NO:697 and SEQ ID NO:1152, or SEQ ID NO:698 and SEQ ID NO:1153, or SEQ ID NO:699 and SEQ ID NO:1154, or SEQ ID NO: 700 and SEQ ID NO:1155, SEQ ID NO:701 and SEQ ID NO:1156, or SEQ ID NO:702 and SEQ ID NO:1157, or SEQ ID NO:703 and SEQ ID NO:1158, or SEQ ID NO:704 and SEQ ID NO:1159, or SEQ ID NO:705 and SEQ ID NO:1160, or SEQ ID NO:706 and SEQ ID NO:1161, or SEQ ID NO:707 and SEQ ID NO:1162, SEQ ID NO:708 and SEQ ID NO:1163, SEQ ID NO:709 and SEQ ID NO:1164, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1599-SEQ ID NO:1619.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is inlJ and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO: 710 and SEQ ID NO:1165, SEQ ID NO:711 and SEQ ID NO:1166, or SEQ ID NO:712 and SEQ ID NO:1167, or SEQ ID NO:713 and SEQ ID NO:1168, or SEQ ID NO:714 and SEQ ID NO:1169, or SEQ ID NO:715 and SEQ ID NO:1170, or SEQ ID NO:716 and SEQ ID NO:1171, or SEQ ID NO:717 and SEQ ID NO:1172, or SEQ ID NO:718 and SEQ ID NO:1173, or SEQ ID NO:719 and SEQ ID NO:1174, or SEQ ID NO: 720 and SEQ ID NO:1175, SEQ ID NO:721 and SEQ ID NO:1176, or SEQ ID NO:722 and SEQ ID NO:1177, or SEQ ID NO:723 and SEQ ID NO:1178, or SEQ ID NO:724 and SEQ ID NO:1179, or SEQ ID NO:725 and SEQ ID NO:1180, or SEQ ID NO:726 and SEQ ID NO:1181, SEQ ID NO:727 and SEQ ID NO:1182, or SEQ ID NO:728 and SEQ ID NO:1183, or SEQ ID NO:729 and SEQ ID NO:1184, or SEQ ID NO:730 and SEQ ID NO:1185, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1620-SEQ ID NO:1640.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is Lmo0782 and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:731 and SEQ ID NO:1186, or SEQ ID NO:732 and SEQ ID NO:1187, or SEQ ID NO:733 and SEQ ID NO:1188, or SEQ ID NO:734 and SEQ ID NO:1189, or SEQ ID NO:735 and SEQ ID NO:1190, or SEQ ID NO:736 and SEQ ID NO:1191, or SEQ ID NO:737 and SEQ ID NO:1192, or SEQ ID NO:738 and SEQ ID NO:1193, or SEQ ID NO:739 and SEQ ID NO:1194, or SEQ ID NO: 740 and SEQ ID NO:1195, SEQ ID NO:741 and SEQ ID NO:1196, or SEQ ID NO:742 and SEQ ID NO:1197, or SEQ ID NO:743 and SEQ ID NO:1198, or SEQ ID NO:744 and SEQ ID NO:1199, or SEQ ID NO:745 and SEQ ID NO:1200, or SEQ ID NO:746 and SEQ ID NO:1201, or SEQ ID NO:747 and SEQ ID NO:1202, SEQ ID NO:748 and SEQ ID NO:1203, or SEQ ID NO:749 and SEQ ID NO:1204, or SEQ ID NO: 750 and SEQ ID NO:1205, SEQ ID NO:751 and SEQ ID NO:1206, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1641-SEQ ID NO:1661.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is plcA and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:752 and SEQ ID NO:1207, or SEQ ID NO:753 and SEQ ID NO:1208, or SEQ ID NO:754 and SEQ ID NO:1209, or SEQ ID NO:755 and SEQ ID NO:1210, or SEQ ID NO:756 and SEQ ID NO:1211, or SEQ ID NO:757 and SEQ ID NO:1212, or SEQ ID NO:758 and SEQ ID NO:1213, or SEQ ID NO:759 and SEQ ID NO:1214, or SEQ ID NO: 760 and SEQ ID NO:1215, SEQ ID NO:761 and SEQ ID NO:1216, or SEQ ID NO:762 and SEQ ID NO:1217, or SEQ ID NO:763 and SEQ ID NO:1218, or SEQ ID NO:764 and SEQ ID NO:1219, or SEQ ID NO:765 and SEQ ID NO:1220, or SEQ ID NO:766 and SEQ ID NO:1221, or SEQ ID NO:767 and SEQ ID NO:1222, or SEQ ID NO:768 and SEQ ID NO:1223, or SEQ ID NO:769 and SEQ ID NO:1224, or SEQ ID NO: 770 and SEQ ID NO:1225, SEQ ID NO:771 and SEQ ID NO:1226, or SEQ ID NO:772 and SEQ ID NO:1227, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1662-SEQ ID NO:1682.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is lmo0189 and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:773 and SEQ ID NO:1228, or SEQ ID NO:774 and SEQ ID NO:1229, or SEQ ID NO:775 and SEQ ID NO:1230, or SEQ ID NO:776 and SEQ ID NO:1231, or SEQ ID NO:777 and SEQ ID NO:1232, or SEQ ID NO:778 and SEQ ID NO:1233, or SEQ ID NO:779 and SEQ ID NO:1234, or SEQ ID NO: 780 and SEQ ID NO:1235, SEQ ID NO:881 and SEQ ID NO:1236, or SEQ ID NO:782 and SEQ ID NO:1237, or SEQ ID NO:783 and SEQ ID NO:1238, or SEQ ID NO:784 and SEQ ID NO:1239, or SEQ ID NO:785 and SEQ ID NO:1240, or SEQ ID NO:786 and SEQ ID NO:1241, or SEQ ID NO:787 and SEQ ID NO:1242, SEQ ID NO:788 and SEQ ID NO:1243, or SEQ ID NO:789 and SEQ ID NO:1244, or SEQ ID NO: 790 and SEQ ID NO:1245, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1683-SEQ ID NO:1700.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is lmo0880 and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:991 and SEQ ID NO:1246, or SEQ ID NO:792 and SEQ ID NO:1247, or SEQ ID NO:793 and SEQ ID NO:1248, or SEQ ID NO:794 and SEQ ID NO:1249, or SEQ ID NO:795 and SEQ ID NO:1250, or SEQ ID NO:796 and SEQ ID NO:1251, or SEQ ID NO:797 and SEQ ID NO:1252, or SEQ ID NO:798 and SEQ ID NO:1253, or SEQ ID NO:799 and SEQ ID NO:1254, or SEQ ID NO: 800 and SEQ ID NO:1255, SEQ ID NO:801 and SEQ ID NO:1256, or SEQ ID NO:802 and SEQ ID NO:1257, or SEQ ID NO:803 and SEQ ID NO:1258, or SEQ ID NO:804 and SEQ ID NO:1259, or SEQ ID NO:805 and SEQ ID NO:1260, or SEQ ID NO:806 and SEQ ID NO:1261, or SEQ ID NO:807 and SEQ ID NO:1262, SEQ ID NO:808 and SEQ ID NO:1263, SEQ ID NO:809 and SEQ ID NO:1264, or SEQ ID NO: 810 and SEQ ID NO:1265, SEQ ID NO:811 and SEQ ID NO:1266, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1701-SEQ ID NO:1721.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is lmo0514 and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:812 and SEQ ID NO:1267, or SEQ ID NO:813 and SEQ ID NO:1268, or SEQ ID NO:814 and SEQ ID NO:1269, or SEQ ID NO:815 and SEQ ID NO:1270, or SEQ ID NO:816 and SEQ ID NO:1271, or SEQ ID NO:817 and SEQ ID NO:1272, or SEQ ID NO:818 and SEQ ID NO:1273, or SEQ ID NO:819 and SEQ ID NO:1274, or SEQ ID NO: 820 and SEQ ID NO:1275, SEQ ID NO:821 and SEQ ID NO:1276, or SEQ ID NO:822 and SEQ ID NO:1277, or SEQ ID NO:823 and SEQ ID NO:1278, or SEQ ID NO:824 and SEQ ID NO:1279, or SEQ ID NO:825 and SEQ ID NO:1280, or SEQ ID NO:826 and SEQ ID NO:1281, SEQ ID NO:827 and SEQ ID NO:1282, or SEQ ID NO:828 and SEQ ID NO:1283, or SEQ ID NO:829 and SEQ ID NO:1284, or SEQ ID NO:830 and SEQ ID NO:1285, or SEQ ID NO:831 and SEQ ID NO:1286, or SEQ ID NO:832 and SEQ ID NO:1287, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1722-SEQ ID NO:1742.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is lmo0129 and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:833 and SEQ ID NO:1288, or SEQ ID NO:834 and SEQ ID NO:1289, or SEQ ID NO:835 and SEQ ID NO:1290, or SEQ ID NO:836 and SEQ ID NO:1291, or SEQ ID NO:837 and SEQ ID NO:1292, or SEQ ID NO:838 and SEQ ID NO:1293, or SEQ ID NO:839 and SEQ ID NO:1294, or SEQ ID NO: 840 and SEQ ID NO:1295, SEQ ID NO:841 and SEQ ID NO:1296, or SEQ ID NO:842 and SEQ ID NO:1297, or SEQ ID NO:843 and SEQ ID NO:1298, or SEQ ID NO:844 and SEQ ID NO:1299, or SEQ ID NO:845 and SEQ ID NO:1300, or SEQ ID NO:846 and SEQ ID NO:1301, or SEQ ID NO:847 and SEQ ID NO:1302, SEQ ID NO:848 and SEQ ID NO:1303, or SEQ ID NO:849 and SEQ ID NO:1304, or SEQ ID NO: 850 and SEQ ID NO:1305, SEQ ID NO:7851 and SEQ ID NO:1306, or SEQ ID NO:852 and SEQ ID NO:1307, or SEQ ID NO:853 and SEQ ID NO:1308, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1743-SEQ ID NO:1763.


A composition for detecting the presence of Listeria in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is hylA and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:854 and SEQ ID NO:1309 or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID NO:1764.


A composition for detecting the presence of Vibrio in a sample may comprise: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Vibrio wherein the RNA-inducing agent-responsive gene is a hsp60 gene and the at least one primer pair comprises isolated nucleic acid molecules having the sequences of SEQ ID NO:1765 and SEQ ID NO: 1766, or a nucleic acid molecule with at least 90% sequence homology to the primer pair sequences. The composition may also comprise at least one probe wherein the at least one probe has the sequence of SEQ ID: NO: 1767, SEQ ID NO: 1768 and/or SEQ ID NO:1769.


Some compositions of the disclosure may comprise a duplexed set of primer pairs and probes for detection of one or more microorganisms in a single assay. For example, a composition may comprise, at least two sets of primer pairs, a first primer set comprising a first primer (a first forward primer) and a second primer (a first reverse primer) and a second primer set comprising a first primer (a second forward primer) and a second primer (a second reverse primer), each primer set operable to amplify a different target inducible gene or target inducible gene nucleic acid fragment. The composition may also have a corresponding probe sequence that can hybridize to amplified target nucleic acids of each primer set (a first probe and a second probe). A duplexed primer set may be operable to amplify at least two different target nucleic acid sequences and their corresponding probes are operable to identify at least two different target nucleic acid sequences. Compositions of the disclosure may comprise additional primer pairs (such as three primer pairs, four primer pairs and optionally the same number of corresponding probes as well). In some embodiments, the target genes may be from the same organism, thereby providing a higher degree of confidence in detection. In some embodiments the target genes may be from different organisms, thereby providing the ability to detect multiple organisms in one reaction. Accordingly, in some embodiments, compositions of the disclosure may be operable to detect simultaneously the presence of two or more organisms that may be contaminating a sample, provided the same induction conditions are operable to induce the individual target inducible genes of those organisms.


In some embodiments, the disclosure describes methods of detecting in a sample the presence of a microorganism, comprising: exposing the sample to an RNA-inducing agent for a time to induce a gene responsive to the RNA-inducing agent; detecting presence of an RNA corresponding to the gene responsive to the RNA-inducing agent; and determining presence of the microorganism, wherein the detection of presence of the RNA corresponding to the gene responsive to the RNA-inducing agent in comparison to a control sample is indicative of the presence of the microorganism in the sample. In some embodiments, a method may also comprise the step of culturing the sample in a microorganism enrichment medium to form an enriched sample, and then exposing the enriched sample to the RNA-inducing agent.


Detection steps may be performed by a variety of methods, such as but not limited to, a nucleic acid amplification reaction using primers to amplify target inducible genes or fragments thereof. Detection in some embodiments may be performed by hybridization using probes specific to target sequences in a target inducible gene. Combinations of amplification and hybridization may be used for detection according to some embodiments.


Methods of the disclosure may further comprise steps of sample preparation and may also comprise identification steps (to identify a species/strain/serotype of contaminating organism following the initial detection). In some embodiments, sample preparation may comprise preparing a sample for PCR amplification (prior to hybridizing with a primer pair), comprising for example, but not limited to (1) microbial enrichment, (2) separation of microbial cells from the sample, (3) cell lysis, and (4) nucleic acid extraction (e.g. RNA extraction, total DNA extraction, genomic DNA extraction).


Samples may include without limitation, clinical samples, food/beverage samples, water samples, and environmental sample. Food sample may comprise raw produce, meats as well as a selectively enriched food matrix.


Microbial pathogens that may be detected using methods provided herein may be present in food samples, in samples from the environment including processing equipment, in pharmaceutical preparations, on processing equipment for making or assembling pharmaceutical preparations, or from animal or humans who are potential carriers. A sample for detection of a pathogen may be an uncooked food sample such as uncooked meats, fish, poultry vegetables, unpasteurized milk, foods made from unpasteurized milk, or dairy products, or cooked or processed foods such as hot dogs, deli meats, cheeses, poultry, ice cream, smoked fish, or seafood, for example; an environmental sample for detection of a pathogen may be soil, stream water, sewage, plants, or swabs from food or pharmaceutical processing equipment, or any surface that is involved with food or pharmaceutical processing.


Typically a portion of food or a swabbed or sponged sample is combined with an appropriate liquid, such as water, a buffer solution, or a culture medium such as a selective medium or an enrichment medium. In some embodiments, the food is chopped, macerated, liquefied, diced, or homogenized. In some embodiments, large volumes of sample, for example but not limited to, volumes of 100 mL, 250 mL, or more are processed or a portion of the food or beverage and appropriate liquid are typically combined to form a dilute suspension, for example but not limited to, ratios of about 1:3, 1:5, or 1:10 (w/vol). In some embodiments, a detergent, an emulsifying agent, or both, is added to enhance the solubility of high lipid foods, for example but not limited to butter and certain other dairy products. In certain embodiments, 25 grams of a solid or semi-solid food is combined with 225 mL of a suitable culture media. In some embodiments, 25 mL of a beverage or a liquefied or partially liquefied food is combined with 225 mL of a suitable culture media.


Samples may also be pooled to save on testing costs, e.g., instead of testing 15×25 g samples of food, a composite of 375 g, with 25 g coming from different lots of food will be tested. If any composite is tested positive, then the individual 15 samples are further evaluated. If the composite is negative, then the food testing lab has saved the cost of 15 individual tests.


Solid samples (e.g., 25 g), liquid samples (e.g., 10 ml-100 ml) or environmental samples (i.e., swabbed or sponged samples resuspended in e.g., 10 ml-100 ml) can be pre-enriched for a pathogenic species for a time in pathogen-specific enrichment media, or an equivalent thereof. Alternative enrichment media include Tryptic Soy Broth, Brain Heart Infusion Broth or Fraser Broth, for which ingredients can be found in, for example, “Compendium of Methods for the Microbiological Examination of Foods,” 4th Edition (2001) Downes and Ito, eds. American Public Health Association, or U.S. Food and Drug Administration Bacteriological Analytical Manual (BAM), Media Index on the FDA web site. For example, for enrichment of Listeria species, after 4 hours of incubation, Listeria selective agents are added (see e.g., Example 2 herein). Incubation for selective enrichment is continued for a total of 24 hours enrichment, or may be continued for up to 48 h.


In an example embodiment, a method of the disclosure may comprise, following sample preparation, steps for detecting presence of a microbe by “detecting presence of an RNA corresponding to a gene responsive to an RNA-inducing agent” which may comprise a) hybridizing at least a first pair of PCR primers, comprising a forward primer and a reverse primer, that are operable to bind to and amplify at least one gene responsive to the RNA-inducing agent or a fragment thereof; b) amplifying at least one gene responsive to the RNA-inducing agent or a fragment thereof to form at least one amplified target nucleic acid product; and d) detecting the at least one amplified target polynucleotide sequence product; wherein the detection of the at least one amplified target polynucleotide sequence product is indicative of the presence of the microorganism in the sample. The step of detecting the at least one amplified target polynucleotide sequence product may further comprise using a probe that is operable to hybridize to the at least one amplified target polynucleotide sequence product. Primer and probes used may be labeled. Nucleic acid amplification reactions may be a PCR amplification and may further comprise an end-point determination, and/or maybe quantitative. In some embodiments the quantification maybe a real-time PCR. In some embodiments, the real-time PCR maybe a SYBR® Green Assay and/or a TaqMan® Assay. In some embodiments, the amplification may be by a real-time PCR assay and the probe may be a TAQMAN® probe.


In some embodiments, sample preparation may comprise extracting RNA and detecting may comprise detecting the presence of an induced RNA by a reverse transcriptase RT-PCR assay. A method of the disclosure may further comprise detecting presence of DNA corresponding to the induced gene by an RT-PCR assay. In some embodiments, a method may further comprising subtracting a CT value of RNA and DNA detection from a CT value for DNA detection. A method for identifying an RNA inducing agent-responsive gene may comprise comparing the difference in CT that results from real time reverse transcriptase PCR assays of induced samples vs uninduced samples. A method for identifying the contribution of RNA detection may comprise subtracting CT results from assays with reverse transcriptase present from the CT results from assays without reverse transcriptase present.


In some embodiments, a method for detection of a Salmonella spp. in a sample (enriched sample) may comprise: exposing the sample to an RNA-inducing agent for a time to induce at least one Salmonella gene responsive to the RNA-inducing agent, wherein the Salmonella gene responsive to the RNA-inducing agent may be a cspH, a hilA, a hsp60, a dnaK, a ibpAB, a uspA, and/or a agsA gene; detecting presence of an RNA corresponding to the gene responsive to the RNA-inducing agent; and determining presence of the Salmonella spp, wherein the detection of presence of the RNA corresponding to the Salmonella gene responsive to the RNA-inducing agent in comparison to a control sample (an identical sample known not to have the microorganism; and/or an identical sample not subject to induction) is indicative of the presence of a Salmonella in the sample.


In some embodiments, the steps of detecting presence of an RNA corresponding to the Salmonella gene responsive to the RNA-inducing agent in the method described above may comprise a) hybridizing at least a first pair of PCR primers comprising a forward primer and a reverse primer (e.g., selected for example from a row in Table 1 of the disclosure) that are operable to bind to and amplify an inducible gene or fragment thereof corresponding to at least one of the following Salmonella inducible genes: cspH, hilA, hsp60, dnaK, ibpAB, uspA, and/or agsA; b) amplifying the at least one Salmonella inducible gene or a fragment thereof (corresponding to at least one of the following genes: cspH, hilA, hsp60, dnaK, ibpAB, uspA, and/or agsA) to form at least one amplified target nucleic acid product; and d) detecting the at least one amplified target polynucleotide sequence product; wherein the detection of the at least one amplified target polynucleotide sequence product is indicative of the presence of Salmonella spp. in the sample. The step of detecting the at least one amplified target polynucleotide sequence product may further comprise using a probe that is operable to hybridize to the at least one amplified target polynucleotide sequence product (e.g., probes may be selected for example from a row in Table 1 of the disclosure, a primer pair and probe from the same row describes the probe-primer combination for an assay). Primer and probes used may be labeled. In some embodiments the amplification may be by a real-time PCR assay and the probe may be a TAQMAN® probe.


In some embodiments, a method for detection of a Listeria spp. in a sample (enriched sample) may comprise: exposing the sample to an RNA-inducing agent for a time to induce at least one Listeria gene responsive to the RNA-inducing agent, wherein the Listeria gene responsive to the RNA-inducing agent may be a inlA, a inlB, a inlC, a inlG, a inlJ, a lmo0539, a lmo2158, a lmo0596, a lmo0189, a lmo0880, a lmo1290, a lmo0514, a lmo0670, a bsh, a plcA, a clpE, a cspL, a lmo0699, a lmo0782, a lmo2230, a lmo2522, a opuCA, a cpn60, or a hlyA gene; detecting presence of an RNA corresponding to the Listeria gene responsive to the RNA-inducing agent; and determining presence of the Listeria spp, wherein the detection of presence of the RNA corresponding to the gene responsive to the RNA-inducing agent in comparison to a control sample (an identical sample known not to have the microorganism; and/or an identical sample not subject to induction) is indicative of the presence of a Listeria in the sample.


In some embodiments, the steps of detecting presence of an RNA corresponding to the Listeria gene responsive to the RNA-inducing agent in the method described above may comprise a) hybridizing at least a first pair of PCR primers comprising a forward primer and a reverse primer (e.g., selected for example from a row in Table 2 of the disclosure) that are operable to bind to and amplify an inducible gene or fragment thereof corresponding to at least one of the following genes: a inlA, a inlB, a inlC, a inlG, a inlJ, a lmo0539, a lmo2158, a lmo0596, a lmo0189, a lmo0880, a lmo1290, a lmo0514, a lmo0670, a bsh, a plcA, a clpE, a cspL, a lmo0699, a lmo0782, a lmo2230, a lmo2522, a opuCA, a cpn60, and/or a hlyA; b) amplifying at least one inducible gene or fragment thereof to form at least one amplified target nucleic acid product; and d) detecting the at least one amplified target polynucleotide sequence product; wherein the detection of the at least one amplified target polynucleotide sequence product is indicative of the presence of Listeria spp. in the sample. The step of detecting the at least one amplified target polynucleotide sequence product may further comprise using a probe that is operable to hybridize to the at least one amplified target polynucleotide sequence product (e.g., a probe may be selected for example from a row in Table 2 of the disclosure, a primer pair and probe from the same row describes the probe-primer combination for an assay). Primer and probes used may be labeled. In some embodiments the amplification may be by a real-time PCR assay and the probe may be a TAQMAN® probe.


In some embodiments, a method for detection of a Vibrio spp. in a sample (enriched sample) may comprise: exposing the sample to an RNA-inducing agent for a time to induce at least one Vibrio gene responsive to the RNA-inducing agent, wherein an example Vibrio gene responsive to the RNA-inducing agent may be a Vibrio hsp60 gene; detecting presence of an RNA corresponding to the Vibrio gene responsive to the RNA-inducing agent; and determining presence of the Vibrio spp, wherein the detection of presence of the RNA corresponding to a Vibrio gene responsive to an RNA-inducing agent in comparison to a control sample (an identical sample known not to have the microorganism; and/or an identical sample not subject to induction) is indicative of the presence of a Vibrio in the sample.


In some embodiments, the steps of detecting presence of an RNA corresponding to a Vibrio gene responsive to the RNA-inducing agent in the method described above may comprise a) hybridizing at least a first pair of PCR primers comprising a forward primer and a reverse primer (e.g., selected for example from a row in Table 3 of the disclosure) that are operable to bind to and amplify an inducible gene or fragment thereof (for e.g., a Vibrio hsp60 gene); b) amplifying at least one inducible gene or fragment thereof (for e.g., a Vibrio hsp60 gene) to form at least one amplified target nucleic acid product; and d) detecting the at least one amplified target polynucleotide sequence product; wherein the detection of the at least one amplified target polynucleotide sequence product is indicative of the presence of Vibrio spp. in the sample. The step of detecting the at least one amplified target polynucleotide sequence product may further comprise using a probe that is operable to hybridize to the at least one amplified target polynucleotide sequence product. A probe may be selected, for example, from a row in Table 3 of the disclosure, a primer pair and probe from the same row describes the probe-primer combination for an assay. Table 3 describes three probe sequences that are all operable to function with the Vibrio specific primer pair. Primer and probes used may be labeled. In some embodiments the amplification may be by a real-time PCR assay and the probe may be a TAQMAN® probe.


Methods of the disclosure may include assays such as polymerase chain reactions, wherein hybridizing and amplifying of said first pair of polynucleotide primers occurs in a first vessel and said hybridizing and amplifying of said second pair of polynucleotide primers occurs in a second vessel, or hybridizing and amplifying of said first pair of polynucleotide primers and said hybridizing and amplifying of said second pair of polynucleotide primers occurs in a single vessel. The detection may be a real-time assay and the real-time assay may be a SYBR® Green dye assay or a TaqMan® assay.


Methods of the disclosure, in various embodiments, may comprise providing at least a first probe. Some embodiments may comprise providing at least two probes, a first probe and a second probe the probes, wherein the first and second probes are different from each other, the first probe operable to identify the first amplified target polynucleotide sequence and the second probe operable to identify the second amplified target nucleotide sequence, the first probe further comprises a first label and said second probe further comprises a second label, wherein both labels are selected from a dye, a radioactive isotope, a chemiluminescent label, and an enzyme, the dye comprises a fluorescein dye, a rhodamine dye, or a cyanine dye, the dye is a fluorescein dye and first probe is labeled with FAM™ dye and said second probe is labeled with VIC® dye; and hybridizing the first and second probes to the PCR amplified fragments to detect the presence of the first amplified target polynucleotide sequence and the second amplified target polynucleotide sequence from the sample.


Methods of the disclosure comprising using inducible RNA targets for detection of microbes may also be used for assessment of viability of microbes. Dead microbes will not respond to induction. Inducible RNA targets are synthesized by living cells upon sensing a particular stimulus, such as heat, cold, acidic pH or chemical reagents. Accordingly, the disclosure provides methods of detecting viable microbes in a sample. Use of inducible RNA targets overcomes a major disadvantage of using DNA targets which detect both live and dead bacteria. If only dead bacteria are present in a sample, a method using DNA target detection will show a false positive result by amplifying and picking up dead DNA targets that are incapable of causing disease. An additional advantage over traditional culture confirmation method is the ability to detect viable but non-culturable bacteria (VBNC) organisms that respond to induction.


Use of inducible RNA targets provided by embodiments herein for detection of pathogens has other advantages over traditional DNA targets typically used in real-time PCR based detection. For example, for RNA inducible targets, an increased copy number of the target is present upon induction. When DNA is transcribed into RNA, many copies of the target gene are generated and a greater copy number translates into more robust and potentially earlier detection of a pathogen.


Traditional culture methods as well as rapid PCR-based methods rely on an initial pre-enrichment in suitable media to revive stressed organisms in various matrices. The length of the pre-enrichment time depends on the sensitivity and limit of detection of the end assay method. Signal amplification using RNA targets, such as inducible RNA targets, allows for earlier detection of target.


The present disclosure also describes workflow methods using inducible RNA targets in assays for detection of various bacteria. A fast workflow is provided based on inducible transcription response in bacteria; the workflow includes a shortened enrichment step, a rapid induction step, an automated sample preparation step, and specific detection of induced target using reverse transcriptase RT-PCR. Example workflows provided herein allowed for detection of 1-5 cfu of Salmonella in less then 8 hr and Listeria in less than 12 hr in food samples, thereby greatly reducing the time to testing, which is very important for industries such as the food industry, where valuable shelf life can be increased, if the testing time for food safety testing is reduces by the workflow methods provided herein.


The entire volume of the enriched and induced culture, or a portion thereof, may be concentrated and processed for detection of the bacterial pathogen, for example, a one mL aliquot may be taken from 250 mL of enriched and induced culture. The medium may be clarified by filtration or low speed centrifugation prior to or after concentrating. Harvested samples are lysed using, for example, the RiboPure™ RNA extraction kit (Ambion, Austin Tex.), the PrepSEQ™ Nucleic Acid Extraction Kit (Applied Biosystems) or the PrepSEQ™ RapidSpin Kit (Applied Biosystems) or any other effective lysis system that preserves nucleic acid integrity. The lysate can be amplified directly or the nucleic acid can be extracted and amplified. Amplification products may be detected, directly or indirectly, and the presence or absence of a microbe in the test sample can be determined. Sample preparation methods used are efficient in removal of PCR inhibitors.


High quality DNA and RNA can be prepared by manual low throughput methods or by automated high throughput methods, depending on the number of samples being tested. An integrated workflow for automated high-throughput sample preparation may include enrichment for the test bacterial pathogen, lysis, binding of nucleic acids to magnetic particles, magnetic separation, followed by washings and elution of DNA and/or RNA in a PCR compatible solution. An integrated workflow for manual low-throughput sample preparation may include enrichment for the test bacterial pathogen, centrifugation to pellet bacteria, resuspension of bacteria in lysis buffer, followed by amplification using primers for RNA-inducible target specific PCR as provided herein. The integrated system may also include lyophilized reagents for the assay and data analyses software.


Embodiments of detecting DNA, RNA and/or a surrogate thereof, in a lysate or extracted nucleic acid sample includes detection means using emission by an emitter that is representative of the RNA or DNA in the test sample.


In some embodiments, a lysate or extracted nucleic acid sample is mixed with a composition comprising reverse transcriptase to form a reverse transcriptase reaction mixture. A reverse transcription reaction provides a surrogate of the RNA that can be detectable. Any reverse transcriptase known to those of ordinary skill in the art can be used such as, for example, MMLV-RT (murine maloney leukemia virus-reverse transcriptase), avian myelogenous virus reverse transcriptase (AMV-RT), human immunodeficiency virus (HIV)-RT and the Tth DNA polymerase which has reverse transcriptase activity if Mn++ is provided.


A positive control for detection of RNA or DNA can be a non-homologous RNA random sequence such as XENO™ RNA (Applied Biosystems, Foster City, Calif.). A control for qPCR can be a β-actin probe/primer set, also available from Applied Biosystems, for example. The positive control can be mixed with the sample.


As used herein, “amplification” or “amplify” and the like refers to the production of multiple copies of the target nucleic acid, a surrogate of a target nucleic acid, or a portion thereof. Amplification can encompass a variety of chemical and enzymatic processes such as a polymerase chain reaction (PCR), a strand displacement amplification reaction, a transcription mediated amplification reaction, or a nucleic acid sequence-based amplification reaction, for example. Following at least one amplification cycle, the amplification products can be detected or can be separated from at least one other component of the amplification mixture based on their molecular weight or length or mobility prior to detection.


PCR includes introducing a molar excess of two or more extendable oligonucleotide primers to a reaction mixture where the primers hybridize to opposite strands of a DNA, RNA or RNA surrogate. The reaction mixture is subjected to a program of thermal cycling in the presence of a DNA polymerase, resulting in the amplification of the DNA or RNA surrogate sequence flanked by the primers. Reverse transcriptase PCR is a PCR reaction that uses an RNA template and a reverse transcriptase, or a polypeptide having reverse transcriptase activity, to first generate a single stranded DNA molecule prior to the multiple cycles of DNA-dependent DNA polymerase primer elongation as cited above. Methods for a wide variety of PCR applications are widely known in the art, and described in many sources, for example, Ausubel et al. (eds.), Current Protocols in Molecular Biology, Section 15, John Wiley & Sons, Inc., New York (1994).


The present disclosure describes several primers. However, in light of the present specifications, one of skill in the art may design additional primer pairs that are specific to other inducible genes in other organisms. These additional inducible genes and primers are within the scope of the present disclosure. Criteria for designing sequence-specific primers in light of this specification are well known to persons of ordinary skill in the art. Detailed descriptions of primer design that provide for sequence-specific annealing can be found, among other places, in Diffenbach and Dveksler, PCR Primer, A Laboratory Manual, Cold Spring Harbor Press, 1995, and Kwok et al. (Nucl. Acid Res. 18:999-1005, 1990). The sequence-specific portions of the primers are of sufficient length to permit specific annealing to complementary sequences, as appropriate. A primer does not need to have 100% complementarity with a primer-specific portion for primer extension to occur. Further, a primer can be detectably labeled such that the label is detected by spectroscopy. A primer pair is sometimes said to consist of a “forward primer” and a “reverse primer,” indicating that they are initiating nucleic acid polymerization in opposing directions from different strands of a duplex template.


In some embodiments, a primer as set forth herein can comprise a universal priming sequence. The term “universal primer” refers to a primer comprising a universal sequence that is able to hybridize to all, or essentially all, potential target sequences in a multiplexed reaction. The term “semi-universal primer” refers to a primer that is capable of hybridizing with more than one (e.g., a subset), but not all, of the potential target sequences in a multiplexed reaction. The terms “universal sequence,” “universal priming sequence” or “universal primer sequence” or the like refer to a sequence contained in a plurality of primers, where the universal priming sequence that is found in a target is complementary to a universal primer.


“Hybridization” refers to a process in which single-stranded nucleic acids with complementary or near-complementary base sequences interact to form hydrogen-bonded complexes called hybrids. Hybridization reactions are sensitive and selective. In vitro, the specificity of hybridization (i.e., stringency) is controlled by the concentrations of salt or formamide in prehybridization and hybridization solutions, for example, and by the hybridization temperature; such procedures are well known in the art. In particular, stringency is increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature. For example, high stringency conditions could occur at about 50% formamide at 37° C. to 42° C. Reduced stringency conditions could occur at about 35% to 25% formamide at 30° C. to 35° C. Examples of stringency conditions for hybridization are provided in Sambrook, J., 1989, Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. The temperature for hybridization is about 5-10° C. less than the melting temperature (Tm) of the hybrid.


As an example of primer selection, primers can be selected by the use of any of various software programs available and known in the art for developing amplification and/or multiplex systems. Exemplary programs include, PRIMER EXPRESS® software (Applied Biosystems, Foster City, Calif.) and Primer3 software (Rozen S et al. (2000), “Primer3 on the WWW for general users and for biologist programmers,” Krawetz S et al. (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, N.J., pp 365-386). In the example of the use of software programs, sequence information can be imported into the software. The software then uses various algorithms to select primers that best meet the user's specifications.


Primer and probe sequences having at least 90% homology to those of Tables 1-3 are embodiments herein. “Homology,” as known by one of ordinary skill in the art, is the degree of sequence relatedness between nucleotide sequences as determined by matching the order and identity of nucleotides between the sequences. In one embodiment, the primer or probe sequences provided herein have 100% homology, at least 98% homology, at least 95% homology, at least 92% homology or at least 90% homology to their intended hybridization target. Computer methods for determining homology are designed to identify the greatest degree of matching of nucleotide sequences, for example, BLASTN (Altschul, S. F., et al. (1990) J. Mol. Biol. 215:403-410).


In certain embodiments, single-stranded amplification products can be generated by methods including, without limitation, asymmetric PCR, asymmetric reamplification, nuclease digestion, and chemical denaturation. For example, single-stranded sequences can be generated by combining at least one first primer or at least one second primer from a primer set, but not both, in an amplification reaction mixture, or by transcription, for example, when a promoter-primer is used in a first amplification mixture, a second amplification mixture, or both.


The term “polymerase,” as used herein, refers to a polypeptide that is able to catalyze the addition of nucleotides or analogs thereof to a nucleic acid in a template dependent manner, for example, the addition of deoxyribonucleotides to the 3′-end of a primer that is annealed to a nucleic acid template during a primer extension reaction. Nucleic acid polymerases can be thermostable or thermally degradable. Suitable thermostable polymerases include, but are not limited to, polymerases isolated from Thermus aquaticus, Thermus thermophilus, Pyrococcus woesei, Pyrococcus furiosus, Thermococcus litoralis, and Thermotoga maritima. Suitable thermodegradable polymersases include, but are not limited to, E. coli DNA polymerase I, the Klenow fragment of E. coli DNA polymerase I, T4 DNA polymerase, T5 DNA polymerase, T7 DNA polymerase, and others. Examples of other polymerizing enzymes that can be used in the methods described herein include but are not limited to T7, T3, SP6 RNA polymerases; and AMV, M-MLV and HIV reverse transcriptases.


Commercially available polymerases include, but are not limited to AMBION′S SUPERTAQ®, TAQFS®, AMPLITAQ® CS (Applied Biosystems), AMPLITAQ® FS (Applied Biosystems), KENTAQ1® (AB Peptide, St. Louis, Mo.), TAQUENASE® (Scien Tech Corp., St. Louis, Mo.), THERMOSEQUENASE® (Amersham), Bst polymerase, READER™ Taq DNA polymerase, VENT® DNA polymerase, VENTR® DNA Polymerase, VENTR® (exo) polymerase and DEEPVENT® DNA polymerase, (all VENT® polymerases can be obtained from New England Biolabs), PFUTurbo™ DNA polymerase (Stratagene), Pwo polymerase, Tth DNA polymerase, KlenTaq-1 polymerase, SEQUENASE™ 1.0 DNA polymerase (Amersham Biosciences), SEQUENASE™ 2.0 DNA polymerase (United States Biochemicals), and an enzymatically active mutant and variant thereof.


Descriptions of DNA polymerases can be found in, among other places, Lehninger Principles of Biochemistry, 3d ed., Nelson and Cox, Worth Publishing, New York, N.Y., 2000, particularly Chapters 26 and 29; Twyman, Advanced Molecular Biology: A Concise Reference, Bios Scientific Publishers, New York, N.Y., 1999; Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., including supplements through May 2005 (hereinafter “Ausubel et al.”); Lin and Jaysena, J. Mol. Biol. 271:100-11, 1997; Pavlov et al., Trends in Biotechnol. 22:253-60, 2004; and Enzymatic Resource Guide: Polymerases, 1998, Promega, Madison, Wis.


In various detection embodiments, amplification is optionally followed by additional steps, for example, but not limited to, labeling, sequencing, purification, isolation, hybridization, size resolution, expression, detecting and/or cloning. In certain embodiments, one or both PCR primers can comprise a label, such as, for example, a fluorophore. A label can facilitate detection of an amplification product comprising a labeled PCR primer. In various detection embodiments, following the PCR, biotinylated strands can be captured, separated, and detected.


The term “multiplex assays” refers to PCR reactions that use more than two primers in a single reaction and at the same time so that more than one different amplified product is produced and detected. For example, more than two pair of amplification primers are contacted at the same time and/or in the same solution. Several target RNAs or DNAs can be detected simultaneously using multiplex assays. A multiplex reaction can also include a multiplicity of singleplex PCR reactions run in parallel, e.g., the TAQMAN® Low Density Array (TLDA). Sample preparation processes described herein have been demonstrated to be compatible with multiplex assays.


As used herein, “real-time PCR” refers to the detection and quantitation of a DNA, a RNA or a surrogate thereof in a sample. In some embodiments, the amplified segment or “amplicon” can be detected using a 5′-nuclease assay, particularly the TAQMAN® assay as described by e.g., Holland et al. (Proc. Natl. Acad. Sci. USA 88:7276-7280, 1991); and Heid et al. (Genome Research 6:986-994, 1996). For use herein, a TAQMAN® nucleotide sequence to which a TAQMAN® probe binds can be designed into the primer portion, or known to be present in a RNA or a DNA of a sample.


“Tm” refers to the melting temperature (temperature at which 50% of the oligonucleotide is a duplex) of an oligonucleotide determined experimentally or calculated using the nearest-neighbor thermodynamic values of SantaLucia J. et al. (Biochemistry 35:3555-62, 1996) for DNA or Freier et al. (Proc. Natl. Acad. Sci. USA 83:9373-9377, 1986) for RNA. In general, the Tm of the TAQMAN® probe is about 10 degrees above the Tm of amplification primer pairs. Amplification primer sequences and double dye-labeled TAQMAN® probe sequences can be designed using PRIMER EXPRESS™ (Version 1.0, Applied Biosystems, Foster City, Calif.) or mFOLD™ software (now UNIFold™) (IDT, San Jose, Calif.).


When a TAQMAN® probe is hybridized to DNA, RNA or a surrogate thereof, the 5′-exonuclease activity of a thermostable DNA-dependent DNA polymerase such as SUPERTAQ® (a Taq polymerase from Thermus aquaticus, Ambion, Austin, Tex.) digests the hybridized TAQMAN® probe during the elongation cycle, separating the fluor from the quencher. The reporter fluor dye is then free from the quenching effect of the quencher moiety resulting in a decrease in FRET and an increase in emission of fluorescence from the fluorescent reporter dye. One molecule of reporter dye is generated for each new molecule synthesized, and detection of the free reporter dye provides the basis for quantitative interpretation of the data. In real-time PCR, the amount of fluorescent signal is monitored with each cycle of PCR. Once the signal reaches a detectable level, it has reached the “threshold or cycle threshold (Ct).” A fluorogenic PCR signal of a sample can be considered to be above background if its Ct value is at least 1 cycle less than that of a no-template control sample. The term “Ct” represents the PCR cycle number when the signal is first recorded as statistically significant. Thus, the lower the Ct value, the greater the concentration of nucleic acid target. In the TAQMAN® assay, typically each cycle almost doubles the amount of PCR product and therefore, the fluorescent signal should double if there is no inhibition of the reaction and the reaction was nearly 100% efficient with purified nucleic acid. Certain systems such as the ABI 7500, 7500FAST, 7700 and 7900HT Sequence Detection Systems (Applied Biosystems, Foster City, Calif.) conduct monitoring during each thermal cycle at a pre-determined or user-defined point.


Detection method embodiments using a TAQMAN® probe sequence comprise combining the stopped mixture or the reverse transcribed mixture with PCR reagents, including a primer set having a forward primer and a reverse primer, a DNA polymerase, and a fluorescent detector oligonucleotide TAQMAN® probe, as well as dNTP's and a salt, to form an amplification reaction mixture; subjecting the amplification reaction mixture to successive cycles of amplification to generate a fluorescent signal from the detector probe; and quantitating the nucleic acid presence based on the fluorescent signal cycle threshold of the amplification reaction.


Protocols and reagents for means of carrying out further 5′-nuclease assays are well known to one of skill in the art, and are described in various sources. For example, 5′-nuclease reactions and probes are described in U.S. Pat. Nos. 6,214,979 issued Apr. 10, 2001; 5,804,375 issued Sep. 8, 1998; 5,487,972 issued Jan. 30, 1996; and 5,210,015 issued May 11, 1993, all to Gelfand et al.


In various embodiments, a detection method can utilize any probe that can detect a nucleic acid sequence. In some configurations, a detection probe can be, for example, a TAQMAN® probe described supra, a stem-loop molecular beacon, a stemless or linear beacon, a PNA MOLECULAR BEACON™, a linear PNA beacon, non-FRET probes, SUNRISE®/AMPLIFLUOR® probes, stem-loop and duplex SCORPION™ probes, bulge loop probes, pseudo knot probes, cyclicons, MGB ECLIPSE™ probe, a probe complementary to a ZIPCODE™ sequence, hairpin probes, peptide nucleic acid (PNA) light-up probes, self-assembled nanoparticle probes, and ferrocene-modified probes as known by one of ordinary skill in the art. A detection probe having a sequence complementary to a detection probe hybridization sequence, such as a ZIPCODE™ sequence, a fluorophore and a mobility modifier can be, for example, a ZIPCHUTE™ probe supplied commercially by Applied Biosystems (Foster City, Calif.).


A “label” or “reporter,” as used herein, refers to a moiety or property that allows the detection of that with which it is associated and, generally, has emission spectra at between and including 300 nm to 750 nm. In certain embodiments, the emission spectra is at less than about 499 nm such as for blue emitters such as certain Alexa Fluor emitters, Cascade Blue, and Pacific Blue; at 500 nm to 549 nm emitters such as for green emitters such as certain Alexa Fluor emitters, BODIPY FL, fluorescein (FITC), CYANINE™ 2 dye, Catskill Green, 5-FAM™ dye, 6-FAM™ dye, succinimidyl ester, JOE™ dye, MFP488, the Oregon Green emitters and TET™ dye; at 550 nm to 584 nm emitters such as yellow emitters such as certain Alexa Fluor emitters, CYANINE™ 3 dye, HEX™ dye, NED™ dye, R-Phycoerythrin (R-PE), 5-TAMRA™ dye, TRITC (Rhodamine), and VIC® dye; at 585 nm to 615 nm emitters such as orange emitters such as certain Alexa Fluor emitters, CYANINE™ 3.5 dye, Lissamine Rhodamine, ROX™ dye, and R-Phycoerythrin-TEXAS RED® dye; and at 616 nm to 700 nm emitters such as red emitters such as certain Alexa Fluor emitters, CYANINE™ 5 dye, Quantum Red, Rodamine Red-X, and TEXAS RED® dye.


The label can be attached covalently or non-covalently to a DNA product, to a RNA product, or to a surrogate thereof such as an amplicon thereof. Commonly used labels include dyes that are negatively charged, such as dyes of the fluorescein family including, e.g. FAM™ dye, HEX™ dye, TET™ dye, JOE™ dye, NAN and ZOE; or dyes that are neutral in charge, such as dyes of the rhodamine family including, e.g., TEXAS RED® dye, ROX™ dye, R110, R6G, and TAMRA™ dye; or dyes that are positively charged, such as dyes of the CYANINE™ family including e.g., Cy™2 dye, Cy™3 dye, Cy™5 dye, Cy™5.5 dye and Cy™7 dye. FAM™ dye, HEX™ dye, TET™ dye, JOE™ dye, NAN, ZOE, ROX™ dye, R110, R6G, and TAMRA™ dyes are available from, e.g., Applied Biosystems (Foster City, Calif.) or Perkin-Elmer, Inc. (Wellesley, Mass.); TEXAS RED® dye is available from, e.g., Molecular Probes, Inc. (Eugene, Oreg.); and Cy™2 dye, Cy™3 dye, Cy™5 dye, Cy™5.5 dye and Cy™7 dye, and are available from, e.g., Amersham Biosciences Corp. (Piscataway, N.J.). In certain amplification embodiments, the fluorescer molecule is a fluorescein dye and the quencher molecule is a rhodamine dye.


A label or reporter can comprise both a fluorophore and a fluorescence quencher. The fluorescence quencher can be a fluorescent fluorescence quencher, such as the fluorophore TAMRA™ dye, or a non-fluorescent fluorescence quencher (NFQ), for example, a combined NFQ-minor groove binder (MGB) such as an MGB ECLIPSE™ minor groove binder supplied by Epoch Biosciences (Bothell, Wash.) and used with TAQMAN™ probes (Applied Biosystems, Foster City, Calif.). The fluorophore can be any fluorophore that can be attached to a nucleic acid, such as, for example, FAM™ dye, HEX™ dye, TET™ dye, JOE™ dye, NAN, ZOE, TEXAS RED® dye, ROX™ dye, R110, R6G, TAMRA™ dye, Cy™2 dye, Cy™3 dye, Cy™5 dye, Cy™5.5 dye and Cy™7 dye as cited above as well as VIC® dye, NED™ dye, LIZ® dye, ALEXA, Cy™9 dye, and dR6G.


Further examples of labels include black hole quenchers (BHQ) (Biosearch), Iowa Black (IDT), QSY quencher (Molecular Probes), and Dabsyl and Dabcel sulfonate/carboxylate Quenchers (Epoch).


Labels can also comprise sulfonate derivatives of fluorescein dyes, phosphoramidite forms of fluorescein, phosphoramidite forms of CY™5 dye (available for example from Amersham), and intercalating labels such as ethidium bromide, SYBR™ Green I dye and PICOGREEN™ dye (Molecular Probes). Generally, an intercalating label is a molecule that reversibly inserts between two other molecules (or groups) such as between the bases of DNA.


In various embodiments, qPCR reactions can include master mixes such as the TAQMAN® Gene Expression Master Mix, TAQMAN® Universal PCR Master Mix, TAQMAN® Fast Universal PCR Master Mix, Power SYBR® Green PCR Master Mix, Fast SYBR® Green Master Mix, TAQMAN® RNA-to-CT™ 1-Step Kit, and the Power SYBR® Green RNA-to-CT™ 1-Step Kit, for example, all from Applied Biosystems.


In various embodiments, detection of emission such as fluorescence can be by any method known to skilled artisans, and can include, for example, real time detection for PCR or end point detection. Detection of fluorescence, for example, can be qualitative or quantitative. Quantitative results can be obtained, for example, with the aid of a fluorimeter, for example a fluorimeter as part of an integrated nucleic acid analysis system, such as, for example, an Applied Biosystems ABI PRISM™ 7900HT Sequence Detection System. Furthermore, quantitative results can be obtained in some configurations using a real-time PCR analysis. Some non-limiting examples of protocols for conducting fluorogenic assays such as TAQMAN® assays, including analytical methods for performing quantitative assays, can be found in publications such as, for example, “SNPLEX™ Genotyping System 48-plex”, Applied Biosystems, 2004; “User Bulletin #2 ABI PRISM™ 7700 Sequence Detection System,” Applied Biosystems 2001; “User Bulletin #5 ABI PRISM™ 7700 Sequence Detection System,” Applied Biosystems, 2001; and “Essentials of Real Time PCR,” Applied Biosystems (Foster City, Calif.). Fluorogenic PCR assays used in some configurations of the present teachings can be performed using an automated system, such as, for example, an ABI 7700 Sequence Detection System (Applied Biosystems).


For real time PCR, a passive reference dye, ROX™ dye, can be included in PCR reactions to provide an internal reference to which the reporter-dye signal can be normalized during data analysis. Normalization can be accomplished using Applied Biosystems' Sequence Detection System (SDS) software.


In general for the studies herein, the TAQMAN® probes were labeled with FAM™ dye, the TAQMAN® probe for the Internal Positive Control was labeled with VIC® dye and a Baseline Control was detected using ROX® Dye. Data analyses were carried out using the RAPIDFINDER™ Express Software (Applied Biosystems) and results are provided in an easy-to-read format with present/absent calls.


In some embodiments, detection can be achieved using microarrays or bead arrays and related software, such as the Applied Biosystems Array System with the Applied Biosystems 1700 Chemiluminescent Microarray Analyzer, and other commercially available array systems available from Affymetrix, Agilent, and Illumina, among others (see also Gerry et al., J. Mol. Biol. 292:251-62, 1999; De Bellis et al., Minerva Biotec 14:247-52, 2002; and Stears et al., Nat. Med. 9:140-45, including supplements, 2003).


A “kit,” as used herein, refers to a combination of at least some items for performing a reverse transcriptase RT-PCR assay for detection of inducible RNA targets of microbes, such as but not limited to, bacterial pathogens. Embodiments of kits may comprise at least one or more of the following reagents: at least one set of primers specific for detecting an inducible RNA target, at least one probe (e.g., a TAQMAN® probe) specific for detection of said inducible RNA target, internal positive control DNA to monitor presence of PCR inhibitors from various food and environmental sources, a baseline control, reagents for sample collection, reagents for isolating nucleic acid such as magnetic beads, spin columns, columns, particles, filters, lysis buffers, protease, reverse transcriptase, a reverse transcriptase buffer, a DNA polymerase or an enzymatically active mutant or variant thereof, a DNA polymerase buffer, deoxyribonucleotides dATP, dCTP, dGTP, or dTTP. In some kit embodiments, an enzyme comprising reverse transcriptase activity and thermostable DNA-dependent DNA polymerase activity are the same enzyme, e.g., Thermus sp. ZO5 polymerase or Thermus thermophilus polymerase. In certain kit embodiments, amplification primers are attached to a solid support such as a microarray.


The container means of the kits will generally include at least one vial, test tube, flask, bottle, syringe or other packaging means, into which a component can be placed, and in some embodiments, suitably aliquoted. Where more than one component is included in the kit (they can be packaged together), the kit also will generally contain at least one second, third or other additional container into which the additional components can be separately placed. However, various combinations of components can be packaged in a container means. The kits of the present teachings also will typically include reagent containers in close confinement for commercial sale. Such containers can include injection or blow-molded plastic containers into which the desired container means are retained.


When the components of the kit are provided in one and/or more liquid solutions, the liquid solution comprises an aqueous solution that can be a sterile aqueous solution.


In certain embodiments, at least one kit component is lyophilized and provided as dried powder(s). For example, primers and TAQMAN® probes may be lyophilized. When reagents and/or components are provided as a dry powder, the powder can be reconstituted by the addition of a suitable solvent. In certain embodiments, the solvent is provided in another container means. Kits can also comprise an additional container means for containing a sterile, pharmaceutically acceptable buffer and/or other diluent.


A kit can also include instructions for employing the kit components as well as the use of any other reagent not included in the kit. Instructions can include variations that can be implemented.


An exemplary kit may comprise one or more compositions for detecting one or more Salmonella species and may comprise at least one primer pair having hybridization specificity for amplifying an inducible gene specific to Salmonella species, or for amplifying a fragment of an inducible gene specific to Salmonella species. In some embodiments, the kit may further comprise at least one probe sequence operable to bind to an inducible gene specific to Salmonella species or a fragment thereof that may be amplified by the primer pair. A probe may be labeled for easier detection. In some embodiments, probe and primers of kits may comprise sequences selected from SEQ ID NO: 1-SEQ ID NO: 1769, including the specific primer pair combinations (and corresponding probes) described in sections above for detection of different inducible genes (also see probe primer combinations in Tables 1-3).


In one example, according to some embodiments of this disclosure a kit for detecting Salmonella may comprise: a primer pair comprising at least one Salmonella-specific primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Salmonella wherein the RNA-inducing agent-responsive gene is a cspH, a hilA, a hsp60, a dnaK, a ibpAB, a uspA, and/or a agsA gene.


Another exemplary kit may comprise one or more compositions for detecting one or more Listeria species and may comprise at least one primer pair having hybridization specificity for amplifying an inducible gene specific to Listeria species, or for amplifying a fragment of an inducible gene specific to Listeria species. In some embodiments, the kit may further comprise at least one probe sequence operable to bind to an inducible gene specific to Listeria species or a fragment thereof that may be amplified by the primer pair. A probe may be labeled for easier detection.


In one example, according to some embodiments of this disclosure a kit for detecting Listeria may comprise: a primer pair comprising at least one Listeria-specific primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is a inlA, a inlB, a inlC, a inlG, a inlJ, a lmo0539, a lmo2158, a lmo0596, a lmo0189, a lmo0880, a lmo1290, a lmo0514, a lmo0670, a bsh, a plcA, a clpE, a cspL, a lmo0699, a lmo0782, a lmo2230, a lmo2522, a opuCA, a cpn60, and/or a hlyA gene.


Yet another exemplary kit may comprise one or more compositions for detecting one or more Vibrio species and may comprise at least one primer pair having hybridization specificity for amplifying an inducible gene specific to Vibrio species, or for amplifying a fragment of an inducible gene specific to Vibrio species. In some embodiments, the kit may further comprise at least one probe sequence operable to bind to an inducible gene specific to Vibrio species or a fragment thereof that may be amplified by the primer pair. A probe may be labeled for easier detection.


In one example, according to some embodiments of this disclosure a kit for detecting Vibrio may comprise: a primer pair comprising at least one Vibrio-specific primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Vibrio wherein the RNA-inducing agent-responsive gene is a hsp60 gene.


Aspects of the present teachings can be further understood in light of the following examples, which should not be construed as limiting the scope of the present teachings in any way.


Example 1
Inducible RNA Targets for Early Detection of Salmonella

The present example describes identification and evaluation of inducible RNA targets for detection of the pathogenic microbe Salmonella enterica using real-time RT-PCR.


Materials and Methods; Bacteria and Growth Conditions: Bacteria were routinely cultured on Brain Heart Infusion (BHI) Agar plates and in BHI broth at 37° C. overnight (Teknova, Hollister, Calif.). For spiking food samples, 25 g or 25 ml of the food sample was transferred into stomacher bags. Bacteria were spiked in the 1-100 cfu range. Samples were enriched according to standard procedures as described in the Bacteriological Analytical Manual (U.S. Food and Drug Administration, Bacteriological Analytical Manual, Chapter 5, Salmonella; see www.fda.gov). Enrichment media (225 ml) was added to each sample; for enrichment of Salmonella, Buffered Peptone Water or Brain Heart Infusion Broth was used (Teknova, Hollister, Calif.). Samples were enriched at 37° C. for a maximum of 16 hours.


Inducing Conditions: For Salmonella, samples were induced by heating at 45° C. for 15 minutes. A control (uninduced) sample was maintained at 37° C.


Sample Preparation: At the end of the induction period, tubes were placed in an ice bucket and cells were harvested by centrifugation at 16,000 rpm, 4° C., 3 minutes. Supernatants were quickly removed, and bacterial pellets were quick frozen in a dry-ice ethanol bath before proceeding for RNA extraction.


RNA was extracted using Nucleic Acid Extraction kits, e.g. RiboPure™ RNA extraction kit (Ambion, Austin Tex.). Briefly, a volume of 1 ml-20 ml of sample was centrifuged to harvest the bacteria at 4° C. The pellets were processed according to the extraction kit protocol.


Real-time PCR: Real-time PCR was performed on the Applied Biosystems 7500 Real-time PCR System (Applied Biosystems, Foster City Calif.). For real-time RT-PCR, ARRAYSCRIPT™ reverse transcriptase (Ambion, Austin Tex.) was included in the reactions. The Environmental Master Mix v2 (Applied Biosystems) was used for all reactions. PCR was performed under standard cycling conditions with a reverse transcription step (30 minutes at 42° C.; 10 minutes at 95° C.; 40 cycles of 15 seconds at 95° C., 1 minute at 60° C.).


Primers and Probes: TAQMAN® real-time PCR assays, which include primers and probes for each assay, were designed using a rigorous bioinformatics assay design pipeline against candidate inducible targets in Salmonella enterica (Table 1). Full length genes representing each of the candidate targets were obtained from the annotated, publicly available genome sequences of Salmonella dublin or Salmonella typhi. These gene sequences were used to query the GenBank database and obtain all other publicly available, homologous Salmonella sequences. Assays were designed to match all of the related Salmonella sequences, while not matching any other sequences in the microbial subset of GenBank. The probes were labeled with a FAM™ dye to enable detection by real-time PCR.


Assays designed for Salmonella are shown in Table 1, which has a column designated as “Gene” indicating the name of the inducible target gene; a column designated as “Assay” which indicates an assay number given to the combination of “Forward Primer” and “Reverse Primer” and “Probe” in the same row as the assay number. For example, one Salmonella assay, for detecting the inducible target gene agsA, may comprise assay agsA.0 and use the primer of SEQ ID NO: 1 (forward primer), the primer of SEQ ID NO: 134 (reverse primer) and the probe of SEQ ID NO: 267. In another example, one Salmonella assay, for detecting the inducible target gene agsA, may comprise assay agsA.1 and use the primer of SEQ ID NO: 2 (forward primer), the primer of SEQ ID NO: 135 (reverse primer) and the probe of SEQ ID NO: 268.









TABLE 1







TaqMan® assays designed against candidate inducible genes in Salmonella.











Gene
Assay
Forward Primer
Reverse Primer
Probe





agsA
agsA.0
CTGGCGTATCTCCTGTTAATTGACT
ATTCTCTTTTCCCTGACCGTTTCA
ACCGTATTGATAGACTTTTC




SEQ ID NO: 1
SEQ ID NO: 134
SEQ ID NO: 267



agsA.1
TGTGTTCAATCGCCTTTGGTTTG
GGAGATCCCTGAAAGCGAGAAAC
CTTTCTATGGCAATTTTTT




SEQ ID NO: 2
SEQ ID NO: 135
SEQ ID NO: 268



agsA.2
GGCGTATCTCCTGTTAATTGACTGA
TCCCGTGTTTGCTGATTCTCTTTT
CCCTGACCGTTTCAAC




SEQ ID NO: 3
SEQ ID NO: 136
SEQ ID NO: 269



agsA.3
CGCGCTTTTGCAGATCGTAAG
CCTGACCGTTTCAACCGTATTG
CTGGCGTATCTCCTGTTAAT




SEQ ID NO: 4
SEQ ID NO: 137
SEQ ID NO: 270



agsA.4
TGGAAATCCGCCTTACGAATCC
ACACTGAAGATACGGTAGAGGATCA
ACGCACTGGATTTATC




SEQ ID NO: 5
SEQ ID NO: 138
SEQ ID NO: 271



agsA.5
AGGCCCTGTTCCAGTTTCG
GGCGGACTTCCAGTTGAGTTTT
CATGCTAAGGTGAATAAT




SEQ ID NO: 6
SEQ ID NO: 139
SEQ ID NO: 272



agsA.6
GCCGCCAACCGTTTCAATT
GCTTACCGTGAGCGTTCCT
TCAAGCTCTTCCTCTTTCC




SEQ ID NO: 7
SEQ ID NO: 140
SEQ ID NO: 273



agsA.7
TCCTCTACCGTATCTTCAGTGTGTT
GCTGGAAAGAGGAAGAGCTTGAAAT
TTGCCGCCAACCGTTTC




SEQ ID NO: 8
SEQ ID NO: 141
SEQ ID NO: 274



agsA.8
GGAAATCCGCCTTACGAATACCA
CACTGAAGAGACGGTAGAGGATCA
ACGCACTGGATTTATC




SEQ ID NO: 9
SEQ ID NO: 142
SEQ ID NO: 275



agsA.9
CGCCTTTGGTTTGCTTTCTATGG
GGCCTCTTGTTGGTCGAGATTTAC
TCGCTTTCAGGGATCTCC




SEQ ID NO: 10
SEQ ID NO: 143
SEQ ID NO: 276



agsA.10
TTTCTCGCTTTCAGGGATTTCCT
TGCCTGAACATGCTAAGGTGAATAA
CCTGTTCCAGTTTTGC




SEQ ID NO: 11
SEQ ID NO: 144
SEQ ID NO: 277



agsA.11
CGCCTTTGGTTTGCTTTCTATGG
GGCCTCTTGTTGGTCGAGATTTAC
TCGCTTTCAGGGATCTC




SEQ ID NO: 12
SEQ ID NO: 145
SEQ ID NO: 278



agsA.12
GTCTCTTCAGTGTGTTTACCCGTAA
GCTGGAAAGAGGAAGAGCTTGAAAT
TTGGCGGCAACCTGA




SEQ ID NO: 13
SEQ ID NO: 146
SEQ ID NO: 279



agsA.13
ACCGTTTCAATTTCAAGCTCTTCCT
CGATCGCGAATAACTATCTGCTTACC
TCCAGCCAGGAACGC




SEQ ID NO: 14
SEQ ID NO: 147
SEQ ID NO: 280



agsA.14
GCCAACCGTTTCAATTTCAAGCT
CGATGCGAATAACTATCTGCTTACC
CCTGGCTGGAAAGAG




SEQ ID NO: 15
SEQ ID NO: 148
SEQ ID NO: 281



agsA.15
CGCTCACGGTAAGCAGATAGTTATT
CAGGAGATACGCCAGTTGCT
ACGATCTGCAAAAGCG




SEQ ID NO: 16
SEQ ID NO: 149
SEQ ID NO: 282



agsA.16
ACTGGAAATCTGCCTTACGAATACC
CACTGAAGAGACGGTAGAGGATCA
ACGCACTGGATTTATC




SEQ ID NO: 17
SEQ ID NO: 150
SEQ ID NO: 283



agsA.17
AGAGGCCCTGTTCCAGTTTTG
CGTAAGGCAGATTTCCAGTTGAGTT
ATGCTAAGGTGAATAATG




SEQ ID NO: 18
SEQ ID NO: 151
SEQ ID NO: 284



agsA.18
CGCTCACGGTAAGCAGATAGTTA
CGACGCCAGCTTACGATCT
TTCGCATCGCGCTTTT




SEQ ID NO: 19
SEQ ID NO: 152
SEQ ID NO: 285



agsA.19
GTCTCTTCAGTGTGTTTACCCGTAA
GCTTACCGTGAGCGTTCCT
CCGTTTCAATTTCAAGCTCT




SEQ ID NO: 20
SEQ ID NO: 153
SEQ ID NO: 286



agsA.20
CGCCTTACGAATACCACGATAAAATC
CGGCAACCTGAATATTACGGGTAAA
CTGATCCTCTACCGTCTCTT




SEQ ID NO: 21
SEQ ID NO: 154
SEQ ID NO: 287



agsA.21
GACCAACAAGAGGCCCTGTT
AGGCGGATTTCCAGTTGAGTTTT
CCAGTTTCGCATTATTCAC




SEQ ID NO: 22
SEQ ID NO: 155
SEQ ID NO: 288



agsA.22
ACCGTTTCAATTTCAAGCTCTTCCT
GCCAGCTTACGATCTGCAAAAG
CACGGTAAGCAGATAGTTAT




SEQ ID NO: 23
SEQ ID NO: 156
SEQ ID NO: 289














cspH
cspH.0
TTGTCTCGTAAAATGACAGGAATTGTC
ACCTGAACATCTTTGCGTCCAT
AAGGTCTCATCACCCCCTCC




SEQ ID NO: 24
SEQ ID NO: 157
SEQ ID NO: 290



cspH.1
GCGCTTATCCCCGGTATACG
GTTGGCGGCGGTAGGT
CCATTAATACGACAAAACTC




SEQ ID NO: 25
SEQ ID NO: 158
SEQ ID NO: 291



cspH.2
CCCTCCGATGGACGCAAA
GTTTCGTGTTGGCTAAATGCTGAA
ATGTGGACCTGAACATC




SEQ ID NO: 26
SEQ ID NO: 159
SEQ ID NO: 292



cspH.3
GTAAGAGCGGTAAAGGTCTCATCAC
CGTGTAGGCGACATGCTGAA
ATGTGGAACTGAACATCTT




SEQ ID NO: 27
SEQ ID NO: 160
SEQ ID NO: 293



cspH.4
CCCCTCCGATGACGCAAA
GTGTTGGCGACATGCTGAA
ATGTGGACCTGAACATC




SEQ ID NO: 28
SEQ ID NO: 161
SEQ ID NO: 294



cspH.5
TTGTCTCGTAAAATGACAGGAATTGTC
ACCTGAACATCTTTGCGTCCAT
ACCGCTCTTACAATCAA




SEQ ID NO: 29
SEQ ID NO: 162
SEQ ID NO: 295



cspH.6
GAAGCGCTTATCCCCGGTAT
GTCCGCGGAGGCCATTAATA
ACGCGTTGAGTTTTATC




SEQ ID NO: 30
SEQ ID NO: 163
SEQ ID NO: 296



cspH.7
GTAAGAGCGGTAAAGGTCTCATCAC
TGCTGAAATGTGGACCTGAACA
CCCCTCCGATGGACGC




SEQ ID NO: 31
SEQ ID NO: 164
SEQ ID NO: 297



cspH.8
TTGTCTCGTAAAATGACAGGAATTGTC
ACCTGAACATCTTTGCGTCCAT
ACCGCTCTTACAATCAA




SEQ ID NO: 32
SEQ ID NO: 165
SEQ ID NO: 298



cspH.9
GTAAGAGCGGTAAAGGTCTCATCAC
GTGTTGGCGACATGATGAGATG
CCCCTCCGATGGACGC




SEQ ID NO: 33
SEQ ID NO: 166
SEQ ID NO: 299



cspH.10
TTGTCTCGTAAAATGACAGGAATTGTC
ACCTGAACATCTTTGCGTCCAT
AAGAGCGGTAAAGGTCTCA




SEQ ID NO: 34
SEQ ID NO: 167
SEQ ID NO: 300



cspH.11
GTAAGAGCGGTAAAGGTCTCATCAC
GTTTCGTGTTGGCGACATGAT
ATGTGGACCTGAACATCT




SEQ ID NO: 35
SEQ ID NO: 168
SEQ ID NO: 301



cspH.12
GTAAGAGCGGTAAAGGTCTCATCAC
CATGCTGAGATGTGGACCTGAA
ATGGACGCAAAGATG




SEQ ID NO: 36
SEQ ID NO: 169
SEQ ID NO: 302



cspH.13
ACCTTTGATTGTAAGAGCGGTAACC
TGTTGGCGACATGCTGAAATG
ATGGACGCAAAGATG




SEQ ID NO: 37
SEQ ID NO: 170
SEQ ID NO: 303



cspH.14
GATTGTAAGAGCGGTAAAGGTCTCA
TGCTGAAATGTGGACCTGAACA
ACCCCCTCCGATGACG




SEQ ID NO: 38
SEQ ID NO: 171
SEQ ID NO: 304



cspH.15
CCCTCCGATGGACGCAAA
TCGTGTTGGCGACATGCT
ATGTGGACCTGAACATC




SEQ ID NO: 39
SEQ ID NO: 172
SEQ ID NO: 305



cspH.16
TCCGATGGACGCAAAGATGTT
TCTGTTTCGTGTTGGCGACAT
CAGGTCCACATTTCAGC




SEQ ID NO: 40
SEQ ID NO: 173
SEQ ID NO: 306



cspH.17
GACGCAAAGATGTTCAGTTCCA
GGGATAAGCGCTTCTGTTTCGT
TAGGCGACATGCTGAAATG




SEQ ID NO: 41
SEQ ID NO: 174
SEQ ID NO: 307



cspH.18
GATTGTAAGAGCGGTAAAGGTCTCA
TGCTGAAATGTGGACCTGAACA
CACCCCCTCCGATGGAC




SEQ ID NO: 42
SEQ ID NO: 175
SEQ ID NO: 308



cspH.19
TGTTCAGGTCCACATTTCAGCAT
CGACAAAACTCAACGCGTATACC
TCGCCAACACGAAACAG




SEQ ID NO: 43
SEQ ID NO: 176
SEQ ID NO: 309



cspH.20
CACGAAACAGAAGCGCTTATCC
TCCGCGGAGGCCATTAATAC
TACGCGTTGAGTTTTGTC




SEQ ID NO: 44
SEQ ID NO: 177
SEQ ID NO: 310





dnaK
dnaK.0
CGGTGGTGGTACTTTCGATATCTC
GGTTGCCAGAACTTCAAAGGTTTT
TCGCCATCAACTTCG




SEQ ID NO: 45
SEQ ID NO: 178
SEQ ID NO: 311



dnaK.1
GTAACCAGGGCGACCATCT
CCTGCTTCTTCGACCTGCTT
ACGGGTGCTGTGCAGC




SEQ ID NO: 46
SEQ ID NO: 179
SEQ ID NO: 312



dnaK.2
AAAATCATCGGCGCTGACAAC
GCGGCGCCATTTTCTGA
TTCACATCAAGCCATGCGTC




SEQ ID NO: 47
SEQ ID NO: 180
SEQ ID NO: 313



dnaK.3
CCAACTCTTGTGTAGCGATTATGGA
CGCCCTCGGCGTTCT
ACGCGTGCCTGCGTTC




SEQ ID NO: 48
SEQ ID NO: 181
SEQ ID NO: 314



dnaK.4
ACCGTAAGTTTGAAGAGCTGGTT
CCTGCTTCTTCGACCTGCTTA
ATGGTCGCCCTGGTTACG




SEQ ID NO: 49
SEQ ID NO: 182
SEQ ID NO: 315



dnaK.5
CTGAATCCGACCGTAAGTTCGA
GCCTGCTTCTTCAACCTGCTTA
TACGGGTCTGAACCAGC




SEQ ID NO: 50
SEQ ID NO: 183
SEQ ID NO: 316



dnaK.6
CGATACCCGCCTGATCAACTAC
GATCGTTACGCAGGTCAATGC
TCGTTGACGAGTTTAAGAAA




SEQ ID NO: 51
SEQ ID NO: 184
SEQ ID NO: 317



dnaK.7
GCTGCAGGGTGAGCGTAA
GATGCCATCCAGGTTGAACTGA
ACGTGCGTCTGATAACAAAT




SEQ ID NO: 52
SEQ ID NO: 185
SEQ ID NO: 318



dnaK.8
GTGACCCGTGCGAAACTG
CGGCTCGATAGAACGGTTCAC
ATCTTCAACCAGGCTTTC




SEQ ID NO: 53
SEQ ID NO: 186
SEQ ID NO: 319



dnaK.9
AGATCTGGTGAACCGTTCTATCGA
ACCGCCAACGAGGATCAC
CCTGCAGTGCGACTTT




SEQ ID NO: 54
SEQ ID NO: 187
SEQ ID NO: 320



dnaK.10
AAATCGCTCAGCAGCAACATG
AACTCAGCGTCGACAACGT
ACGCTTCTGCAAACAA




SEQ ID NO: 55
SEQ ID NO: 188
SEQ ID NO: 321



dnaK.11
GGCTTACGGTCTGGATAAAGAAGTC
TCGCCATCAACTTCGTCGATTT
CCGTACTATCGCGGTTTAC




SEQ ID NO: 56
SEQ ID NO: 189
SEQ ID NO: 322



dnaK.12
CAGAAGCGAACGCTGAATCC
CCCTGGTTACGGGTCTGAAC
CAGCTCTTCGAACTTAC




SEQ ID NO: 57
SEQ ID NO: 190
SEQ ID NO: 323



dnaK.13
CGGTGGTGGTACTTTCGATATCTC
GGTTGCCAGAACTTCAAAGGTTTT
CAACTTCGTCGATTTCG




SEQ ID NO: 58
SEQ ID NO: 191
SEQ ID NO: 324



dnaK.14
CCGCAGATCGAAGTCACCTT
GTGATCTTCTGCTCTTTACCGCTAT
TCCTGCACGTCTCCGC




SEQ ID NO: 59
SEQ ID NO: 192
SEQ ID NO: 325



dnaK.15
CACGCGTGCTGGAGAAC
CAGAGTTTCACCATCCTGGGTATAA
CTACGCCTTCTATCATTGC




SEQ ID NO: 60
SEQ ID NO: 193
SEQ ID NO: 326



dnaK.16
CCGTACCGGCTTACTTTAACGAT
CAGTTGGTTCGTTGATGATACGTTT
ACGACCAGCATCTTTG




SEQ ID NO: 61
SEQ ID NO: 194
SEQ ID NO: 327



dnaK.17
TTCTATCGACCGCTGAAAGTC
ACCGCCAACGAGGATCAC
CAGACACGGATAGGCC




SEQ ID NO: 62
SEQ ID NO: 195
SEQ ID NO: 328



dnaK.18
CGCCTGATCAACTACCTCGTT
TTTCAGGCGCTGCATTGC
ACGCAGGTCAATGCCCT




SEQ ID NO: 63
SEQ ID NO: 196
SEQ ID NO: 329



dnaK.19
AACTGGAAAGCCTGGTTGAAGAT
TCCTGCAGTGCGACTTTCAG
CTGGTGAACCGTTCTATC




SEQ ID NO: 64
SEQ ID NO: 197
SEQ ID NO: 330



dnaK.20
ATCAAAGTGACTCGTGCAAAACTG
CGGCTCGATAGAACGGTTCAC
CAGATCTTCAACCAGGCTTT




SEQ ID NO: 65
SEQ ID NO: 198
SEQ ID NO: 331





Hsp6
hsp60.0
CTCCGACTCTAAAGCGATTGCT
CGATCAGTTTACCTACGGTTTCGT
ACTATTTCCGCTAACTCCG


0

SEQ ID NO: 66
SEQ ID NO: 199
SEQ ID NO: 332



hsp60.1
CGACGAAACCGTAGGTAAACTGAT
AACGGTGATGACGCCTTCTTTA
CTTTATCCATCGCTTCCGCG




SEQ ID NO: 67
SEQ ID NO: 200
SEQ ID NO: 333



hsp60.2
ATGGCAGCTAAAGACGTAAAATTCG
CGAGGGTTACTTTCACTGCATCTG
ACGCTCGTGTGAAAAT




SEQ ID NO: 68
SEQ ID NO: 201
SEQ ID NO: 334



hsp60.3
GTAAGGCGATGCTGCAGGATAT
AGCTCCATACCGATCTCTTCAGA
CCTGACCGGCGGTACC




SEQ ID NO: 69
SEQ ID NO: 202
SEQ ID NO: 335



hsp60.4
CGGCAACATGATCGATATGGGTAT
GCCACAGAAGCAGCGTACT
CAGAACGGGTAACTTTG




SEQ ID NO: 70
SEQ ID NO: 203
SEQ ID NO: 336



hsp60.5
CCGTGCTGCGGTAGAAGAA
AATTTTAGAAGCAACGCGGATCAG
CCACCACCAGCAACCA




SEQ ID NO: 71
SEQ ID NO: 204
SEQ ID NO: 337



hsp60.6
CCGTAGCGCGTGAAATCG
CTGCGCGCCCATGTTTT
AACTGGAAGACAAGTTTG




SEQ ID NO: 72
SEQ ID NO: 205
SEQ ID NO: 338



hsp60.7
TCAACAAAGACACCACCACCAT
CCTGGATGGCAGCTTCTTCA
CCCACGCCATCAATG




SEQ ID NO: 73
SEQ ID NO: 206
SEQ ID NO: 339



hsp60.8
CCAACCAAAGTTACCCGTTCTG
GTCACCATGCACTCGGTAGT
CTGTGGCTGGTCTGATGAT




SEQ ID NO: 74
SEQ ID NO: 207 
SEQ ID NO: 340



hsp60.9
GGAAGCCGTTGCAAAAGCA
GCGCTTCGCCTTCAACA
TCTTCAGCGATGATCAGC




SEQ ID NO: 75
SEQ ID NO: 208
SEQ ID NO: 341



hsp60.10
CAGATGGTGAAAGAAGTTGCCTCTA
GCTTTCAAGCCTTCGGTAATGATG
TCGCCTGCAGCATCG




SEQ ID NO: 76
SEQ ID NO: 209
SEQ ID NO: 342



hsp60.11
GAGATCGGTATGGAGCTGGAAAA
TGGTGGTGTCTTTGTTGATCACA
CTGCCCCAGGTCTTC




SEQ ID NO: 77
SEQ ID NO: 210
SEQ ID NO: 343



hsp60.12
CAGATGGTGAAAGAAGTTGCCTCTA
CTTTCAGGCCTTCGGTAATAATGGA
CTGCAGCGTCGTTCGC




SEQ ID NO: 78
SEQ ID NO: 211
SEQ ID NO: 344



hsp60.13
CTCCGACTCTAAAGCGATTGCT
GCGATCAGTTTACCTACAGTTTCGT
ACTATCTCCGCTAACTCC




SEQ ID NO: 79
SEQ ID NO: 212
SEQ ID NO: 345



hsp60.14
GGCGAAACGTGTTGTGATCAA
CCTGGATGGCAGCTTCTTCA
ACACCACCACCATCATT




SEQ ID NO: 80
SEQ ID NO: 213
SEQ ID NO: 346



hsp60.15
CCGACGAAACTGTAGGTAAACTGAT
AACGGTGATGACGCCTTCTTTA
AAGCGATGGATAAAGTC




SEQ ID NO: 81
SEQ ID NO: 214
SEQ ID NO: 347



hsp60.16
GCTGCTGATCATCGCTGAAGAT
ACAGCAGCCACTTTCACGAT
CACGCATGGTGTTCAC




SEQ ID NO: 82
SEQ ID NO: 215
SEQ ID NO: 348



hsp60.17
CGGTAGAAGAAGGCGTGGTT
GCCTTTCAGGTCAGCAATTTTAGAA
TCAGCGCAACGCCACC




SEQ ID NO: 83
SEQ ID NO: 216
SEQ ID NO: 349



hsp60.18
GCTGCTGCGGTTGAAGAG
CTACCTGAGCAATCGCTTTAGAGT
ACGGACAGGGCTTTCA




SEQ ID NO: 84
SEQ ID NO: 217
SEQ ID NO: 350



hsp60.19
GGCAGATGCAGTGAAAGTTACC
CGCACCGAAAGATTTATCCAGAAC
ACGTTACGGCCTTTCGGACCG




SEQ ID NO: 85
SEQ ID NO: 218
SEQ ID NO: 351



hsp60.20
CGACCGAAGTTGAAATGAAAGAGAA
AGCAACCACGCCTTCTTCTAC
TCTTCAACGCGGGCTTT




SEQ ID NO: 86
SEQ ID NO: 219
SEQ ID NO: 352





ibpAB
ibpAB.0
GCTGGCTGAGAATATGGAAGTTTC
CGTTGCGGGTTAAATCAATATGCA
CCGTTGGTAAACGTCGCGCC




SEQ ID NO: 87
SEQ ID NO: 220
SEQ ID NO: 353



ibpAB.1
TCCAGTTAGCGGAGAACATTCAC
CGATATACAGCAGCCCGTTGAC
TCGTGGCGCAAACC




SEQ ID NO: 88
SEQ ID NO: 221
SEQ ID NO: 354



ibpAB.2
CAGTTAGCGGAAAACATTCACGTT
CGCGCTCCAGTTCGATATACAG
CCGTTGACCAGGTTTGCGC




SEQ ID NO: 89
SEQ ID NO: 222
SEQ ID NO: 355



ibpAB.3
TGCGCGGCCTGTCA
TCACACTTTACGTGCGAATATGCT
TCCCATGCTCGCCGTCAG




SEQ ID NO: 90
SEQ ID NO: 223
SEQ ID NO: 356



ibpAB.4
GAGCTTCCCGCCCTATAACAT
ACGCTAAGGTAATGCGATAATGGTT
ATCGTCGCTTTTTTCG




SEQ ID NO: 91
SEQ ID NO: 224
SEQ ID NO: 357



ibpAB.5
TGCTGTACCGTTCTGCCATT
AGGGTGCCGCCATTACTTTG
ACAGACGGTCAAAACC




SEQ ID NO: 92
SEQ ID NO: 225
SEQ ID NO: 358



ibpAB.6
GCGCCTGACGGTGAAAG
AGGCCCTGATGTAACCATTTGG
AACAGCCGGAAAACG




SEQ ID NO: 93
SEQ ID NO: 226
SEQ ID NO: 359



ibpAB.7
CGCACGTAAAGTGTGAAGGTAAAA
CAGCTTGTCAAAACCGATCCATTG
CTTAGAAGGAGAAATGATTATGC




SEQ ID NO: 94
SEQ ID NO: 227
SEQ ID NO: 360



ibpAB.8
CCACTGCTGCGTCAATGGA
CTGTTTTGCAGCGCATTGG
CCAGCTTGTCAAAACC




SEQ ID NO: 95
SEQ ID NO: 228
SEQ ID NO: 361



ibpAB.9
CTACCGCATCGCCATTGC
GAGCGCCTTTTACCACCAGTA
TTCGCGGAAAGCGAACTG




SEQ ID NO: 96
SEQ ID NO: 229
SEQ ID NO: 362



ibpAB.10
GAAAACGACCCAAATGGTTACATC
GCGTAAAGCTCAGGCTAAAAGG
CTGCATGACCAGGCCCT




SEQ ID NO: 97
SEQ ID NO: 230
SEQ ID NO: 363



ibpAB.11
CGAGACAGAAAGAACGTACTTACCT
AACGTGAATGTTTTCCGCTAACTG
AAGTTACGCTCGGCAATGC




SEQ ID NO: 98
SEQ ID NO: 231
SEQ ID NO: 364



ibpAB.12
GGTGGTAAAAGGCGCTCATG
AAAGTTACGCTCGGCAATGC
ACAGGTAAGTACGTTCTTTC




SEQ ID NO: 99
SEQ ID NO: 232
SEQ ID NO: 365



ibpAB.13
CTTCCCGCCCTATAACATCGA
CGGCTAACGCTAAGGTAATGC
AATGGTTATCGTCGCTTTTT




SEQ ID NO: 100
SEQ ID NO: 233
SEQ ID NO: 366



ibpAB.14
GGCCTGCTGCTATTGATTTAACC
CGCTGCGGCGCAAT
CAACGAGCCGGAAACC




SEQ ID NO: 101
SEQ ID NO: 234
SEQ ID NO: 367



ibpAB.15
CGCACGTAAAGTGTGAAGGTAAAA
CCGATCCATTGACGCAACAG
ATGCGTAACTACGATTTATC




SEQ ID NO: 102
SEQ ID NO: 235
SEQ ID NO: 368



ibpAB.16
GGCGCGACGTTTACCAA
TGGTTTCCGGCTCGTTACG
CCTGCTGCTATTGATTTA




SEQ ID NO: 103
SEQ ID NO: 236
SEQ ID NO: 369



ibpAB.17
CGCACGTAAAGTGTGAAGGTAAAA
CAGCTTGTCAAAACCGATCCATTG
ATGCGTAACTACGATTTATC




SEQ ID NO: 104
SEQ ID NO: 237
SEQ ID NO: 370



ibpAB.18
CGAACTGGAGCGCGTGAT
CGACCCGACGGAATCAGTTAATTT
AAACCGCGCCGTATCG




SEQ ID NO: 105
SEQ ID NO: 238
SEQ ID NO: 371



ibpAB.19
CGCCGTCAGGGAGCAT
CTCCTTCTAAGAAGCGAGTTTTACCT
ATTCGCACGTAAAGTGTG




SEQ ID NO: 106
SEQ ID NO: 239
SEQ ID NO: 372



ibpAB.20
CGCCGTATCGAAATTAACTGATTCC
TCACACTTTACGTGCGAATATGCT
CTGTCATCCCATGCTCG




SEQ ID NO: 107
SEQ ID NO: 240
SEQ ID NO: 373



ibpAB.21
CGCCGTCAGGGAGCAT
CGTAGTTACGCATAATCATTTCTCCTTCT
ATTCGCACGTAAAGTGTG




SEQ ID NO: 108
SEQ ID NO: 241
SEQ ID NO: 374



ibpAB.22
ACTGGAGATTACTGCCCAGGATAAT
TCGGCAATGCCCTGATACAG
CATGAGCGCCTTTTAC




SEQ ID NO: 109
SEQ ID NO: 242
SEQ ID NO: 375





uspA
uspA.0
TGGTGATGACCGCAAACGA
CGGTAGCGGCGATTTGG
CCAGATCCATATCGTATTTC




SEQ ID NO: 110
SEQ ID NO: 243
SEQ ID NO: 376



uspA.1
TTTCTTCGGAGATACGTTTCTGCAT
GAAAATCTCCCTCATCCACGTTGAT
CTGTACACCGGTCTGATTG




SEQ ID NO: 111
SEQ ID NO: 244
SEQ ID NO: 377



uspA.2
GCAAACGACCAGATCCATATCG
AGCGGTAGCGGCGATTT
CAGGTGCTGGTTGACGC




SEQ ID NO: 112
SEQ ID NO: 245
SEQ ID NO: 378



uspA.3
CGTCAATCAGACCGGTGTACAG
CAACGCGAAAATCTCCCTCATC
ACGTTGACGTGAATTATT




SEQ ID NO: 113
SEQ ID NO: 246
SEQ ID NO: 379



uspA.4
GCGGAACAATCAGCATGTCAA
TCTGGAGCAAACTGATGTCTTCTG
CTGATCAACACCGTTCACG




SEQ ID NO: 114
SEQ ID NO: 247
SEQ ID NO: 380



uspA.5
GCAAACGACCAGATCCATATCG
CTGGCTACCCTATCACTGAAACC
CCCAAATCGCCGCTACC




SEQ ID NO: 115
SEQ ID NO: 248
SEQ ID NO: 381



uspA.6
GTAGCCAGCGTTGGTAGACA
GCAGAAACGTATCTCCAAAGAAACC
ACCACGCGCTGACCG




SEQ ID NO: 116
SEQ ID NO: 249
SEQ ID NO: 382



uspA.7
CGCAGCGGCACAATCA
CGCGCCAGCTGATCAAC
CCGTTCACGTTGACATGC




SEQ ID NO: 117
SEQ ID NO: 250
SEQ ID NO: 383



uspA.8
CCGCTCAGGGTTTCAGTGATA
CGCTGACCGAGCTGTCTAC
CAACGCTGGCTACCC




SEQ ID NO: 118
SEQ ID NO: 251
SEQ ID NO: 384



uspA.9
CGCTCAGGGTTTCAGTGATAGG
TGGGCGATATGCAGAAACGTAT
CAGCGTTGGTAGACAGC




SEQ ID NO: 119
SEQ ID NO: 252
SEQ ID NO: 385



uspA.10
AAGACATCAGTTTGCTCCAGAAGT
GGCCAGGTGCTGGTTGAT
TCGTTTGCGGTCATCACC




SEQ ID NO: 120
SEQ ID NO: 253
SEQ ID NO: 386



uspA.11
TTTCTTCGGAGATACGTTTCTGCAT
GAAAATCTCCCTCATCCACGTTGAT
CCGGTGTACAGGTCAGAAT




SEQ ID NO: 121
SEQ ID NO: 254
SEQ ID NO: 387



uspA.12
GAACAATCAGCATGTCAACGTGAA
TCTGGAGCAAACTGATGTCTTCTG
CCAGCTGATCAACACCG




SEQ ID NO: 122
SEQ ID NO: 255
SEQ ID NO: 388



uspA.13
CCGGTGTACAGGTCTGAATAGTTC
GCCCCTACAACGCGAAAAT
CTCCCTCATCCACGTTGAT




SEQ ID NO: 123
SEQ ID NO: 256
SEQ ID NO: 389



uspA.14
GTAGCCAGCGTTGGTAGACA
TGGGCGATATGCAGAAACGTAT
CCCACCACGCGCTGAC




SEQ ID NO: 124
SEQ ID NO: 257
SEQ ID NO: 390



uspA.15
TGGCGCGCAGAAGACAT
GGTCGTTTGCGGTCATCAC
CAGTTTGCTCCAGAAGTC




SEQ ID NO: 125
SEQ ID NO: 258
SEQ ID NO: 391



uspA.16
CTACCGCTCAGGGTTTCAGT
CGCTGACCGAGCTGTCTAC
ACGCTGGCTACCCTATC




SEQ ID NO: 126
SEQ ID NO: 259
SEQ ID NO: 392



uspA.17
CGCTCAGGGTTTCAGTGATAGG
TGGGCGATATGCAGAAACGTAT
CCGAGCTGTCTACCAACG




SEQ ID NO: 127
SEQ ID NO: 260
SEQ ID NO: 393



uspA.18
ACCGGTGTACAGGTCTGAATAATTC
GCGCGCCCCTACAAC
ATGAGGGAGATTTTCG




SEQ ID NO: 128
SEQ ID NO: 261
SEQ ID NO: 394



uspA.19
GTGGTGGGTTTCTTCGGAGAT
CCTGTACACCGGTCTGATTGAC
ACGTTTCTGCATATCGCC




SEQ ID NO: 129
SEQ ID NO: 262
SEQ ID NO: 395



uspA.20
CGCTCAGGGTTTCAGTGATAGG
TGGGCGATATGCAGAAACGTAT
CAGCGTTGGTAGACAGC




SEQ ID NO: 130
SEQ ID NO: 263
SEQ ID NO: 396



uspA.21
TGGCGCGCAGAAGACAT
GGTCGTTTGCGGTCATCAC
ACTTCTGGAGCAAACTG




SEQ ID NO: 131
SEQ ID NO: 264
SEQ ID NO: 397



uspA.22
GCGCAGCGGAACAATCA
CGCGCCAGCTGATCAAC
CCGTTCACGTTGACATGC




SEQ ID NO: 132
SEQ ID NO: 265
SEQ ID NO: 398





hilA

GCAGTATGCGCCCTTTGG
CACTGCGGCAGTTCTTCGTA
TGCTGCCGGTGACC




SEQ ID NO: 133
SEQ ID NO: 266
SEQ ID NO: 399









The assays were evaluated under uninduced conditions as well as induced conditions (45° C., 15 minutes) using pure cultures of Salmonella enterica. Duplicate samples were maintained at 37° C. (uninduced) or 45° C. (heat-induced) for 15 minutes before processing for nucleic acids. The extracted nucleic acids were assayed for induction by real-time reverse-transcriptase-PCR (DNA+ RNA). To measure contribution due to DNA alone, control reactions were run without addition of the reverse transcriptase (DNA). Transcriptional activity (contribution to Ct value by RNA alone) was estimated by subtracting the Ct value obtained for DNA and RNA (with reverse transcriptase reaction) from the Ct value obtained for DNA alone (without reverse transcriptase reaction) for both uninduced and induced samples.



FIGS. 1A and 1B depict evaluation of heat-induced target genes for detecting Salmonella enterica. FIG. 1A depicts Ct data vs various primer/probe sets specific to some heat-inducible RNA genes for both uninduced (negative control) and induced cultures. An overnight S. enterica culture was diluted and grown at 37° C. to obtain exponential phase cells. Duplicate samples were maintained at 37° C. (uninduced) or at 45° C. (heat-induced) for 15 minutes; nucleic acids were extracted and assayed for induction by real-time reverse-transcriptase-PCR (hatched bars). To measure contribution due to DNA, control reactions were run without addition of the reverse transcriptase (solid bars). FIG. 1B depicts Delta Ct data vs. various primer/probe sets specific to some heat-inducible RNA genes for both uninduced (negative control) and induced cultures. Transcriptional activity was estimated by subtracting the CT value obtained for DNA and RNA (with reverse transcriptase reactions) from the CT value obtained for DNA alone (without reverse transcriptase reactions) for uninduced (solid bars) and induced (striped bars) samples. While inclusion of reverse transcriptase generally dropped the Ct levels in both uninduced and induced samples, a greater drop was observed upon induction, indicating higher transcript levels under these conditions. Transcriptional activity (FIG. 1B) for the uninduced samples generally ranged from 0 to <2 Ct, with the exception of one target, agsA-I, in which a 4 Ct difference was observed. For induced samples, this range was 1Ct-5Ct.



FIG. 2A-FIG. 2B show data on heat-induction of Salmonella response genes in the presence of a food matrix. The agsA assays were further verified in the context of contaminated food samples (FIG. 2A and FIG. 2B). A volume of whole milk (25 ml) was spiked with approximately 10 cfu of Salmonella. Enrichment broth (225 ml, Brian Heart Infusion Broth) was added. Samples were enriched for 16 hours at 37° C. At the end of the incubation period, duplicate samples were withdrawn. Samples were either heat-induced or uninduced. One set was maintained at 37° C. (Uninduced) and one set was incubated at 45° C. (Induced) for 15 minutes. The extracted nucleic acids were assayed for induction by real-time reverse-transcriptase-PCR (hatched bars). To measure contribution due to DNA, control reactions were run without addition of the reverse transcriptase (solid bars). Similar to the results with pure cultures, induction followed by real-time RT-PCR improved signal by 1 Ct-3 Ct (2-8 fold difference in the amount of target). FIG. 2A shows the Ct data vs various primer/probe sets specific to some heat-inducible RNA genes (see X-axis) for both uninduced (negative control) and induced cultures. FIG. 2B shows Delta Ct data vs. various primer/probe sets for specific to some heat-inducible RNA genes for both uninduced (negative control) and induced cultures. Transcriptional activity was estimated by subtracting the CT value obtained for DNA and RNA (with reverse transciptase reactions) from the CT value obtained for DNA alone (without reverse transcriptase reactions) for uninduced (solid bars) and induced (striped bars) samples.


Induction was also evaluated with respect to enrichment time. FIG. 3A-FIG. 3J provide data for evaluating heat-induction of response genes in Salmonella during growth in a food matrix with respect to enrichment time. Samples (25 ml volumes) of whole milk were spiked with approximately 10 cfu of Salmonella. Enrichment broth (225 ml; Brian Heart Infusion Broth) was added. Samples were enriched at 37° C., and duplicate aliquots were withdrawn after 4 hours, 6 hours, 8 hours and 24 hours of growth. One set was maintained at 37° C. (uninduced) and one set was incubated at 45° C. (induced) for 15 minutes. For the data of FIG. 3A-FIG. 3J, duplicate 1 ml samples were withdrawn following 4, 6, 8 and 24 hours and induced or maintained as uninduced. At all times, induction followed by real time RT-PCR, gave the best signal (lowest Ct value). FIGS. 3A, 3C, 3E, 3G, and 3I show Ct data vs time for uninduced and induced cultures. The extracted nucleic acids were assayed for induction by real-time reverse-transcriptase-PCR (hatched bars). To measure contribution due to DNA, control reactions were run without addition of the reverse transcriptase (solid bars). FIGS. 3B, 3D, 3F, 3H, 3J show Delta Ct data vs. time for uninduced and induced cultures. Transcriptional activity was estimated by subtracting the CT value obtained for DNA and RNA (with reverse transciptase reactions) from the CT value obtained for DNA alone (without reverse transcriptase reactions) for uninduced (solid bars) and induced samples (striped bars). At the 8 hour time point, this difference was the highest and signal was reduced from Ct˜35 to a more robust Ct<30 for all assays tested. Additionally, the fold-differences observed during the early times were much higher, indicating the advantage of using exponential cultures for this application, versus the stationary phase cultures following 24 hours of incubation. These studies demonstrate that a shorter enrichment time combined with detection of an inducible RNA target can be used in place of longer enrichment times as a means to achieve higher signals of target.


When combined with a larger volume of starting sample (e.g 20 ml), a Ct difference of as much as 9 Ct was observed with spinach rinse samples (FIG. 4A and FIG. 4B). For the data of FIGS. 1A and 4B, spinach (25 g) was spiked with approximately 30 cfu of Salmonella. Prewarmed enrichment broth (225 ml, Brian Heart Infusion Broth) was added. Samples were enriched at 37° C., and duplicate 20 ml aliquots were withdrawn after 4 hours, 6 hours, 8 hours and 24 hours of growth. One set was maintained at 37° C. (uninduced) and one set was incubated at 45° C. (induced) for 15 minutes. FIG. 4A shows Ct data vs time for uninduced and induced cultures (probe/primer set agsA.6). The extracted nucleic acids were assayed for induction by real-time reverse-transcriptase-PCR (hatched bars). To measure contribution due to DNA, control reactions were run without addition of the reverse transcriptase (solid bars). FIG. 4B shows Delta Ct data vs. time for uninduced and induced cultures. Transcriptional activity was estimated by subtracting the CT value obtained for DNA and RNA (with reverse transciptase reactions) from the CT value obtained for DNA alone (without reverse transcriptase reactions) for uninduced (solid bars) and induced samples (striped and dotted bars). The data demonstrate that use of larger volumes of starting sample combined with use of induced RNA detection provides a further improvement in signal, allowing for more robust and earlier time-to-result.



FIG. 8A and FIG. 8B provide data on the use of heat induction to detect Salmonella by measuring the target hilA. The results demonstrate that including the reverse transcriptase step in the detection improves the signal by 2 Cts.


Results for enriched samples were confirmed by plating on CHROMagar™ plates (CHROMager Microbiology, Paris France). That is, following enrichment, samples were withdrawn for RNA extraction and, in parallel, samples were also plated for culture confirmation (CHROMAgar) to verify presence of pathogen. The plate results were recorded following overnight growth at 37° C. A 100% correlation was obtained between RT-PCR results and plate confirmation.


Example 2
Inducible RNA Targets for Early Detection of Listeria

The present example describes identification and evaluation of inducible RNA targets for detection of the pathogenic microbe Listeria monocytogenes using real-time RT-PCR.


Materials and Methods; Bacteria and Growth Conditions: A Listeria monocytogenes overnight culture (Brain Heart Infusion broth (BHI), Teknova, Hollister, Calif.) was diluted and grown at 37° C. to obtain exponential phase cells (5 hours). For spiking food samples, 25 g or 25 ml of the food sample was transferred into stomacher bags. Bacteria were spiked in the 1-100 cfu range. Samples were enriched according to standard procedures as described in the Bacteriological Analytical Manual (U.S. Food and Drug Administration, Bacteriological Analytical Manual, Chapter 10, See www.fda.gov). Enrichment media (225 ml) was added to each food sample and sample; for enrichment of Listeria, samples were enriched in Buffered Listeria Enrichment Broth with selective supplements (Buffered Listeria Enrichment Broth, EMD Chemicals, Gibbstown, N.J.). Samples were enriched at 37° C. for a maximum of 24 hours.


Inducing Conditions: For Listeria, several different inducing conditions were evaluated as follows: a) heat induction at 48° C., 20 minutes, b) salt stress at 0.3M NaCl final concentration for 10 minutes at 37° C., c) activated charcoal induction for 5 hours, d) acid stress for 10 minutes at 37° C., and e) cold stress. For b), a 1:1 dilution of culture with brain heart infusion broth containing 0.6M NaCl was made to provide a final concentration of 0.3M NaCl. For c), the Listeria was grown in buffered Listeria enrichment broth treated with activated charcoal. The media was prepared by adding activated charcoal to enrichment broth to 0.2% final volume before autoclaving, stirred for 1 hour, then autoclaved and filtered through a 0.22 uM membrane. For d), a 1:3 dilution of culture in acidified brain heart infusion broth was made. Acidified BHI is prepared by adding HCl to BHI, and checking pH. For example, 100 μl HCl added to 5 ml BHI resulted in a pH of 2.5. For e), for food matrix experiments, the enriched sample was held on ice for 10 minutes. Uninduced controls were maintained at 37° C.


Sample Preparation and Real-time PCR: Sample preparation and real-time PCR procedures were performed as for Example 1.


Primers and Probes: TAQMAN® real-time PCR assays, which include primers and probes for each assay, were designed using a rigorous bioinformatics assay design pipeline against candidate inducible targets in Listeria (Table 2). Full length genes representing each of the candidate targets were obtained from the annotated, publicly available genome sequences of L. monocytogenes EGD-e. These gene sequences were used to query the GenBank database and obtain all other publicly available, homologous Listeria sequences. Assays were designed to match all of the related Listeria sequences, while not matching any other sequences in the microbial subset of GenBank. The probes were labeled with a FAM™ dye to enable detection by real-time PCR.


Assays designed for Listeria are shown in Table 2, which has a column designated as “Gene” indicating the name of the inducible target gene; a column designated as “Assay” which indicates an assay number given to the combination of “Forward Primer” and “Reverse Primer” and “Probe” in the same row as the assay number. For example, one Listeria assay, for detecting the inducible target gene inlA, may comprise assay inlA.0 and use the primer of SEQ ID NO: 400 (forward primer), the primer of SEQ ID NO: 855 (reverse primer) and the probe of SEQ ID NO: 1310. In another example, one Listeria assay, for detecting the inducible target gene lmo0539, may comprise assay lmno0539.1 and use the primer of SEQ ID NO: 422 (forward primer), the primer of SEQ ID NO: 877 (reverse primer) and the probe of SEQ ID NO: 1332.









TABLE 2







TaqMan®  assays designed against candidate inducible genes in Listeria.











Gene
Assay
Forward Primer
Reverse Primer
Probe





inLA
inlA.0
GCGATGGTGGTAGTTATGCAGAA
GTTCCTTTTCCAATGGTGACAGATT
CCTGATATAACATGGAATTTA




SEQ ID NO: 400
SEQ ID NO: 855
SEQ ID NO: 1310



inlA.1
GGCACATTGGCGAGTTTAACAAA
TGTTACTTATTTGGTTAGCTCCCA
TCGGGTCTAACAAAACTAAC




SEQ ID NO: 401
GTTTT
SEQ ID NO: 1311





SEQ ID NO: 856




inlA.2
CGGTCTTAGGAAAAACGAATGTAACAG
GAAGCGTCGTAACTTGGTCTAGAT
CACGGTCTCACAAACAG




SEQ ID NO: 402
SEQ ID NO: 857
SEQ ID NO: 1312



inlA.3
CGATAATGCGCTCTACCTGTTGATA
TGCTTTTTTAGTAAGAGCCACTGCA
TCCTACTGCTAATAACCC




SEQ ID NO: 403
SEQ ID NO: 858
SEQ ID NO: 1313



inlA.4
CCAACAAAAGCCGGATATGCT
GCTGGCATTTTATCTGTCGCAAA
TTTCGTCATACCAACCTTTG




SEQ ID NO: 404
SEQ ID NO: 859
SEQ ID NO: 1314



inlA.5
CGAATCTAACTGGTTTGACTTTGTTCAA
GTGTTACTGGATAGTTCTAGCCGATT
AAGCGGGTCTATATCCG




SEQ ID NO: 405
SEQ ID NO: 860
SEQ ID NO: 1315



inlA.6
CCAAATAAGTGATATAACTCCACTTGGGA
ACTCGCCAATGTGCCTATATCTTTT
TTGGACGAATTATCCTTAAATGG




SEQ ID NO: 406
SEQ ID NO: 861
SEQ ID NO: 1316



inlA.7
TCAGGCAGCTACAATTACACAAGAT
TCGTTTTTCCTAAGACCGTCTTCATT
CCGCTAGAGCTGTATCTG




SEQ ID NO: 407
SEQ ID NO: 862
SEQ ID NO: 1317



inlA.8
CCCAATTTCTAACCTGAAAAATCTCACA
CGAGCTTACGTCACTTACCTTGTTA
AAGCCCAGTTTCTAGTTTAA




SEQ ID NO: 408
SEQ ID NO: 863
SEQ ID NO: 1318



inlA.9
GGACGAATTATCCTTAAATGGTAACCAGTT
CCGACAGTGGTGCTAGATTACTAAT
ACATTGGCGAGTTTAAC




SEQ ID NO: 409
SEQ ID NO: 864
SEQ ID NO: 1319



inlA.10
ACCAAATTAGTAATCTAGCACCACTGTC
GGGACTGATGTTACTTATTTGGTTAGC
AACTCAGTTAGTTTTGTTA




SEQ ID NO: 410
SEQ ID NO: 865
GACCC






SEQ ID NO: 1320



inlA.11
CCTGTCACTATTGGAAAAGGAACGA
GCCGTCCACATGAAACTTAGCATTA
CACGGTTCCACTAAATG




SEQ ID NO: 411
SEQ ID NO: 866
SEQ ID NO: 1321



inlA.12
ACGGTCTCGCAAACAGATCTAG
GTTAAATTGTTCAAGTATTCCAA
ACCAAGTTACAACGCTTCAG




SEQ ID NO: 412
TCCATCGA
SEQ ID NO: 1322





SEQ ID NO: 867




inlA.13
CGCAGAAACAGGCGGTAAAA
AGTTACTGGATTTGCAGGCATCTT
TCTTGAGCAAAATCC




SEQ ID NO: 413
SEQ ID NO: 868
SEQ ID NO: 1323



inlA.14
GCACAACAAGTACAATGAACGCTTA
CCCTAACAAAAGGTAGAGCGCATTA
CCTACAACTGGCGATAGC




SEQ ID NO: 414
SEQ ID NO: 869
SEQ ID NO: 1324



inlA.15
GCAAATATACCTGGAAGCAACACAT
GCGTTCATTGTACTTGTTGTGCTA
ATCAACTGGGAATTCAGC




SEQ ID NO: 415
SEQ ID NO: 870
SEQ ID NO: 1325



inlA.16
GCTTCAGGCAGATAGATTAGGGATAA
TCTTTAAGTGGCGTTATATCCGTA
CACAAATAAATTTCAGCAATAAT




SEQ ID NO: 416
AGTTG
SEQ ID NO: 1326





SEQ ID NO: 871




inlA.17
AGCGTTAAATCGTATACAGCAACATTTG
GCTGCCGGTTCTGTCAGA
TCGTTGTTGTTCCTTCTTTG




SEQ ID NO: 417
SEQ ID NO: 872
SEQ ID NO: 1327



inlA.18
CTGGTCTAACCGCACTCACTAA
GTGAGATTTTTCAAGTTAGAAATTG
CTTAGAGCTAAATGAAAATC




SEQ ID NO: 418
GGCTAA
SEQ ID NO: 1328





SEQ ID NO: 873




inlA.19
CATGGAACTTACCTAGCTATACGAATGAA
AGTGGCTGCGTCACAGTT
AAGGAACGACAACATTTAG




SEQ ID NO: 419
SEQ ID NO: 874
SEQ ID NO: 1329



inlA.20
CGACTCAAGCAGTAGACTATCAAGGA
GTTTTTTCGTCATACCAGCCTTTGA
ACGAAAGCCGGATATAC




SEQ ID NO: 420
SEQ ID NO: 875
SEQ ID NO: 1330





lmo053
lmo0539.0
CGGCAAACAAGGCGATGA
GTTTTCTTTCCCTTGCGTACGAA
CCATTCGCGTAAAGCG


9

SEQ ID NO: 421
SEQ ID NO: 876
SEQ ID NO: 1331



lmo0539.1
GATCCAACAAGCAAAAGGAACAGAA
ATCGCAGAAGCATAAGGTGTAAGTT
AAAAGATGTGGAAGACTTC




SEQ ID NO: 422
SEQ ID NO: 877
SEQ ID NO: 1332



lmo0539.2
GATCCAACAAGCAAAAGGAACAGAA
GCAAAATCGCAGAAGCATAAGGT
CTTGTTTCTGAAGAACTTAC




SEQ ID NO: 423
SEQ ID NO: 878
SEQ ID NO: 1333



lmo0539.3
GCAACAACTCCTGGTAAACTTCCT
CAGCATCTCCGCCATTTTCTTTAAT
AAGTGCCGATAAATCTT




SEQ ID NO: 424
SEQ ID NO: 879
SEQ ID NO: 1334



lmo0539.4
AATATGGTACTCCAGCAATCAAAGCT
GGAGTAGTTGCGTCATATCCTGTTT
ACGAAGGTAGCGGACTTT




SEQ ID NO: 425
SEQ ID NO: 880
SEQ ID NO: 1335



lmo0539.5
TGATGCAAAAGTTACTGATTCTGGTTCT
CGAGGTTTAGAGAATTCTTTAATG
TTTGCTGGTTTTAATTTC




SEQ ID NO: 426
GAAGCT
SEQ ID NO: 1336





SEQ ID NO: 881




lmo0539.6
TGCTTCTGCGATTTTGCTTGATTT
AGTTAACAGTCCGCTACCTTCATG
CCAGCAATCAAAGCTC




SEQ ID NO: 427
SEQ ID NO: 882
SEQ ID NO: 1337



lmo0539.7
CTACACCTGGTAAACTGCCTGATT
GCATCTCCGCCGTTTTCTTTAAT
ACGAAGTGCAGATAAGTCTT




SEQ ID NO: 428
SEQ ID NO: 883
SEQ ID NO: 1338



lmo0539.8
AAACCAGCAAAAGTAAAAGCTTCCATT
CTTCCGCAAAACCTTCCACATATTT
ATGGTGTAGATGTACTTAAAC




SEQ ID NO: 429
SEQ ID NO: 884
SEQ ID NO: 1339



lmo0539.9
GCGAACCAACATAACGTGCAATATA
TCGATACCATCAGCCCAAGTTG
CACGACCGCAAAGTAC




SEQ ID NO: 430
SEQ ID NO: 885
SEQ ID NO: 1340



lmo0539.10
ATGGTACAAATAACAAAAGGTAAATTTGATGGT
AATGGCAAGTGCTGCAATGAC
TATCGTTGGAGAGTCTTTG




SEQ ID NO: 431
SEQ ID NO: 886
SEQ ID NO: 1341



lmo0539.11
AAGGATGTAGAAGACTTCAAACAACTTGT
AGCTTTGATTGCTGGAGTACCAT
TCTAAATCAAGCAAAATCG




SEQ ID NO: 432
SEQ ID NO: 887
SEQ ID NO: 1342



lmo0539.12
CCTCGTTATGGTGTAGATGTACTTAAACTT
CTCGTCTTGCGTATAAGCTACTTCA
CCTTCAGCAAAACCTTC




SEQ ID NO: 433
SEQ ID NO: 888
SEQ ID NO: 1343



lmo0539.13
TGCTTCTGCGATTTTGCTTGATTT
AAGTTAAAAGTCCGCTACCTTCGT
CCAGCAATCAAAGCTC




SEQ ID NO: 434
SEQ ID NO: 889
SEQ ID NO: 1344



lmo0539.14
TGGCGTAACTTCTGAAATGTTCCAT
GTTGCACGACCACAAAGTACAC
AATCAACATAACGTACAATATAG




SEQ ID NO: 435
SEQ ID NO: 890
SEQ ID NO: 1345



lmo0539.15
GTGAAGTCGCTTATACGCAAGAC
GGGCTTAAGTCAGAGCACTCTT
AAGCAGCTCGTCATTTTG




SEQ ID NO: 436
SEQ ID NO: 891
SEQ ID NO: 1346



lmo0539.16
ACGAAGGTAGCGGACTTTTAACTT
TGCATCTCCACCATTTTCTTTAATACGA
CAGGATATGACGCAACTAC




SEQ ID NO: 437
SEQ ID NO: 892
SEQ ID NO: 1347



lmo0539.17
TGGGCTGATGGTATTGAAGTGTAC
CCTTGCGTACGAAGCCATTC
CATCGCCTTGTTTGCC




SEQ ID NO: 438
SEQ ID NO: 893
SEQ ID NO: 1348



lmo0539.18
CCAGCGAAAGTAAAAGCATCTATTAAAGAA
ACCTTCAGCAAAACCTTCCACATAT
CACCGTAACGAGGTTTAG




SEQ ID NO: 439
SEQ ID NO: 894
SEQ ID NO: 1349



lmo0539.19
AATTGAAACCAGCAAAAGTAAAAGCTTCT
ACCTTCAGCAAAACCTTCCACATAT
ACACCATAACGAGGTTTAG




SEQ ID NO: 440
SEQ ID NO: 895
SEQ ID NO: 1350



lmo0539.20
GGTGGAGATGCAGTTAAAATTCTTGTT
CGACATTCAGCACCAATTCTTTCT
ATGAGCCTGCTGAAATTA




SEQ ID NO: 441
SEQ ID NO: 896
SEQ ID NO: 1351





lmo215
lmo2158.0
GTAGTAGGTGACGCAAAAGACAAGT
CTTCGCCTTTAGCTTTTTGAGCTTT
TCGGTAAAGCAACAGATGAT


8

SEQ ID NO: 442
SEQ ID NO: 897
SEQ ID NO: 1352



lmo2158.1
AGGTATGAAAGACAAAGCAAAAGGACTT
TTTGCCTTTATCATCTGTTGCTTTACC
ACGCAAAAGACAAGTTC




SEQ ID NO: 443
SEQ ID NO: 898
SEQ ID NO: 1353



lmo2158.2
GGCAAACAAGTTGAAGGTAAAGCT
TTTAGCGTCACCGGTTTTATCTTCT
ACTTCGCCTTTAGCTTTT




SEQ ID NO: 444
SEQ ID NO: 899
SEQ ID NO: 1354



lmo2158.3
CGAAACAAGCAGAAGGTAAAGCA
GCGTCGCCAGTTTTGTCTTC
ACTTCGCCTTTAGCTTTT




SEQ ID NO: 445
SEQ ID NO: 900
SEQ ID NO: 1355



lmo2158.4
ACAAGTTCGGTAAAGCAACAGATGA
AGCGTCGCCCGTTTTATCTT
ACAAGTAGAAGGTAAAGCTC




SEQ ID NO: 446
SEQ ID NO: 901
SEQ ID NO: 1356



lmo2158.5
AGGTATGAAGGACAAAGCAAAAGGAT
CTGTTGCTTTCCCGAATTTGTCTT
TTGCGTCACCTACTACTTTATC




SEQ ID NO: 447
SEQ ID NO: 902
SEQ ID NO: 1357



lmo2158.6
CGCAAAAGACAAATTCGGTAAAGCA
GTCGCCAGTTTTGTCTTCTACTTC
ACCTTCTGCTTGTTTCGC




SEQ ID NO: 448
SEQ ID NO: 903
SEQ ID NO: 1358



lmo2158.7
ATGAGCGAAGATAAAGGTATGAAGGA
CTGTTGCTTTCCCGAATTTGTCTT
TTGCGTCACCTACTACTTTATC




SEQ ID NO: 449
SEQ ID NO: 904
SEQ ID NO: 1359



lmo2158.8
ACAAAGCAAAAGGAATGAAAGACAAAGT
GCTTTGTCGTCTGTTGCTTTACC
ACGCAAAAGACAAATTC




SEQ ID NO: 450
SEQ ID NO: 905
SEQ ID NO: 1360



lmo2158.9
AGGTATGAAAGACAAAGCAAAAGGACTT
CATCTGTTGCTTTACCGAACTTGT
TTGCGTCACCTACTACTTTGTC




SEQ ID NO: 451
SEQ ID NO: 906
SEQ ID NO: 1361



lmo2158.10
GTGACGCAAAAGACAAATTCGGTAA
TTTTGTCTTCTACTTCGCCTTTAGC
CAACAGACGACAAAGCG




SEQ ID NO: 452
SEQ ID NO: 907
SEQ ID NO: 1362



lmo2158.11
GGGAAAGCAACAGATGACAAAGG
TLI IIII AGCGTCACCGGTTTTATCT
ACAAGTTGAAGGTAAAGCT




SEQ ID NO: 453
SEQ ID NO: 908
SEQ ID NO: 1363



lmo2158.12
ACAAGTTCGGTAAAGCAACAGATGA
GCGTCGCCCGTTTTATCTTC
ACTTCGCCTTTAGCTTTT




SEQ ID NO: 454
SEQ ID NO: 909
SEQ ID NO: 1364



lmo2158.13
GGTATGAAAGACAAAGCAAAAGGAATGA
TCGTCTGTTGCTTTACCGAATTTG
TTGCGTCACCTACTACTTTGTC




SEQ ID NO: 455
SEQ ID NO: 910
SEQ ID NO: 1365



lmo2158.14
AGTAGTAGGTGACGCAAAAGACAAAT
GCTTTACCTTCAACTTGTTTGCCTTT
TCATCTGTTGCTTTCCC




SEQ ID NO: 456
SEQ ID NO: 911
SEQ ID NO: 1366



lmo2158.15
AGGTATGAAGGACAAAGCAAAAGGAT
GCCTTTGTCATCTGTTGCTTTCC
ACGCAAAAGACAAATTC




SEQ ID NO: 457
SEQ ID NO: 912
SEQ ID NO: 1367



lmo2158.16
GGCATGAAAGACAAAGCAAAAGGA
CATCTGTTGCTTTACCGAACTTGT
TTGCGTCACCTACTACTTTGT




SEQ ID NO: 458
SEQ ID NO: 913
SEQ ID NO: 1368



lmo2158.17
TGAAGGACAAAGGAAAAGGATTGAAAGA
TTTGCCTTTGTCATCTGTTGCTTT
ACGCAAAAGACAAATTC




SEQ ID NO: 459
SEQ ID NO: 914
SEQ ID NO: 1369



lmo2158.18
GAGCGAAGATAAAGGCATGAAAGAC
TCATCTGTTGCTTTACCGAACTTGT
AAGCAAAAGGACTTAAAGACAAA




SEQ ID NO: 460
SEQ ID NO: 915
SEQ ID NO: 1370





bsh
bsh.0
CGTCAATAACTTATACAACGAAGGATCACT
GGCGTAACAACCACAACTTCTTTG
TTTGGAAGGAATTTCG




SEQ ID NO: 461
SEQ ID NO: 916
SEQ ID NO: 1371



bsh.1
CATTTATGATAATCCTGTTGGCGTGTT
CACTCGAAAGAACGCGATAATTGTT
CAACATTTGATTACCAACTA




SEQ ID NO: 462
SEQ ID NO: 917
TTTAA






SEQ ID NO: 1372



bsh.2
GCCGCTATCTCCTTTACATTGGTT
TCCATCTTTCACACATTCCACTACAA
ATGGCTGATCAAAACGAATCTA




SEQ ID NO: 463
SEQ ID NO: 918
SEQ ID NO: 1373



bsh.3
GCCGCTATCTCCTTTACATTGGTT
TCCATCTTTCACACATTCCACTACAA
ATGGCTGATCAAACTGAATC




SEQ ID NO: 464
SEQ ID NO: 919
SEQ ID NO: 1374



bsh.4
GGATGCTTATAGTCGTGGGATGG
TGCTTTCACAAAACGAGACATAGATGA
CAGGTAAGCCAATCCCCC




SEQ ID NO: 465
SEQ ID NO: 920
SEQ ID NO: 1375



bsh.5
TCTGAATCAGAGAGCATTAGCCAATTT
CACCAACATCACACAGACCTTTT
CCGAGCCTAAAATATG




SEQ ID NO: 466
SEQ ID NO: 921
SEQ ID NO: 1376



bsh.6
TCTGAATCAGAGAGCATTAGCCAATTT
CCACCAACATCACAAAGACCTTTT
CCGAGCCTAAAATATG




SEQ ID NO: 467
SEQ ID NO: 922
SEQ ID NO: 1377



bsh.7
GCGCTACTGTAAAAGAAGCAAGAAG
CGTTTTGATCAGCCATCAACCAA
TTGCCGCTATCTCCTTTACA




SEQ ID NO: 468
SEQ ID NO: 923
SEQ ID NO: 1378



bsh.8
AGTGGAATGTGTGAAAGATGGACTTC
CACTCGAAAGAACGCGATAATTGTT
CACGCCAACAGGATTA




SEQ ID NO: 469
SEQ ID NO: 924
SEQ ID NO: 1379



bsh.9
GCGCTACTGTAAAAGAAGCAAGAAG
TGGAGATAGCGGCAAATTTTCACTA
CAGAGAATCAATCTCGTAAATAT




SEQ ID NO: 470
SEQ ID NO: 925
SEQ ID NO: 1380



bsh.10
GGCGATTTGTCTTCTATGTCTCGTT
TTGGCCAATGCTTTCTGATTCAG
ACCTGAAACAGAATTCA




SEQ ID NO: 471
SEQ ID NO: 926
SEQ ID NO: 1381



bsh.11
GCGCTACTGTAAAAGAAGCAAGAAG
TCTGTTTGATCAGCCATCAACCA
CCGCTGTCTCCATTACAT




SEQ ID NO: 472
SEQ ID NO: 927
SEQ ID NO: 1382



bsh.12
CGGCTTACCTGGTGATTTATCTTCT
TGCTTTCTGATTCAGAATCACCTGAAA
CTTTTACCAAATTGAATTCTG




SEQ ID NO: 473
SEQ ID NO: 928
SEQ ID NO: 1383



bsh.13
TGGGATGGGCGGAATTGG
AAAAGTTGCTTTCACAAAACGAGACAT
CTTACCTGGTGATTTATCTTC




SEQ ID NO: 474
SEQ ID NO: 929
SEQ ID NO: 1384



bsh.14
CGCGTTCTTTCGAGTGAAACTC
TCGCCAGGTAAGCCGATTC
CCCACGACTATAAGCATCC




SEQ ID NO: 475
SEQ ID NO: 930
SEQ ID NO: 1385



bsh.15
CAATTATCGCGTTCTTTCGAGTGAA
GTAAGCCGATTCCGCCCAT
CCCACGACTATAAGCATCC




SEQ ID NO: 476
SEQ ID NO: 931
SEQ ID NO: 1386



bsh.16
CGGTGGAACAACAAAAAGGTCTTT
CCACACCAGTAATTTGACTGTTTCC
CTCGTGTTGCAATATC




SEQ ID NO: 477
SEQ ID NO: 932
SEQ ID NO: 1387



bsh.17
TCAGAGAGCATTAGCCAATTTTTCCA
TCCCCACCAACATCACAAAGAC
CTTTTTGTTGTTCCACCGAGCCT




SEQ ID NO: 478
SEQ ID NO: 933
SEQ ID NO: 1388



bsh.18
CATTTATGATAATCCTGTTGGCGTGTTAA
TCGCTCGAAAGAACACGATAATTGT
CAAATAATCCAACATTTGATTACC




SEQ ID NO: 479
SEQ ID NO: 934
SEQ ID NO: 1389



bsh.19
AGAGATTGATTTGGATGCTTATAGTCGTG
GCTTTCACAAAACGAGACATAGAAGAC
AAGCCGATTCCGCCCATC




SEQ ID NO: 480
SEQ ID NO: 935
SEQ ID NO: 1390





inlB
inlB.0
TGTTGATAGAGAAGCCCGAAATGG
TCCGCTTTAGTCCAGCCAATATTTT
CCTGTACCATAATTTCC




SEQ ID NO: 481
SEQ ID NO: 936
SEQ ID NO: 1391



inlB.1
GGATGGCTTTTTTTAGACGAAAATAAAA
ACTTATACCATTATGCTCCAAAGA
CCTTGAGCGAACTTAG




TTAAAGAC
AAGTG
SEQ ID NO: 1392




SEQ ID NO: 482
SEQ ID NO: 937




inlB.2
TGAAAGAAAAGTACAACCCAAGAAGGAA
CGGTGATAGTCTCCGCTTGT
CTTTCGCCCCGTTTCC




SEQ ID NO: 483
SEQ ID NO: 938
SEQ ID NO: 1393



inlB.3
GCGCACTTGATACGTTCTATAAGCA
GCTTCGTTTACTTTGTTCGCAATCA
AAGCATGGAGAAAGATACTAAT




SEQ ID NO: 484
SEQ ID NO: 939
SEQ ID NO: 1394



inlB.4
ACAGCCCAAGAAGGAAGTATTGTTT
GCTTGATTGGCGTTGGCA
CAAGCGGAGACTATCAC




SEQ ID NO: 485
SEQ ID NO: 940
SEQ ID NO: 1395



inlB.5
GTACGGATTATATGTCCGGAAACGA
GCGTGTTAAGTTCACCG
CAGTCGTTTCCACTTTAAAC




SEQ ID NO: 486
SEQ ID NO: 941
SEQ ID NO: 1396



inlB.6
AGACCTAAGTTCGCTCAAGGATCTA
CAAATACAAACTTTCCAGCTGTGGTA
ATGAACAAGTCCGTTTATATCAC




SEQ ID NO: 487
SEQ ID NO: 942
SEQ ID NO: 1397



inlB.7
TGTTGTGGATGCGGATGTTAGAT
GTTGCTTGTTTATCCACGGTTAGTT
TTTATAAGCAGCTAAAGTGCCCC




SEQ ID NO: 488
SEQ ID NO: 943
SEQ ID NO: 1398



inlB.8
TCCGGTAGTAGATAGCCCAATCAAA
ACCTTCAACGGTGGCTGTT
CGATCGACAATTAATGTTT




SEQ ID NO: 489
SEQ ID NO: 944
GATTTT






SEQ ID NO: 1399



inlB.9
CAATCTAATTTGGTCGTTCCGAATACAG
CGGTTTTTCATAATCGCCATCATCA
AACGACCCATCAGTGTTTT




SEQ ID NO: 490
SEQ ID NO: 945
SEQ ID NO: 1400



inlB.10
AGTGATGATGGCGATTATGAAAAACCT
GCTTTTCCAATAGTGACTGGCTGAT
ATGGCATTTACCAGAATTTA




SEQ ID NO: 491
SEQ ID NO: 946
SEQ ID NO: 1401



inlB.11
GGCATGAGTGGAATTTTAATACGGATT
AGCGGGTTAAGTTGACTGCTT
TTTCGGTCGTTTCCGCTTTA




SEQ ID NO: 492
SEQ ID NO: 947
SEQ ID NO: 1402



inlB.12
AGTAAGTTATGATGTTGATGGAACGGT
CATAGCCTTGTTTAGTCGGAGGT
ACGCGGATAACTGCACCTAA




SEQ ID NO: 493
SEQ ID NO: 948
SEQ ID NO: 1403



inlB.13
CGAAGCCAAAACACCAATTACCA
TGTTAAGTGCACGCGTATCGA
TTAGCATTGATGGTAAAGTAATT




SEQ ID NO: 494
SEQ ID NO: 949
SEQ ID NO: 1404



inlB.14
CCTCCGACCAAACAAGGCTAT
CGTACAAAGTAAAATCATTTCCGGACAT
CTCATGCCCACCATTTT




SEQ ID NO: 495
SEQ ID NO: 950
SEQ ID NO: 1405



inlB.15
ACAGATATAAAGCCCTTAGCAAACTTGAA
CTTGAGCGAACTTAGGTCCTTAACT
ATGGCTTTTTTTAGACGAAAAT




SEQ ID NO: 496
SEQ ID NO: 951
SEQ ID NO: 1406



inlB.16
TGCCAACACCAATCAAGCAAATTTT
ATTTTGTGTCACTAGATCCGTCACA
CAGAAACTATCAAAGACAATTT




SEQ ID NO: 497
SEQ ID NO: 952
SEQ ID NO: 1407



inlB.17
GAAACGATTTTACTTTGTACGCGATGT
GCGGGTTAAGTTCACTGCTTTT
TCAGTCGTTTCCGCTTTAA




SEQ ID NO: 498
SEQ ID NO: 953
SEQ ID NO: 1408



inlB.18
GCGATTTAAGAGCATTAGCAGGACTT
TCACTGTATTCGGAACAACCAAATTAGA
AAGACATTCTTGGCTAAATAA




SEQ ID NO: 499
SEQ ID NO: 954
SEQ ID NO: 1409



inlB.19
GTACGCGATGTTTAAAGCGGAAA
AGTTTGTAGATCCCCGCATTCC
ATAGCGTGTTAAATTCAC




SEQ ID NO: 500
SEQ ID NO: 955
SEQ ID NO: 1410



inlB.20
CCTCCGACCAAACAAGGCTATG
CGTTTCCGGACATATAATCCGTACT
ATGCCCACCATTTTTT




SEQ ID NO: 501
SEQ ID NO: 956
SEQ ID NO: 1411





lmo059
lmo0596.0
TGAATTTGACGGAACTTTAACACTCGTA
CGCCAATTGTACGCATAATACCA
CCCACATACCGAAAAGT


6

SEQ ID NO: 502
SEQ ID NO: 957
SEQ ID NO: 1412



lmo0596.1
GGGCTGGATTTTAACAATCGGTATT
CGATACCAATTGCGGAAACAACTG
ATAGCGCGATAAAACC




SEQ ID NO: 503
SEQ ID NO: 958
SEQ ID NO: 1413



lmo0596.2
CACAAAATGTTTCTGGCTGGGTAC
CCACATACCGAAAAGTAATACGAGTGT
TAGCTGACGGAATTTT




SEQ ID NO: 504
SEQ ID NO: 959
SEQ ID NO: 1414



lmo0596.3
CCACACAATCTCTTACTTTTCAGACAGA
GATGGATAAAATCCCGTCAGCTAGT
ACCCAGCCAGAAACA




SEQ ID NO: 505
SEQ ID NO: 960
SEQ ID NO: 1415



lmo0596.4
CGCAATTGGTATCGTCCTTGTC
GTTGCGATTGCGCCGAT
ACCTTGAACGATGAAGAAA




SEQ ID NO: 506
SEQ ID NO: 961
SEQ ID NO: 1416



lmo0596.5
AAAATCACAAAATGTTTCTGGTTGGGT
CAAGTGTTAACGTTCCCTCAAATTCA
TAGCTGACGGAATTTT




SEQ ID NO: 507
SEQ ID NO: 962
SEQ ID NO: 1417



lmo0596.6
AGACTTTTACACGAATTCTTGTTTTATTAGCG
GGAGGTTAATAATGAAATTCCTGGATGGA
CCAAACCCCTAGTATAATCAT




SEQ ID NO: 508
SEQ ID NO: 963
SEQ ID NO: 1418



lmo0596.7
GGCGCATTCACTGCTAAACAAAATA
GCGGAGACAACTGGATTGAATAGAG
ACCAACAATGATACCAATAAT




SEQ ID NO: 509
SEQ ID NO: 964
SEQ ID NO: 1419



lo0596.8
GCGCATTCACTGCTAAACAAAACA
GCGGAAACAACTGGATTGAATAGAG
CAATAATGCCGATAATACC




SEQ ID NO: 510
SEQ ID NO: 965
SEQ ID NO: 1420



lmo0596.9
ATCCAGGAATTTCATTATTAACCTCGACAT
CCCAGCCAGAAACATTTTGTGAT
ACTGATTTCTGGTATTTTC




SEQ ID NO: 511
SEQ ID NO: 966
SEQ ID NO: 1421



lmo0596.10
CTCGTATTACTTTTCGGTATGTGGGTAT
GTTGTTTTGTTTGGCAGTGAATGC
CTGGTATTATGCGTACAATTG




SEQ ID NO: 512
SEQ ID NO: 967
SEQ ID NO: 1422



lmo0596.11
TGTATTGCTGTTTGGTATGTGGGT
CAGTGAATGCGCCGATTGTAC
TTGTTTGCTGGTATTATGC




SEQ ID NO: 513
SEQ ID NO: 968
SEQ ID NO: 1423



lmo0596.12
CCACACAATCTCTTATTTCTCAGACAGA
GTAAGATGGATAAAATTCCGTCAGCTAGT
CCCAACCAGAAACATTT




SEQ ID NO: 514
SEQ ID NO: 969
SEQ ID NO: 1424



lmo0596.13
ACCTCAACATTGATGATCGGTTTCTT
ACCCACCCAGAAACATTTTGTGAT
ATTTTCCACACAATTTCT




SEQ ID NO: 515
SEQ ID NO: 970
SEQ ID NO: 1425



lmo0596.14
ACTGCCAAACAAAACAACGTACAAG
GAGACAACTGGATTGAATAGAGCGATA
CAATAATGCCGATAATACC




SEQ ID NO: 516
SEQ ID NO: 971
SEQ ID NO: 1426



lmo0596.15
GGCATTATTGTTGGTTTTATCGCTCTA
TCGCAACGACAAGGACGATAC
CAATTGCGGAAACAACT




SEQ ID NO: 517
SEQ ID NO: 972
SEQ ID NO: 1427



lmo0596.16
GCGCTATTCAATCCAGTTGTTTCC
GTTGCGATTGCGCCGATAC
CAACGACAAGGACGATACC




SEQ ID NO: 518
SEQ ID NO: 973
SEQ ID NO: 1428



lmo0596.17
ATCATTGTTGGATTTATCGCTCTCTTCA
GCAATTGCTCCGATACCTTGAAC
TTGCAACGATAAGTACTATTC




SEQ ID NO: 519
SEQ ID NO: 974
SEQ ID NO: 1429



lmo0596.18
GGTGCTAGCTGACGGGATTTTATC
CCACATACCGAAAAGTAATACGAGTGT
CCGTCAAATTCATTAAATAAT




SEQ ID NO: 520
SEQ ID NO: 975
SEQ ID NO: 1430



lmo0596.19
GGGATTGCAATGATTATACTTGGGATT
ACCAGAAATCAGTAATAAGAAACCGAACAT
CCTGGATGGAATAAGAACC




SEQ ID NO: 521
SEQ ID NO: 976
SEQ ID NO: 1431



lmo0596.20
GGGTTGGATCCTAACAGTTGGTATT
TGCAACGATAAGTACTATTCCAATTGCT
AAGAGAGCGATAAATCC




SEQ ID NO: 522
SEQ ID NO: 977
SEQ ID NO: 1432





Lmo223
lmo2230.0
CTTGGGCGAAGAAACTTTCACTT
TTAACGCTTCAGCAATAAATGGAGTTG
CCTGGATGGAATAAGAACC


0

SEQ ID NO: 523
SEQ ID NO: 978
SEQ ID NO: 1433



lmo2230.1
CGAGCCACCTGAAAGTTTGTCTTAT
GTGCAGTTTCATGTGCAGAATCATA
CCCTAGCTCAGAACTACT




SEQ ID NO: 524
SEQ ID NO: 979
SEQ ID NO: 1434



lmo2230.2
TTTATGATTCTGCACATGAAACTGCAC
TTGTTCTGGATCATCAATGTCCCAAT
TTAGCTGGAAATTTTG




SEQ ID NO: 525
SEQ ID NO: 980
SEQ ID NO: 1435



lmo2230.3
CACCACGTTTCCCAGCTAATATACA
AAGCCCATTTTTTTGGTAACGCTATT
CTGGATCATCAATGTCCC




SEQ ID NO: 526
SEQ ID NO: 981
SEQ ID NO: 1436



lmo2230.4
CGAGCCACCTGAAAGTTTGTCTTAT
GTGCAGTTTCATGTGCAGAATCATA
CAGATGCTGATCTCATTGTAAC




SEQ ID NO: 527
SEQ ID NO: 982
SEQ ID NO: 1437



lmo2230.5
CATATTCGAAGTGCCATTGCTGAAG
CCAAGAACCGCTAATGAATTTGACA
TTGGGCGAAAAGACTTT




SEQ ID NO: 528
SEQ ID NO: 983
SEQ ID NO: 1438



lmo2230.6
GGCATAAATCCAAAGCAACTCCATT
GCTTTCAGGTGGCTCAATCG
ACTCATTCAACGCTTCTGC




SEQ ID NO: 529
SEQ ID NO: 984
SEQ ID NO: 1439



lmo2230.7
AGCGTTGAATGAGTTTGCAATTGAG
CATCTGCCAGTAGTTCTGAGCTA
CTGAAAGCTTGTCTTATTCTC




SEQ ID NO: 530
SEQ ID NO: 985
SEQ ID NO: 1440



lmo2230.8
AGAACAAGAAATAGCGTTACCCCAAA
CTAAGCCTCTATCAATACGTGCTCTAA
CAAGAAGTATGTGATAACATTG




SEQ ID NO: 531
SEQ ID NO: 986
SEQ ID NO: 1441



lmo2230.9
CTGCACCAAAATTTCCAGCTAACAT
ACATACTTCTTGATAACTCGCCCATT
CTGGATCATCAATGTCCC




SEQ ID NO: 532
SEQ ID NO: 987
SEQ ID NO: 1442



lmo2230.10
GGCAGATGCTGATCTCATTGTAACA
GTTCCGGATCATCAATGTCCCAATA
CTGCACCAAAATTTC




SEQ ID NO: 533
SEQ ID NO: 988
SEQ ID NO: 1443



lmo2230.11
CAGAACAAGAAATAGCGTTACCCAAA
CTAAGCCTCTATCAATACGTGCTCTAA
CAATGTTATCACAGACTTCTT




SEQ ID NO: 534
SEQ ID NO: 989
SEQ ID NO: 1444



lmo2230.12
GCCACCTGAAAGCTTGTCTTATTC
GTGCAGTTTCATGTGCAGAATCATA
CAGATGCTGATCTCATTGTAAC




SEQ ID NO: 535
SEQ ID NO: 990
SEQ ID NO: 1445



lmo2230.13
TGCACATGAAACTGCACCAAAATT
GTTCCGGATCATCAATGTCCCAATA
CCAGCTAACATACAAGAAAA




SEQ ID NO: 536
SEQ ID NO: 991
SEQ ID NO: 1446



lmo2230.14
ATGACGCAAAAGCTGATCTACT
CAAGCTTCAGCAATGGCACTT
TTTTATCACAAACGCATATTCG




SEQ ID NO: 537
SEQ ID NO: 992
SEQ ID NO: 1447



lmo2230.15
GCACATGAAACTGCACCACAATTT
TTGTTCTGGATCATCAATGTCCCAAT
CTGCTAACATACAAGAAAAAA




SEQ ID NO: 538
SEQ ID NO: 993
SEQ ID NO: 1448



lmo2230.16
CAGAACAAGAAATAGCGTTACCCAAA
CTAAGCCTCTATCAATACGTGCTCTAA
AAATGGGCGAGTTATCA




SEQ ID NO: 539
SEQ ID NO: 994
SEQ ID NO: 1449



lmo2230.17
GCACCACAATTTCCTGCTAACATAC
AGACTTCTTGATAACTCGCCCATTT
TCCAGAACAAGAAATAGC




SEQ ID NO: 540
SEQ ID NO: 995
SEQ ID NO: 1450



lmo2230.18
GCAATTGAACCACCTGAAAGCTTAT
CTGCTTCGTGTGCTGAATCATAAAT
CAGAGGCTGATCTCATTGTTA




SEQ ID NO: 541
SEQ ID NO: 996
SEQ ID NO: 1451



lmo2230.19
TGTCTTATTCCCCTAGCTCTGAACT
GCAGGAAATTGTGGTGCAGTTT
CAGATGCTGATCTCATTGTAAC




SEQ ID NO: 542
SEQ ID NO: 997
SEQ ID NO: 1452



lmo2230.20
GCGTTGAATGAGTTTGCGATTGAG
ATCAGCATCTGCCAGTAGTTCAG
AAAGCTTGTCTTATTCCCC




SEQ ID NO: 543
SEQ ID NO: 998
SEQ ID NO: 1453





clpE
clpE.0
AGAAAGCACATCCAGATGTTCAACA
TGCACCAGCATTACTTGTCATGATA
ACGCCCTTGTGAATCG




SEQ ID NO: 544
SEQ ID NO: 999
SEQ ID NO: 1454



clpE.1
GCTAGCTCGTGAATTGTTTGGTACT
GGAACCGATTAATTTAGAGATGCTGTGT
CTCATGTCTAAACGAATCAT




SEQ ID NO: 545
SEQ ID NO: 1000
SEQ ID NO: 1455



clpE.2
TGTGCCTCTTGTTATGCAGAAGTTA
CGCTTGCTCCTGGGAACT
CATTCGCCCCAAAGTT




SEQ ID NO: 546
SEQ ID NO: 1001
SEQ ID NO: 1456



clpE.3
TGCCCGCGGAGAACTG
ACGTCTTTCTAGTGCAGCATCTTTT
TCGGTGCAACTACATTGG




SEQ ID NO: 547
SEQ ID NO: 1002
SEQ ID NO: 1457



clpE.4
AACTAGGCGCATACTTTAAACCAGAA
GTCAACGAGCATTAAGTCGATAATTTGT
CCGTCTAGATAGCGTTATTG




SEQ ID NO: 548
SEQ ID NO: 1003
SEQ ID NO: 1458



clpE.5
ACCAACCACTAAAGAAACACTCACA
GCTGCTGTTAAAGCTTCAGGAGAAT
ATGGTCTGAAAACAAAGTATG




SEQ ID NO: 549
SEQ ID NO: 1004
SEQ ID NO: 1459



clpE.6
CAAGAAGACGAGCAATCCAAAATGA
CTTTAGCTACTTTTTTCACGGCATCT
TCTTGACCAATTACTTTTCC




SEQ ID NO: 550
SEQ ID NO: 1005
SEQ ID NO: 1460



clpE.7
CATTCCAGTTGGACGTTTACAAGAA
CGCTACTTTTTTCACGGCATCTT
ACTTAACAGGTAAAGTTAT




SEQ ID NO: 551
SEQ ID NO: 1006
TGGCC






SEQ ID NO: 1461



clpE.8
GGTTCTCCGTTTGACGATATTTTCC
TTCTTTGTTCACGGTTTGCTTGAC
TAGCAGCACCACTCAATT




SEQ ID NO: 552
SEQ ID NO: 1007
SEQ ID NO: 1462



clpE.9
TCGCTTCGCTTGTTTCTGGAA
GAATCGTGTTTTTACGTTCTTGTAGTTCTT
CCGCGGTCAATTTG




SEQ ID NO: 553
SEQ ID NO: 1008
SEQ ID NO: 1463



clpE.10
ACAATCGATGTTTCCAAGGAAGTGA
CTTGGATAGTCCGGCGTAGTG
CTCCGAATTTAGGGTCATAAC




SEQ ID NO: 554
SEQ ID NO: 1009
SEQ ID NO: 1464



clpE.11
GGTCAATTTGAAGAACGCATGAAAC
CCCAACGATAGTATGCACTTCATCA
ACTTCAAGAACGTAAAAAC




SEQ ID NO: 555
SEQ ID NO: 1010
SEQ ID NO: 1465



clpE.12
CGTCCGTGTCATCGGTGAA
CCTGCGACAATTGCATTTGCA
CAGGTGTTGGTAAAACT




SEQ ID NO: 556
SEQ ID NO: 1011
SEQ ID NO: 1466



clpE.13
GCGCTGGATCCGCAGAA
GCGAGCTAAGGCTGGTTTTAAAATA
CTGCGTCCATTGAACC




SEQ ID NO: 557
SEQ ID NO: 1012
SEQ ID NO: 1467



clpE.14
CAATTCGTCGTAGCCGTGTT
GGTCCAACAAATAGGAAGGAACCA
ATTGGGCGATTTTTTGATTTG




SEQ ID NO: 558
SEQ ID NO: 1013
SEQ ID NO: 1468



clpE.15
TCCATTGAAAAACTAGACGAAAATACGGT
GCTGCCTTTTCGTAATCTTCCATTT
AAGCGAACGTGTTGCCCG




SEQ ID NO: 559
SEQ ID NO: 1014
SEQ ID NO: 1469



clpE.16
CGCACAAGAAGGCGTAACTATAGA
CGGCGAAGTGGTCTAGCA
CTCGATTAAATGTTCTTT




SEQ ID NO: 560
SEQ ID NO: 1015
AACTTC






SEQ ID NO: 1470



clpE.17
ACAGGGATCCGTGGTCAATTTG
CCAACAATCGTATGCACTTCATCA
AAGAACGCATGAAACAAC




SEQ ID NO: 561
SEQ ID NO: 1016
SEQ ID NO: 1471



clpE.18
CAGCTAAAGTTCGTGACGAGATTAC
GCTTGGATATCAGATGCTTGGATGA
CAATTCCTTCTCAGAACGC




SEQ ID NO: 562
SEQ ID NO: 1017
SEQ ID NO: 1472



clpE.19
AGCGCTCGTTACATCCAAGAC
CAGAAAGATTGTATTTTGAGCCAACTTCA
CATTTGCCAGATAAAGCA




SEQ ID NO: 563
SEQ ID NO: 1018
SEQ ID NO: 1473



clpE.20
CGCTTGCTGAGTCTATGTTTGG
GAGGCGCTCCAACTAAACGA
CATATCAATCCGAATCATCG




SEQ ID NO: 564
SEQ ID NO: 1019
SEQ ID NO: 1474





inlC
inlC.0
GGCCTAGCGAATGCAGTGAA
GATAGTTCCATTTGTGATACAAGGTCTGT
TTGCTTCCCTAAATTTTG




SEQ ID NO: 565
SEQ ID NO: 1020
SEQ ID NO: 1475



inlC.1
AGAAGAGCTATCTGTGAATAGAAACAGACT
GAGTCAGTATCTCTGAGTTCGTTGT
AAACAAGCGAGATAAAC




SEQ ID NO: 566
SEQ ID NO: 1021
SEQ ID NO: 1476



inlC.2
CTGTCAAAGACCCCGATGGAA
CCGTCTACATAATTCCCGCCATT
ATGGATTTCCCCTTATTA




SEQ ID NO: 567
SEQ ID NO: 1022
TATCAG






SEQ ID NO: 1477



inlC.3
GCAGTGAAACAAAATTTAGGGAAGCA
CCGCAAGAGATTGAATGTTGCTATT
CAGACCTTGTATCACAAAAG




SEQ ID NO: 568
AEEQ ID NO: 1023
SEQ ID NO: 1478



inlC.4
AAACTAGAGGTATTAGATTTGCATGGTAATGAAA
GTTCATTCACACATTTCTGACCAGTT
CAGGTGGACTAACTAGATTGA




SEQ ID NO: 569
SEQ ID NO: 1024
SEQ ID NO: 1479



inlC.5
GAACAAAAGTACAAGCTGAGAGCAT
CTAGGCCGGGATCTGGAAAA
CAACAACCAACGCCTATTAA




SEQ ID NO: 570
SEQ ID NO: 1025
SEQ ID NO: 1480



inlC.6
GGCACAAAATTTCAATGGAGATAATAGCA
AGGTCACTTATTTGATTGTGGGATAGATG
CCGGAATGCAATTTT




SEQ ID NO: 571
SEQ ID NO: 1026
SEQ ID NO: 1481



inlC.7
GAAAGCAAAGTGTTACAGACCTTGT
TGCATTCCGGCAAGAGATTGAA
ACTCCAGATAGTTCCTTTTGTG




SEQ ID NO: 572
SEQ ID NO: 1027
SEQ ID NO: 1482



inlC.8
TGACCTTGGTCCTTTGAAGGATTT
GCGTGATAAACAAGCACTTGGAATT
ACAGATAGCTCTTCTAACTTAG




SEQ ID NO: 573
SEQ ID NO: 1028
SEQ ID NO: 1483



inlC.9
CAGGTGGACTAACTAGATTGAAGAAAGT
AGCATTTGCTATATACAATTCTGGTTGGT
CAGAAATGTGTGAATGAACC




SEQ ID NO: 574
SEQ ID NO: 1029
SEQ ID NO: 1484



inlC.10
CTAGTGTTAATTGTGGGTTTGTGCAT
GGTTAATAGGCGTTGGTTGTTGAAT
TCGCAGCTTGTACTTTT




SEQ ID NO: 575
SEQ ID NO: 1030
SEQ ID NO: 1485



inlC.11
TGGAGTACAAAATTTCAATGGAGATAATAGCA
GGACTAAGGTCACTTATTTGATTA
TTCCCGCAAGAGATTG




SEQ ID NO: 576
TGGGAT
SEQ ID NO: 1486





SEQ ID NO: 1031




inlC.12
CATTAAATCTCTTGCCGGAATGCA
AGTTAGATCATTTAAAGGACTAAGGTC
TTGTGGGATAGATGAAGTTC




SEQ ID NO: 577
ACTTATTTG
SEQ ID NO: 1487





SEQ ID NO: 1032




inlC.13
CTGTACATTAATACGGGCTTCGGAA
CTAGGCCGGGATCTGGAAAA
CTCTCAGCTTGTACTTTTG




SEQ ID NO: 578
SEQ ID NO: 1033
SEQ ID NO: 1488



inlC.14
CTGTCAAAGACCCTGATGGAAGAT
CCACAGGACACAACCATCTACATAA
ACTGATATAATATGGAGATATCC




SEQ ID NO: 579
SEQ ID NO: 1034
SEQ ID NO: 1489



inlC.15
CAGGTGGACTAACTAGATTGAAGAAAGT
ACAGTGTTTGTTATATCAATTCTG
CTGGTTCATTCACACATTTC




SEQ ID NO: 580
GTTGGT
SEQ ID NO: 1490





SEQ ID NO: 1035




inlC.16
TGGAACAAAAGTACAAGCTGAGAGT
CTAGGCCGGGATCTGGAAAA
TCAACGACCAACCCC




SEQ ID NO: 581
SEQ ID NO: 1036
SEQ ID NO: 1491



inlC.17
GAAAGCAAAGTGTTACAGACCTTGT
TCCGGCAAGAGATTTAATGTTGCTA
CCCCAGATAGTTCCTTTTGTG




SEQ ID NO: 582
SEQ ID NO: 1037
SEQ ID NO: 1492



inlC.18
GTGGGAGTTATGTAGATGGTTGTGT
CCTCAGTCTCCCCAACGTTTATAT
CTGTATAAACTGGCAATTCC




SEQ ID NO: 583
SEQ ID NO: 1038
SEQ ID NO: 1493



inlC.19
CTGTCAAAGACCCAGATGGAAGAT
CAACCGTCTACATAATTCCCACCAT
ACTGATATAATATGGAGATATCC




SEQ ID NO: 584
SEQ ID NO: 1039
SEQ ID NO: 1494



inlC.20
GTCTGTGCATTAATACGGGTTCTG
GTTAATAGGCGTTGGTCGTTGAAT
CTCTCAGCTTGTACTTTTG




SEQ ID NO: 585
SEQ ID NO: 1040
SEQ ID NO: 1495





lmo067
lmo0670.0
GCCATGGACTAAAGACGATTATCCAA
CCGGATATCCATCTTTGAGTAAAGCA
CCAATCTCAATAGCTTTTTC


0

SEQ ID NO: 586
SEQ ID NO: 1041
SEQ ID NO: 1496



lmo0670.1
ATCGGCAATGCGCTATTAAAAGATG
CGCTTTCGAAGTGGCAATTGG
TCAGAAAGCCGCGCCATC




SEQ ID NO: 587
SEQ ID NO: 1042
SEQ ID NO: 1497



lmo0670.2
CGCGAAAAAGCTATTGAGATTGGT
TCTGCTTTCGAGGTGGCAAT
CCGGAAGATCGAGCTATAC




SEQ ID NO: 588
SEQ ID NO: 1043
SEQ ID NO: 1498



lmo0670.3
TGCCGTGGACAAAAAATGATTATCC
CATCTTTTAATAGGGCATTGCCGATT
TCGGTCTTTCTTAGATTTT




SEQ ID NO: 589
SEQ ID NO: 1044
SEQ ID NO: 1499



lmo0670.4
TCGGCAACGCGTTACTAAAAGA
CCATTCTTCTGCTTTTGAAGTAGCAA
CAGAAAGCCGCGCCATC




SEQ ID NO: 590
SEQ ID NO: 1045
SEQ ID NO: 1500



lmo0670.5
GGAAAAATCTAAGAAAGACCGAACGC
AGCGCGGCTTTCTGAGTAG
CCGATTTCAATAGCTTTTTC




SEQ ID NO: 591
SEQ ID NO: 1046
SEQ ID NO: 1501



lmo0670.6
ACGATTATCCGGATTCGTGGAAAA
GCGCGGCTTTCTGAATAGC
TTGCCGATTTCAATAGCTTT




SEQ ID NO: 592
SEQ ID NO: 1047
SEQ ID NO: 1502



lmo0670.7
CGGCAACGCGCTATTAAAAGATG
TCTGCTTTTGAAGTGGCAATTGG
TCAGAAAGCCGCGCCATC




SEQ ID NO: 593
SEQ ID NO: 1048
SEQ ID NO: 1503



lmo0670.8
CGCGAAAAGGCAATTGAAATCG
GCGCGGCTTTCTGAGTAG
CAACGCGCTATTAAAAG




SEQ ID NO: 594
SEQ ID NO: 1049
SEQ ID NO: 1504



lmo0670.9
GCCGTGGACAAAAAATGAATATCCT
CGTTGCCGATTTCAATTGCCTTT
TCGCGTTCGGTCTTTCT




SEQ ID NO: 595
SEQ ID NO: 1050
SEQ ID NO: 1505



lmo0670.10
TGCCATGGACTAAAGACGATTATCC
TGAGTAAAGCATTACCAATCTCA
TCGCGTTCTGATTTTT




SEQ ID NO: 596
ATAGCTT
SEQ ID NO: 1506





SEQ ID NO: 1051




lmo0670.11
CGCGAGAAGGCAATTGAAATCG
GCGCGGCTTTCTGAGTAG
ACGCGTTACTAAAAGAAG




SEQ ID NO: 597
SEQ ID NO: 1052
SEQ ID NO: 1507



lmo0670.12
CGCGAAAAAGCTATTGAGATTGGT
GTGGCAATAGGTATAGCTCGATCTT
ATCCATCTTTGAGTAAAGCATT




SEQ ID NO: 598
SEQ ID NO: 1053
SEQ ID NO: 1508



lmo0670.13
AGAAAGACCGAACGCGAGAAG
GCGCGGCTTTCTGAGTAG
TTGCCGATTTCAATTGC




SEQ ID NO: 599
SEQ ID NO: 1054
SEQ ID NO: 1509



lmo0670.14
CGCGCTATTAAAAGATGGCTACTCA
CGATTCCTTATGATTTTTATACCAT
TCCCAATTGCCACTTCAA




SEQ ID NO: 600
TCTTCTGC
SEQ ID NO: 1510





SEQ ID NO: 1055




lmo0670.15
GGAAAAATCTAAGAAAGACCGAACGC
GCGCGGCTTTCTGAGTAG
CCGATTTCAATTGCCTTTTC




SEQ ID NO: 601
SEQ ID NO: 1056
SEQ ID NO: 1511



lmo0670.16
GCCGTGGACAAAAAACGATTATCC
TTTTAATAGCGCATTGCCGATTTCA
CTGTTTTCTTTAGATTTTTCC




SEQ ID NO: 602
SEQ ID NO: 1057
SEQ ID NO: 1512



lmo0670.17
CGCGTTACTAAAAGAAGGCTACTCA
CCATTCTTCTGCTTTTGAAGTAGCAA
CCGCGCCATCCCGA




SEQ ID NO: 603
SEQ ID NO: 1058
SEQ ID NO: 1513



lmo0670.18
TCTAAGAAAGACCGAACGCGAAAA
AGCGCGGCTTTCTGAGTAG
ATCGGCAATGCCCTATTAA




SEQ ID NO: 604
SEQ ID NO: 1059
SEQ ID NO: 1514



lmo0670.19
ACGATTATCCGGATTCGTGGAAAA
GCGCGGCTTTCTGAATAGC
CAATGCGCTATTAAAAGAT




SEQ ID NO: 605
SEQ ID NO: 1060
SEQ ID NO: 1515





lmo252
lmo2522.0
TGTCTGTAGGTGAAAATGCTAAAGCT
TGCTGTGCTGGTTGTTCTGTAG
CACCTTCTGAAAACAAC


2

SEQ ID NO: 606
SEQ ID NO: 1061
SEQ ID NO: 1516



lmo2522.1
AATAAAGCAGCATCTTCAAACAAATCGT
CCCATTCCTGGTTCTTCTTTACTGT
CTGCATCTCAAGGTAATGTAT




SEQ ID NO: 607
SEQ ID NO: 1062
SEQ ID NO: 1517



lmo2522.2
TGCAAGATGGTGATTCACTATGGAA
ACTTGCAATGTTTGGTTCGGAAAAA
CAATTGAAAGAAGATAACAA




SEQ ID NO: 608
SEQ ID NO: 1063
TTTG






SEQ ID NO: 1518



lmo2522.3
CGGTGACTCACTTTGGAAAATCTCA
GTTTGGTTTGGAAAAATTAAGTTTGAGCTT
AAGTTGTTATCTTCTTTC




SEQ ID NO: 609
SEQ ID NO: 1064
AATTGTT






SEQ ID NO: 1519



lmo2522.4
ATCATAGTTGGTCAAAAATTGTCTGTAGGT
ATTTGTTGTTTTCAGAAGGTGTGCTT
TCACTAGCTTTAGCATTTTC




SEQ ID NO: 610
SEQ ID NO: 1065
SEQ ID NO: 1520



lmo2522.5
ACAAATCGTCTGCATCTCAAGGTAA
TCTACAGCAATAACGCGTGGATT
CTGCATACAGTAAAGAAGAAC




SEQ ID NO: 611
SEQ ID NO: 1066
SEQ ID NO: 1521



lmo2522.6
GCACAAGGGAATGTTTCAAAAGAGT
CATTTAAATCAATTCCAGTCGCTGTCA
ACAGCATACAGTAAATCT




SEQ ID NO: 612
SEQ ID NO: 1067
SEQ ID NO: 1522



lmo2522.7
GCAGCTCCAACAACTCAAAAATCAA
CTGTTGCAGTTACCGTTAACTCTTT
CCTTGTGCTGAAGAACT




SEQ ID NO: 613
SEQ ID NO: 1068
SEQ ID NO: 1523



lmo2522.8
AGTAACAGAGCAACCGAAAGAAGAAA
CTTGTGCTGATGAAGAACTGTTTGA
CAGCTCCAGCAACTCA




SEQ ID NO: 614
SEQ ID NO: 1069
SEQ ID NO: 1524



lmo2522.9
GCTCAAACTTAATTTTTCCAAACCAAACG
GTGTGTCACCAGCTACAACTGTATA
TTACTAGTAGCAGCTTTTTTC




SEQ ID NO: 615
SEQ ID NO: 1070
SEQ ID NO: 1525



lmo2522.10
TTAACGGTAACTGCAACAGCATATAGT
TCCCTGTCGCTGTCATGTG
ATGCCAGGTTCAGCTTT




SEQ ID NO: 616
SEQ ID NO: 1071
SEQ ID NO: 1526



lmo2522.11
TTTTCCGAACCAAACATTGCAAGT
TGTTACACCATTATCAACGGCGAT
ATGTCCAAGGGTATCTCC




SEQ ID NO: 617
SEQ ID NO: 1072
SEQ ID NO: 1527



lmo2522.12
GGTAACTGCAACAGCATATAGTAAAGC
TGGATCAACTGCAATTACTCGTGAA
TCGCTGTCATGTGGCCCA




SEQ ID NO: 618
SEQ ID NO: 1073
SEQ ID NO: 1528



lmo2522.13
ATCTTTCATCTGATTTAATCGTAGTTGGTCAA
GTAGCCGGGCTCTCATTAGATT
TCTATCGGAAGTAAAGCTG




SEQ ID NO: 619
SEQ ID NO: 1074
SEQ ID NO: 1529



lmo2522.14
AGCCATCTACAAATAATGCGGAACA
ACGATTTGTTTGAAGATGCTGCTTT
TTGGAGCAGCTTTTTCTT




SEQ ID NO: 620
SEQ ID NO: 1075
SEQ ID NO: 1530



lmo2522.15
AGGATACGGACAAGCAATTGCA
CCCCAGTTGTTAGCTTCTTGTACT
TTGCACCACCAGTATCAG




SEQ ID NO: 621
SEQ ID NO: 1076
SEQ ID NO: 1531



lmo2522.16
ACAATTCAACAGCAAATAATTCAGCCAAT
GCTGAAGAACTGTTTGAAGATGCTT
CCGCCTTTTCTTCTTTCG




SEQ ID NO: 622
SEQ ID NO: 1077
SEQ ID NO: 1532



lmo2522.17
CATCAGCAAATAAAGCAGCATCTTCA
TCTTTACTGTATGCAGTTGCTGTTACA
AACAAATCGTCTGCATCTCA




SEQ ID NO: 623
SEQ ID NO: 1078
SEQ ID NO: 1533



lmo2522.18
GGTCAAAAGTTATCTATCGGAAGTAAAGCT
TGTTCCGCATTATTTGTAGATGGCTTA
CCGGGCTCTCATTAGAT




SEQ ID NO: 624
SEQ ID NO: 1079
SEQ ID NO: 1534



lmo2522.19
CGGTGTGACAGTTAACCAATTAAAAGAA
GGTGTGCTTTCACTAGCTTTAGC
CACCTACAGACAATTTT




SEQ ID NO: 625
SEQ ID NO: 1080
SEQ ID NO: 1535



lmo2522.20
AGGATACGGACAAGCAATTGCA
CCCCAGTTGTTAGCTTCTTGTACT
TTGCACCGCCAGTATCA




SEQ ID NO: 626
SEQ ID NO: 1081
SEQ ID NO: 1536





cspL
cspL.0
GACGTATTCGTTCACTTCTCAGCTA
ACGTCGAAAGTCACTGCTTGA
CCAAGGTGACGGATTC




SEQ ID NO: 627
SEQ ID NO: 1082
SEQ ID NO: 1537



cspL.1
AGAAGGCCAAGCGGTAACATT
CTTTTTCTACATTAGCTGCCTGAGC
ATTACCTTCGACAACTTCA




SEQ ID NO: 628
SEQ ID NO: 1083
SEQ ID NO: 1538



cspL.2
TCGTACATTTCAGCGCTATCCAA
TCTTCAACGTCGAAAGTTACTGCTT
ACCTTCGTCTAAAGATTTG




SEQ ID NO: 629
SEQ ID NO: 1084
SEQ ID NO: 1539



cspL.3
GAAGGCGGAGATGATGTATTCGT
CGCTTTGACCTTCGTCTAAAGTTTT
ACACTTCAGCGCTATCG




SEQ ID NO: 630
SEQ ID NO: 1085
SEQ ID NO: 1540



cspL.4
CAAGGTGACGGCTACAAATCTTTAG
GCGATTACCTTCGACAACTTCAAAT
CCGCTTGGCCTTCTT




SEQ ID NO: 631
SEQ ID NO: 1086
SEQ ID NO: 1541



cspL.5
ATGCAAACAGGTACAGTTAAATGGT
CGATAGCGCTGAAGTGTACGAATAT
AAGGCTTCGGTTTCATCG




SEQ ID NO: 632
SEQ ID NO: 1087
SEQ ID NO: 1542



cspL.6
CAAGGTGACGGCTACAAATCTTTAG
TGAGCGCCGCGGTTA
CCTTCAACTACTTCAAATGTT




SEQ ID NO: 633
SEQ ID NO: 1088
SEQ ID NO: 1543



cspL.7
GCGCTATCGAAGGTGAAGGATT
CTTGTGGGCCACGTTGAC
CAACGCTTTGACCTTCG




SEQ ID NO: 634
SEQ ID NO: 1089
SEQ ID NO: 1544



cspL.8
GGATTTGGTTTTATCGAACGCGAAA
TTTGAATCCGTCGCCTTGGA
ACGATGTATTCGTACATTTC




SEQ ID NO: 635
SEQ ID NO: 1090
SEQ ID NO: 1545



cspL.9
GCGCTATCGAAGGTGAAGGATT
CTTGTGGGCCACGTTGAC
AAAGCGTTGAATTTGAAATC




SEQ ID NO: 636
SEQ ID NO: 1091
SEQ ID NO: 1546



cspL.10
ATGCAAACAGGTACAGTTAAATGGT
CGATAGCGCTGAAGTGTACGAATAC
CTCCGCCTTCTACTTCG




SEQ ID NO: 637
SEQ ID NO: 1092
SEQ ID NO: 1547



cspL.11
ATGCAAACAGGTACAGTTAAATGGT
CATCGTCTCCGCCTTCTACTTC
AAAGGCTTCGGTTTCATC




SEQ ID NO: 638
SEQ ID NO: 1093
SEQ ID NO: 1548



cspL.12
CAAGGTGACGGCTACAAATCTTTAG
TTTTTCCACATTGGCTGCTTGAG
ACCTTCAACTACTTCAAATGT




SEQ ID NO: 639
SEQ ID NO: 1094
SEQ ID NO: 1549



cspL.13
GCGAAAACGGTGACGATGTATTC
CGTCGAAAGTTACTGCTTGACCTT
TCGCCTTGGATAGCGC




SEQ ID NO: 640
SEQ ID NO: 1095
SEQ ID NO: 1550



cspL.14
GGCGGAGATGATATATTCGTACACTT
GTTGGCCTTCAACGATTTCAAATTC
TCGAAGGTGAAGGATTCA




SEQ ID NO: 641
SEQ ID NO: 1096
SEQ ID NO: 1551



cspL.15
TCGAAGTAGAAGGCGGAGATGATAT
CGCTTTGACCTTCGTCTAAAGTTTT
ACACTTCAGCGCTATCG




SEQ ID NO: 642
SEQ ID NO: 1097
SEQ ID NO: 1552



cspL.16
CAAGGTGACGGCTACAAATCTTTAG
CCGCGATTACCTTCAACTACTTCAA
CCGCTTGGCCTTCTT




SEQ ID NO: 643
SEQ ID NO: 1098
SEQ ID NO: 1553



cspL.17
GACGGCGGCGAAGATATTTTC
ACCGCTTGGCCTTCTTCTAAAG
CACTTCACAGCGATCCAA




SEQ ID NO: 644
SEQ ID NO: 1099
SEQ ID NO: 1554



cspL.18
AGACGGCGGCGAAGATATTTT
ACCGCTTGGCCTTCTTCTAAAG
TCGCTGTGAAGTGAACG




SEQ ID NO: 645
SEQ ID NO: 1100
SEQ ID NO: 1555



cspL.19
ATGCAAAATGGGAAAGTAAAATGGTTT
TTCGCCGCCGTCTGATT
AAGGGTTACGGTTTTATCG




SEQ ID NO: 646
SEQ ID NO: 1101
SEQ ID NO: 1556



cspL.20
GAAGGCGGAGATGATGTATTCGTA
CTTCAACGATTTCAAATTCAACGCTTT
TCGAAGGTGAAGGATTCA




SEQ ID NO: 647
SEQ ID NO: 1102
SEQ ID NO: 1557





inlG
inlG.0
TCACTGATGAAGTTACGCAAACAGA
CTGATTGGAAGATACACCCAACATATTCA
ACGACAAAGGAATAAATTC




SEQ ID NO: 648
SEQ ID NO: 1103
SEQ ID NO: 1558



inlG.1
GCCACTTTCAGGATTGACACAGTTA
CGTTAGATTAGCAAGAGGTGTCACA
CATTCGTACAATTATCTATCA




SEQ ID NO: 649
SEQ ID NO: 1104
ATCAA






SEQ ID NO: 1559



inlG.2
CCCGCTGACGAACCTTACTAAATTA
TGGTCAATCTTGAAAGCGGAGTTAA
CTCTTTATATTTAGGGAAAAATC




SEQ ID NO: 650
SEQ ID NO: 1105
SEQ ID NO: 1560



inlG.3
GCGGAAACTGGTGGGAATGAA
TGTCATATTCGTAGCCGGCATTTTA
CTACTGCAAAATCCC




SEQ ID NO: 651
SEQ ID NO: 1106
SEQ ID NO: 1561



inlG.4
CCGACGAAAGATGGCTACACATTT
AATCCCATTCATTCCCACCTGTTT
TTGCATCGTACCATCCTAC




SEQ ID NO: 652
SEQ ID NO: 1107
SEQ ID NO: 1562



inlG.5
CGCAACTAGCAAAATGCCAACTA
GCGCTGTCGTTAGCTTTAATTGTTA
CAATTCTCAAACAGCTCCC




SEQ ID NO: 653
SEQ ID NO: 1108
SEQ ID NO: 1563



inlG.6
GTGACACCTCTTGCTAATCTAACGA
GCGCGGCTGTTATTTGTTGTTT
TCAAATAAGTGATGCAAGTCC




SEQ ID NO: 654
SEQ ID NO: 1109
SEQ ID NO: 1564



inlG.7
AGTTTCACGAGTGAGGTTAGTTATGATTTT
GCTTCTACTATCGGTTGAACAACAG
ATGGGAAGGTAACTTTTG




SEQ ID NO: 655
SEQ ID NO: 1110
SEQ ID NO: 1656



inlG.8
GTGAAGTAGTACCACCAACAACGAT
CTCACTCGTGAAACTATCTAAGTTCCA
TTGGACTAGCAAAGGTTC




SEQ ID NO: 656
SEQ ID NO: 1111
SEQ ID NO: 1566



inlG.9
GACAGAAAACGTGGTAGTGGATACA
TCCGCATCATACCAACCAGAAAA
ACCGACAAAAGAAGGTTATAC




SEQ ID NO: 657
SEQ ID NO: 1112
SEQ ID NO: 1567



inlG.10
CCCCCGGAAATGATGATAAAAACGA
TTTTGGAAGTTTAGTACTCGTCGTATCTG
CTGTCGTTAGCTTTAATTGT




SEQ ID NO: 658
SEQ ID NO: 1113
SEQ ID NO: 1568



inlG.11
GCCACTTTCAGGATTGACACAGTTA
GACTTGCATCACTTATTTGATTTTCTCGTA
ATGTGACACCTCTTGCTAATC




SEQ ID NO: 659
SEQ ID NO: 1114
SEQ ID NO: 1569



inlG.12
TGACACCACTTGCTAATCTAACGAA
AGCGGCCGTTATTTGTTGTTTT
AAGGACTTGCATCACTTATT




SEQ ID NO: 660
SEQ ID NO: 1115
SEQ ID NO: 1570



inlG.13
CGCTCTACGCCCAGTTCA
GTTTCTCCGTCCACATCAAATGC
CCGTGTAGCTATTTATTG




SEQ ID NO: 661
SEQ ID NO: 1116
SEQ ID NO: 1571



inlG.14
CTTGTAGTGACAGCTATCTTGGGAAT
AATACTCTCTGCCTGAGCTTTCATC
CTTGCATTTACCCATAAACT




SEQ ID NO: 662
SEQ ID NO: 1117
SEQ ID NO: 1572



inlG.15
AAGCTCAGGCAGAGAGTATTGC
GCTAATGCTGGATCCGTGAAAAT
CAGCGCCAATTAACGAA




SEQ ID NO: 663
SEQ ID NO: 1118
SEQ ID NO: 1573



inlG.16
TGCTGAACCGACAAAAGAAGGT
GCCGGCATTTTATCTACTGCAAA
CCCACCAGTTTCCG




SEQ ID NO: 664
SEQ ID NO: 1119
SEQ ID NO: 1574



inlG.17
GACAACAACAGAAAACGTGACAGTA
ACCAGTTTTTGCATCATACCATCCA
CTGAGCCAACAAAAGAA




SEQ ID NO: 665
SEQ ID NO: 1120
SEQ ID NO: 1575



inlG.18
GCGCCCGTGAATTACATTACTACAT
CGGTTCAGCAGGTTCGGTTATTAA
TCGTCGTCGTTCCATCCAC




SEQ ID NO: 666
SEQ ID NO: 1121
SEQ ID NO: 1576



inlG.19
ACAGCTCCCGGAAAAGATGATAAAA
CATCACTTGTTTTTGGAAGTTTAGTACTCG
TCGCATCTGCGCTGTC




SEQ ID NO: 667
SEQ ID NO: 1122
SEQ ID NO: 1577





Lmo069
lmo0699.0
GCGAAGCACTCAAAGACAGTTTTAA
CACGTAGAAGTGCTGGGTTAGTTT
CCAGAAATCGTTAATATCG


9

SEQ ID NO: 668
SEQ ID NO: 1123
SEQ ID NO: 1578



lmo0699.1
TGGGCGCTTTCATCCCTATG
CGTCTTTAAGCTTTCGAGGTGTTC
CATAAACCAGAGAAATTTG




SEQ ID NO: 669
SEQ ID NO: 1124
SEQ ID NO: 1579



lmo0699.2
TGTTTTTGAAGAGCTGACGTTGAAA
TGGTGAGATTGGATGCACTGATTT
AAGCACTCAAAGACAGTTTT




SEQ ID NO: 670
SEQ ID NO: 1125
SEQ ID NO: 1580



lmo0699.3
GCGACGTGCTTCTGACAGA
CGGCTTTTTGGTTACCACTTTTTCC
CTCATATACGTGACACACTCAA




SEQ ID NO: 671
SEQ ID NO: 1126
SEQ ID NO: 1581



lmo0699.4
GAAACTAACCCAGCACTTCTACGT
ATGCGCATTGTACTAATCCAAAACT
CACATCACCGAACGACATG




SEQ ID NO: 672
SEQ ID NO: 1127
SEQ ID NO: 1582



lmo0699.5
AGAAAAATTCTGCGAAGCACTCAAAG
GTAGAAGTGCTGGGTTAGTTTCGAT
ATGCACCGATTTAAAACTGT




SEQ ID NO: 673
SEQ ID NO: 1128
SEQ ID NO: 1583



lmo0699.6
CAACGTGGAAAGAGCTCAACAAG
CCTTTGAGTGTATCGCGTATGTG
ACGTCCTTCTAACAGAAACA




SEQ ID NO: 674
SEQ ID NO: 1129
SEQ ID NO: 1584



lmo0699.7
TGAGCGAGCGCAGACTTTTAT
GTCTTTGAGTGCTTCGCAGAATTTT
CAGCTCTTCAAAAACAG




SEQ ID NO: 675
SEQ ID NO: 1130
SEQ ID NO: 1585



lmo0699.8
GGTTACGTCACCGAAAAATGGAAAT
GCTCTGTTCGCCCTGTATGAC
AACGGCTTTTTGGTTACCAC




SEQ ID NO: 676
SEQ ID NO: 1131
SEQ ID NO: 1586



lmo0699.9
GCGCATACGTGTAGGTGAAATTAAA
CAGAAGCACGTCGCCTACTT
CAAGCTTATTCAGTTCTTTCC




SEQ ID NO: 677
SEQ ID NO: 1132
SEQ ID NO: 1587



lmo0699.10
TGATGCGGAAGTCGAGCAA
CACGAATGCGCGCTTCT
TTTTCGACTTGATGCAATTC




SEQ ID NO: 678
SEQ ID NO: 1133
SEQ ID NO: 1588



lmo0699.11
AGAGAAATTTGGCGCAGAACAC
CTGGGAAACAAACTCCATGCTTTT
ATGCAATCGTCTTTAAGCTT




SEQ ID NO: 679
SEQ ID NO: 1134
SEQ ID NO: 1589



lmo0699.12
TGAGTGAAGGTAAGGTAGTCGATGAA
GTGTTCCGCACCAAATTTCTCT
CATAGGGATGAAAGCGCC




SEQ ID NO: 680
SEQ ID NO: 1135
SEQ ID NO: 1590



lmo0699.13
GTTGAGAAAGAAGCGCGTATTCG
CACGTATATGAGTTTCTGTCAGAAGCA
CCAACTTCTAGCATATTAAG




SEQ ID NO: 681
SEQ ID NO: 1136
SEQ ID NO: 1591



lmo0699.14
CGCATCGGCGTCCCATT
CGCATCAAAATTCCGTCGTTTATCA
TTTCTCAGTAGAAGAGATTATG




SEQ ID NO: 682
SEQ ID NO: 1137
SEQ ID NO: 1592



lmo0699.15
CCGAACGATAGTTACATTTTCTGCAT
TGGATTTCCACCTGATAAACATTCGT
CCGGATTACCGAGATCAA




SEQ ID NO: 683
SEQ ID NO: 1138
SEQ ID NO: 1593



lmo0699.16
CTTAACATGCTAGAAGTTGGAGATGTACT
TTTCTCGGTGACATAGCCTTTGAG
TCGCGTATATGGGTTTCT




SEQ ID NO: 684
SEQ ID NO: 1139
SEQ ID NO: 1594



lmo0699.17
AGCGAGCGCAGACTTTTATCT
GTCTTTGAGTGCTTCGCAGAATTTT
ATTTCAACGTCAGCTCTTC




SEQ ID NO: 685
SEQ ID NO: 1140
SEQ ID NO: 1595



lmo0699.18
CGCATCGGCGTCCCATT
CGCATCAAAATTCCGTCGTTTATCA
ACGACATTCTCAAGTTTATTCA




SEQ ID NO: 686
SEQ ID NO: 1141
SEQ ID NO: 1596



lmo0699.19
GGAGTTTGTTTCCCAGCGTATTC
CGCAAAAGACACTTGATCTGCAA
TTCGGTATGAATTGGAATCC




SEQ ID NO: 687
SEQ ID NO: 1142
SEQ ID NO: 1597



lmo0699.20
GGCGACGTCCTTCTAACAGA
CATTTTTCGGTGACATAGCCTTTGA
CACACATACGCGATACAC




SEQ ID NO: 688
SEQ ID NO: 1143
SEQ ID NO: 1598





opuCA
opuCA
GGATGTAACGCAGGTAGCTCAAA
CTTGAAGTGATTTGTCGGCTGTAAT
CCGGGTTGGTATTCAT




SEQ ID NO: 689
SEQ ID NO: 1144
SEQ ID NO: 1599



opuCA.1
GGGCAAAAAAGCCGTTAATGATCTA
GTAGTTTTCCCACAACCACTTGGA
CCGATAAAACAAACAAATTC




SEQ ID NO: 690
SEQ ID NO: 1145
SEQ ID NO: 1600



opuCA.2
CGACTTATTGAGCCAACAGAAGGAA
GTTGAATGACATATCCAATAGAGCGTCTT
CCGCCATGATGTCTTTATCA




SEQ ID NO: 691
SEQ ID NO: 1146
SEQ ID NO: 1601



opuCA.3
ACGAATCCAGTGTCTATTACAGCAG
ACCTTCATCCACTACAAGTAACGTATCT
CAGTCATGAAAGAAAAACG




SEQ ID NO: 692
SEQ ID NO: 1147
SEQ ID NO: 1602



opuCA.4
GGCTTTATCGACGTAGAGCAAATTG
CAGTGTCACGAAGCAAGGTATCTT
TCGTACAGCAACTTCTG




SEQ ID NO: 693
SEQ ID NO: 1148
SEQ ID NO: 1603



opuCA.5
AGAAAAAACAAGAACGGGCAAAAGAA
TGCTGTCCACCACTTAATTCGTAA
AAAACTCTTCTGGTAAATCT




SEQ ID NO: 694
SEQ ID NO: 1149
SEQ ID NO: 1604



opuCA.6
ATACGTTACTTGTTGTGGATGAAGGT
ACAGAAGTTGCTGTACGACGATTTA
TCGATAAAGCCTTTTAAAACAT




SEQ ID NO: 695
SEQ ID NO: 1150
SEQ ID NO: 1605



opuCA.7
TTGTGGGAAAACGACAACAATGAAG
GGATCTTCCGCCATGATGTCTTTAT
CAATAAGCCGGTTAATCAT




SEQ ID NO: 696
SEQ ID NO: 1151
SEQ ID NO: 1606



opuCA.8
TCGAACACGTAACAAAGACTTATAAAGGG
CCACTTGGACCGATAAAACAAACAA
AATGATCTAACACTAAACATCG




SEQ ID NO: 697
SEQ ID NO: 1152
SEQ ID NO: 1607



opuCA.9
GTGTTAAAATTCGAACACGTAACAAAGAC
CCACTTGGACCGATAAAACAAACAA
ACTGCTTTTTTGCCCCCTTT




SEQ ID NO: 698
SEQ ID NO: 1153
SEQ ID NO: 1608



opuCA.10
CCACATATGACGATTCGCGAAAATA
CTTTCTTGTTTTTTCTCTTCGGACCATT
CCTTGTACCAAAATTAC




SEQ ID NO: 699
SEQ ID NO: 1154
SEQ ID NO: 1609



opuCA.11
TGGTTATGTTATTCAGCAAATTGGCTTG
TCTCTTCGGACCATTTAAGTAATTTTGGT
ATGCCACATATGACGATTC




SEQ ID NO: 700
SEQ ID NO: 1155
SEQ ID NO: 1610



opuCA.12
CCAATTACTCGTGATTCCCTACAAGA
GCCAGTTTAATCGCTTCATCCAT
CTTGCCAAGTTCTTTTTGCA




SEQ ID NO: 701
SEQ ID NO: 1156
SEQ ID NO: 1611



opuCA.13
CGTGCCAGCTTAGTTGATATCGTAT
CGTTTTGGAATCCGCCTGTTC
ATGCGACAGAAAACCAG




SEQ ID NO: 702
SEQ ID NO: 1157
SEQ ID NO: 1612



opuCA.14
GGATTTATCGACGTAGAGCAAATCGA
ACGGAGTAAGGTATCTTCATACACGTA
TTTAAATCGCCGCACAGCAA




SEQ ID NO: 703
SEQ ID NO: 1158
SEQ ID NO: 1613



opuCA.15
CTTGTAGTCGACGAAGGGAATGTAT
ACAGAAGTTGCAGTACGACGATTT
TTTGTTCTACGTCAATAAAG




SEQ ID NO: 704
SEQ ID NO: 1159
SEQ ID NO: 1614



opuCA.16
GATGAAGCAATAAAACTTGCAGATCGT
CGCTGGATTACGCAAAATTTCATCT
ATGAAAGCTGGTGAAATC




SEQ ID NO: 705
SEQ ID NO: 1160
SEQ ID NO: 1615



opuCA.17
GGGCAAAAAAGCTGTTAATGATCTAAC
TCGTCGTTTTCCCACAACCA
CCGATAAAACAAACAAATTC




SEQ ID NO: 706
SEQ ID NO: 1161
SEQ ID NO: 1616



opuCA.18
CAAGTGGTTGTGGGAAAACGA
GGATCTTCCGCCATGATGTCTTTAT
AAGCCGGTTAATCATCTTC




SEQ ID NO: 707
SEQ ID NO: 1162
SEQ ID NO: 1617



opuCA.19
ACGGATTCTAAAACGCGGCTATAAA
ACTAAGCTGGCACGAGTAACAATT
CCGACAAGTCGTTTATC




SEQ ID NO: 708
SEQ ID NO: 1163
SEQ ID NO: 1618



opuCA.20
TGGGAAAACGACAACAATGAAGATG
GGATCTTCCGCCATGATGTCTTTAT
ACCGGCTTATTGAACCTACA




SEQ ID NO: 709
SEQ ID NO: 1164
SEQ ID NO: 1619





inlJ
inlJ.0
CGACACGAACAAACTCACAAAGA
TTGCGTGCGCAGTTTAAATAAGTTA
ACAATGGATTTTGACTTA




SEQ ID NO: 710
SEQ ID NO: 1165
CATCTA






SEQ ID NO: 1620



inlJ.1
CAGCGAAGAACAACTAGCTACTCT
GGTGGTAATGTTGTTACTTGTGCAA
TCGGTTATGGATGAATTAT




SEQ ID NO: 711
SEQ ID NO: 1166
SEQ ID NO: 1621



inlJ.2
GAGTTGTAGAAATTCACTATGTTGACGAA
CAGTTGTGTAATTATCTCCTACTGTTCCA
ACAACTGAGCTCCGCCACT




SEQ ID NO: 712
SEQ ID NO: 1167
SEQ ID NO: 1622



inlJ.3
ACACAAGTAGCCAAACAGTGACAT
GTTTTGCCATTAGCATCCACGTAA
TACAGGCTCTGCTGCTACG




SEQ ID NO: 713
SEQ ID NO: 1168
SEQ ID NO: 1623



inlJ.4
CCAATGCAACTGGACAATTCACA
GTAAAGGTTGGTCGATGTTTGTGTT
AACCGTCAACTACATTTAC




SEQ ID NO: 714
SEQ ID NO: 1169
SEQ ID NO: 1624



inlJ.5
CGACACGAACAAACTCACAAAGT
GGCTGACATCTATTTCGGTTAAGGT
CCACTGTTAACTTATTTAA




SEQ ID NO: 715
SEQ ID NO: 1170
ACTGC






SEQ ID NO: 1625



inlJ.6
CCGCCGAACCAACCAATG
GGTTTGCGCGCTGCTT
CAACTGGACAATTCAC




SEQ ID NO: 716
SEQ ID NO: 1171
SEQ ID NO: 1626



inlJ.7
CAGCAGAGCCTGTAACAGTGAATTA
GCCAATAGTTCCGTTTAGGATTTCG
ATGGAGCGAGCATTTT




SEQ ID NO: 717
SEQ ID NO: 1172
SEQ ID NO: 1627



inlJ.8
CGACACGAACAAACTCACAAAGT
GGTTAATTGTGTATTGTGGCTGACA
CAACACCTTAACCGAAATAG




SEQ ID NO: 718
SEQ ID NO: 1173
SEQ ID NO: 1628



inlJ.9
ACCGTTAATTACGTGGACGATACTG
GTGTCGCCAACATTTCCGTTTA
CTCTCCATCCGAAATAT




SEQ ID NO: 719
SEQ ID NO: 1174
SEQ ID NO: 1629



inlJ.10
ACCCCGCTTACACAGTTAACATATTT
TTGTGTGTTGTGTGTTAGGTCTATTTCT
CTACGCTTTCAAAATTAAC




SEQ ID NO: 720
SEQ ID NO: 1175
SEQ ID NO: 1630



inlJ.11
CGCGCAAACCGTCAACT
CGTCAACATAGTGAATTTCTACAA
CTGGATTTTTTGTGTAAATAT




SEQ ID NO: 721
CTCCTT
SEQ ID NO: 1631





SEQ ID NO: 1176




inlJ.12
AGGAGAAAAATTGGCGGCTGAT
CGCGCTAGAAGTATAAGGATCGT
AATTACCGCTTAAAACTTC




SEQ ID NO: 722

SEQ ID NO: 1632



inlJ.13
AGTAGGAACCGTAACAACTCCATTTG
CGCCAATTTTTCTCCTTTGTCATCA
AAGCCCCTCAACCCATC




SEQ ID NO: 723
SEQ ID NO: 1178
SEQ ID NO: 1633



inlJ.14
GTAGCAGCAGAGCCTGTAACA
GGAGCGAGCATTTTGCCATTAG
CATCCACGTAATTCAC




SEQ ID NO: 724
SEQ ID NO: 1179
SEQ ID NO: 1634



inlJ.15
AGCTAACTTTCCTAAATTGCTCCAGTAA
CGCTACAATCAAAATATGTTAAC
ACCGAAATAGATGTAACCCC




SEQ ID NO: 725
TGTGTAAGC
SEQ ID NO: 1635





SEQ ID NO: 1180




inlJ.16
AAGCAGCAGAGCCTGTAACA
AGCGAGTGTTTTGCCGGTAT
CATCCACGTAATTCAC




SEQ ID NO: 726
SEQ ID NO: 1181
SEQ ID NO: 1636



inlJ.17
ACACAAGTAGCCAAACAGTGACAT
GTTTTGCCATTAGCATCCACGTAA
AAGCAGCAGAGCCTG




SEQ ID NO: 727
SEQ ID NO: 1182
SEQ ID NO: 1637



inlJ.18
CAATGCGACTGGACAATTCACAAG
TGGTAAAGGTTGATCTGTGTTTGTGT
TAGCGCACAAACTGTC




SEQ ID NO: 728
SEQ ID NO: 1183
SEQ ID NO: 1638



inlJ.19
GATCTTTCACAAAACCCCAAATTAGTCT
CGCAAGACAAACTTTTCAGCTTTG
ATGAGAAACGTCTAATTTC




SEQ ID NO: 729
SEQ ID NO: 1184
SEQ ID NO: 1639



inlJ.20
AACAGGCGATTCCACACCAT
CTATTTTTTCTTTTTCCAGATAAC
AAGACCCCAAGTAGAGCTG




SEQ ID NO: 730
TAGAGCT
SEQ ID NO: 1640





SEQ ID NO: 1185






Lmo078
lmo0782.0
GCGCTTGGATGGATGAATATCG
GCTGATATCTTGTCCCCCAGTAAT
CAGCATCTGGAGCAACC


2

SEQ ID NO: 731
SEQ ID NO: 1186
SEQ ID NO: 1641



lmo0782.1
GCGCTTGGATGGATGAATATTGG
GCTGATATCTTGTCCCCCTGTAAT
CAGTGGCACCCGATGCT




SEQ ID NO: 732
SEQ ID NO: 1187
SEQ ID NO: 1642



lmo0782.2
GCAGCATTTACTGCGTTTAACTTAGT
GCCGTATTGTTGGATAGCTTCTTTC
CTGCAACTAGTCCTAAAACA




SEQ ID NO: 733
SEQ ID NO: 1188
SEQ ID NO: 1643



lmo0782.3
CAATGGTTATTAACATGATGTCCGCTAA
GCTGCAACTAGTCCTAAAACACCTA
CTGCGACAACAAAACCTAAGA




SEQ ID NO: 734
SEQ ID NO: 1189
SEQ ID NO: 1644



lmo0782.4
AACGTAGCTGGTGGATTTATCGTT
CTGCGACAACAAAACCTAAGAAGAA
CATTGCGTAACCAACAAC




SEQ ID NO: 735
SEQ ID NO: 1190
SEQ ID NO: 1645



lmo0782.5
GTTGGTACACAAGCAGTCGAAAATT
ACGATAAATCCACCAGCTACGTTT
CCGGACGTTATTGTTAATG




SEQ ID NO: 736
SEQ ID NO: 1191
SEQ ID NO: 1646



lmo0782.6
CTTGAAATGATCGCGCTTGGAT
GGGCAGCATCTGGAGCAA
CAGCTCCGATATTCATCC




SEQ ID NO: 737
SEQ ID NO: 1192
SEQ ID NO: 1647



lmo0782.7
AGTTGGTACTAGCGCCGTAGA
CCACCAGCTACGTTTAGACCATTAA
ATGGCATTGAGTAAATTT




SEQ ID NO: 738
SEQ ID NO: 1193
SEQ ID NO: 1648



lmo0782.8
GGTGGATTTATCGTTGTTGTTGGTT
CTGCGACAACAAAACCTAAGAAGAA
TTAGCGGACATCATGTTAATAA




SEQ ID NO: 739
SEQ ID NO: 1194
SEQ ID NO: 1649



lmo0782.9
GACTGGATTCATGTTTCAGCACTAC
GGTGACTGCCACGATAATTGCT
ATGCGTATCGCAATTCC




SEQ ID NO: 740
SEQ ID NO: 1195
SEQ ID NO: 1650



lmo0782.10
AGTCTCGACTGGATTCATGTTTCAG
ACTGCCACGATAATTGCTGGAAT
ACGCATTGCTTGAAGTAGT




SEQ ID NO: 741
SEQ ID NO: 1196
SEQ ID NO: 1651



lmo0782.11
CCTTTCTTCTTCTTAGGCTTTGTTGT
GCAACGAGTCCTATAACACCTAGTG
CAGCATTCACTCAATTCA




SEQ ID NO: 742
SEQ ID NO: 1197
SEQ ID NO: 1652



lmo0782.12
AGCCTGTACATTAATTGGTCTTGTTCTT
CGCAGCTCCGATATTCATCCAT
CAAGCGCGATCATTTC




SEQ ID NO: 743
SEQ ID NO: 1198
SEQ ID NO: 1653



lmo0782.13
GGGAAAGAAGGAAATTTGCGAAGTC
CGATACGCATTGCTTGAAGTAGTAG
TCGACTGGATTCATGTTTCA




SEQ ID NO: 744
SEQ ID NO: 1199
SEQ ID NO: 1654



lmo0782.14
GCTGCTCTTGGTCAAGTACTTACAA
CTTACCAGCTTTATCAGCCATGTG
TTGGAATGCAACTGTAATTG




SEQ ID NO: 745
SEQ ID NO: 1200
SEQ ID NO: 1655



lmo0782.15
GCGCTTGGATGGATGAATATCG
TGATATCTTGTCCCCCCGTAATAACT
CAGCATCTGGAGCAACC




SEQ ID NO: 746
SEQ ID NO: 1201
SEQ ID NO: 1656



lmo0782.16
GGTAAGGAAGGTAATCTGCGAAGT
GCGATACGCATAGCTTGAAGTAGTA
CTCGACTGGATACATGTTAC




SEQ ID NO: 747
SEQ ID NO: 1202
SEQ ID NO: 1657



lmo0782.17
GCAGCATTCACTCAATTCAACTTAGT
CCGTATTGCTCGATAGCTTCTTTCA
CTGCAACGAGTCCTATAAC




SEQ ID NO: 748
SEQ ID NO: 1203
SEQ ID NO: 1658



lmo0782.18
GCTGCTCTTGGTCAGGTACTTACTA
TCCCAGCTTTATCAGCCATGTG
TTGAAATGCAACTGTAATTGT




SEQ ID NO: 749
SEQ ID NO: 1204
SEQ ID NO: 1659



lmo0782.19
GTAGTATTTTGGATGAGTGGCAAACG
CCCCCAATAATGATACCGGTTGTAA
CACCGTCCATTAATTG




SEQ ID NO: 750
SEQ ID NO: 1205
SEQ ID NO: 1660



lmo0782.20
GAAATGATCGCGCTTGGCT
GCAGCATCAGGTGCAACAG
CAGCTCCGATGTTCATC




SEQ ID NO: 751
SEQ ID NO: 1206
SEQ ID NO: 1661





plcA
plcA.0
CGCAAACGATGTCATTGTACCAA
GGCCCATGGTAAATTTTGAGATTGT
CAACTAGAAGCAGGAATAC




SEQ ID NO: 752
SEQ ID NO: 1207
SEQ ID NO: 1662



plcA.1
GAACCACACAAAAAAGCCATTAGTCA
CTCGGACCATTGTAGTCATCTTGAA
ACTGCATGCCGAATTT




SEQ ID NO: 753
SEQ ID NO: 1208
SEQ ID NO: 1663



plcA.2
GAAGCAGGAATACGGTACATCGA
CGTTTCTAATACACCTGAAAGTGATGCA
CATGGGCCAATTTATT




SEQ ID NO: 754
SEQ ID NO: 1209
SEQ ID NO: 1664



plcA.3
GCGGGAAAGCATATTCGCTTAATAA
GCGCTGCTAGGTTTGTTGTG
TCAGGTAGAGCGGACATC




SEQ ID NO: 755
SEQ ID NO: 1210
SEQ ID NO: 1665



plcA.4
CCAGAACTGACACGAGCAATAAAAT
GGCTTTTTTGTGTGGTTCTCTGAAA
CCGCGGAAAAATAT




SEQ ID NO: 756
SEQ ID NO: 1211
SEQ ID NO: 1666



plcA.5
AGACGAGCAAAATAGCAACGATAGT
AGGGATTTTATTGCTCGTGTCATTTCT
CAAAGATTATTTTTACACCA




SEQ ID NO: 757
SEQ ID NO: 1212
CTCCC






SEQ ID NO: 1667



plcA.6
ACCAACAACTAGAAGCAGGAATACG
TGGCCCATGGTAAATGTTGAGATT
TATCGATATTAGAGCAAAAGAC




SEQ ID NO: 758
SEQ ID NO: 1213
SEQ ID NO: 1668



plcA.7
CAATGGTCCGAGTGTGAAAACAAAA
TGTTGTCCGCTTTAGAAGCTTGATA
CAGTCTGGACAATCTCTTT




SEQ ID NO: 759
SEQ ID NO: 1214
SEQ ID NO: 1669



plcA.8
CGAGCAAAACAGCAACGATAGTT
CGTGTCAGTTCTGGGAGTAGTGTA
CCAACCACTAATCAACATTT




SEQ ID NO: 760
SEQ ID NO: 1215
ATAAA






SEQ ID NO: 1670



plcA.9
CGGATCCAACCATTAATCAACATTTACAA
CGCGGACATCTTTTAATGTAGGGAT
CTGACACGAGCAATAAA




SEQ ID NO: 761
SEQ ID NO: 1216
SEQ ID NO: 1671



plcA.10
GCATCACTTTCAGGTGTATTAGAAACG
TGGTTGGGTCCGATAATCAAAACT
TCGTTGCTGTTTTGCTCG




SEQ ID NO: 762
SEQ ID NO: 1217
SEQ ID NO: 1672



plcA.11
CCAGAACTGACACGAGCAATAAAAT
GGCTTTTTTGTGTGGTTCTCTGAAA
CCGCGGACAT




SEQ ID NO: 763
SEQ ID NO: 1218
SEQ ID NO: 1673



plcA.12
CAGCACTCTCTATACCAGGTACAC
TGTGTTTGAGCTAGTGGTTTGGTTA
CCGTTATAGCTCATCGTATCAT




SEQ ID NO: 764
SEQ ID NO: 1219
SEQ ID NO: 1674



plcA.13
TGATACGATGAGCTATAACGGAGACA
GTTTGTGTTTGAGCCAGTGGTT
ACGCGGACATTAACCA




SEQ ID NO: 765
SEQ ID NO: 1220
SEQ ID NO: 1675



plcA.14
CAATCTCAAAATTTACCATGGGCCAA
GTTCTGCTCGTCTTTTAAACGCATA
CCTGAAAGTGATGCATTTAA




SEQ ID NO: 766
SEQ ID NO: 1221
SEQ ID NO: 1676



plcA.15
TTGTATAAGAATTATTTGCAACGCACATT
GCGAATATGCTTTTCCGCCTAAT
AACAAAACAGAGCAATAAAA




SEQ ID NO: 767
SEQ ID NO: 1222
SEQ ID NO: 1677



plcA.16
GATACGATGAGTTACAACGGAGACA
CGTATTCCTGCTTCTAGTTGTTGGT
ACCACTAGCTCAAACACA




SEQ ID NO: 768
SEQ ID NO: 1223
SEQ ID NO: 1678



plcA.17
AAACCACTAGCTCAAACACAAACG
TGCTCTAATATCGATGTACCGTATTCCT
ATGTCATTGTACCAACAACTAG




SEQ ID NO: 769
SEQ ID NO: 1224
SEQ ID NO: 1679



plcA.18
GAAGCAGGAATACGGTACATCGA
ATCGTTCCTAATACACCTGAAAGTGATG
ATGGGCCAATTTTTTTAAATG




SEQ ID NO: 770
SEQ ID NO: 1225
SEQ ID NO: 1680



plcA.19
ATTCAAAGAGATTGTCCAGACTGCTT
GTGAAAGTTAATGAAGTGGCGCTAA
CCGCTTTGGAAGCTTG




SEQ ID NO: 771
SEQ ID NO: 1226
SEQ ID NO: 1581



plcA.20
ACGCAAACGATGTCATTGTATCAAC
GGCCCATGGTAAATTTTGAGATTGT
ACCGTATTCCTGCTTCTAATT




SEQ ID NO: 772
SEQ ID NO: 1227
SEQ ID NO: 1682





lmo018
lo0189.0
CGGTATCCTAGCTGAAACATATCCA
TCTACTGCGTCTGTTAAGATATCCGTAT
TTTTCATTGTGGAGCTTGATCA


9

SEQ ID NO: 773
SEQ ID NO: 1228
SEQ ID NO: 1683



lmo0189.1
AAAACCATTGCAAGCATTAAGACGAA
ACGACCACCGTTTGCTTTCA
ATGTCAATGCTTTACCTAATCTA




SEQ ID NO: 774
SEQ ID NO: 1229
SEQ ID NO: 1684



lmo0189.2
CCGTTTTCATTGTGGAGCTTGATC
TCTACTGCGTCTGTTAAGATATCCGTAT
CTATAGGATACTCTTTCAAAGTTG




SEQ ID NO: 775
SEQ ID NO: 1230
SEQ ID NO: 1685



lmo0189.3
CCGTTTTCATTGTGGAGCTTGATC
TGTAAATACAAGTTCTACTGCGTCTGTT
CCGTGTAACTATAGGATACTC




SEQ ID NO: 776
SEQ ID NO: 1231
SEQ ID NO: 1686



lmo0189.4
GCAAACGGTGGTCGTAAGAAAAC
TTGATCAAGCTCCACAATGAAAACG
ACGTTGCGGTATCCTAG




SEQ ID NO: 777
SEQ ID NO: 1232
SEQ ID NO: 1687



lmo0189.5
AAAACCATTGCAAGCATTAAGACGAA
GCAACGTTCAATCGTTTTCTTACG
ACCACCGTTTGCTTTC




SEQ ID NO: 778
SEQ ID NO: 1233
SEQ ID NO: 1688



lmo0189.6
AAAACCATTGCAAGCATTAAGACGAA
GCAACGTTCAATCGTTTTCTTACGA
CCGCCGTTTGCTTTC




SEQ ID NO: 779
SEQ ID NO: 1234
SEQ ID NO: 1689



lmo0189.7
AGCAAACGGCGGTCGTA
CGGATGGATATGTTTCAGCTAGGAT
CAACGTTCAATCGTTTTCT




SEQ ID NO: 780
SEQ ID NO: 1235
SEQ ID NO: 1690



lmo0189.8
CAAACGGCGGTCGTAAGAAAAC
TTGATCAAGCTCCACAATGAAAACG
ACGTTGCGGTATCCTAG




SEQ ID NO: 781
SEQ ID NO: 1236
SEQ ID NO: 1691



lmo0189.9
CCGTTTTCATTGTGGAGCTTGATC
TGTAAATACAAGTTCTACTGCGTCTGTT
ATCCTATAGTTATACGGAT




SEQ ID NO: 782
SEQ ID NO: 1237
ATCTT






SEQ ID NO: 1692



lmo0189.10
AAAACCATTGCAAGCATTAAGACGAA
GCAACGTTCAATCGTTTTCTTACGA
AAGCATTGACATTGAAAGCA




SEQ ID NO: 783
SEQ ID NO: 1238
SEQ ID NO: 1693



lmo0189.11
CCGTTTTCATTGTGGAGCTTGATC
CTGCGTCTGTTAAGATATCCGTGTA
CTATAGGATACTCTTTC




SEQ ID NO: 784
SEQ ID NO: 1239
AAAGTTG






SEQ ID NO: 1694



lmo0189.12
CGGTATCCTAGCTGAAACATATCCA
CTGCGTCTGTTAAGATATCCGTGTA
TTTTCATTGTGGAGCTTGATCA




SEQ ID NO: 785
SEQ ID NO: 1240
SEQ ID NO: 1695



lmo0189.13
CGATTGAACGTTGCGGTATCCTA
CTGCGTCTGTTAAGATATCCGTGTA
AACGGATGGATATGTTTCAGC




SEQ ID NO: 786
SEQ ID NO: 1240
SEQ ID NO: 1696



lmo0189.14
TGAAAGCAAACGGTGGTCGTA
CGGATGGATATGTTTCAGCTAGGAT
CAACGTTCAATCGTTTTCT




SEQ ID NO: 787
SEQ ID NO: 1242
SEQ ID NO: 1697



lmo0189.15
AAAACCATTGCAAGCATTAAGACGAA
GACCGCCGTTTGCTTTCA
ATGTCAATGCTTTACCTAATCTA




SEQ ID NO: 788
SEQ ID NO: 1243
SEQ ID NO: 1698



lmo0189.16
CGATTGAACGTTGCGGTATCCTA
CTGCGTCTGTTAAGATATCCGTGTA
AACGGATGGATATGTTTCAGC




SEQ ID NO: 789
SEQ ID NO: 1244
SEQ ID NO: 1699



lmo0189.17
AAAACCATTGCAAGCATTAAGACGAA
CCACCGTTTGCTTTCAATGTCA
ATGCTTTACCTAATCTAGAATCT




SEQ ID NO: 790
SEQ ID NO: 1245
SEQ ID NO: 1700





lmo088
lmo0880.0
GCGATACTTTACCAGGAGTAGCT
GTCTGATGTAAGGTTGTTCCAGTCT
CTGCAACGGTAACATC


0

SEQ ID NO: 791
SEQ ID NO: 1246
SEQ ID NO: 1701



lmo0880.1
CGAAACAGATTTTGGTCCACTTGAA
CTCCAGGTAATGTATCGCCATCTTT
CACTTTATAGATGACTTTAA




SEQ ID NO: 792
SEQ ID NO: 1247
TTTT






SEQ ID NO: 1702



lmo0880.2
GCGGACCGCAATTTTGAATTATCTA
AGCTTTTTTGTTTCGTCGTAATTTTCGT
ATGACAACAGATTGATTAT




SEQ ID NO: 793
SEQ ID NO: 1248
TTAAC






SEQ ID NO: 1703



lmo0880.3
CAAACAGACCAAGTAAATCCAATTGCT
CCGCCACCAGTATTAACTTTGCTAA
TCGTTTGGGTCGTATTTT




SEQ ID NO: 794
SEQ ID NO: 1249
SEQ ID NO: 1704



lmo0880.4
CAACAGATTACGGTAGCAG
CTACCCGCACTTTGCTATTTTCTTT
AATGTAGCTTTGCAAAATC




SEQ ID NO: 795
SEQ ID NO: 1250
SEQ ID NO: 1705



lmo0880.5
CGAAACAGATTTTGGTCCACTTGAA
CAGGTAATGTATCGCCATCTTTCAC
CCATTTTGTTCGGAATCTT




SEQ ID NO: 796
SEQ ID NO: 1251
SEQ ID NO: 1706



lmo0880.6
CGGTGTCTAGAAATGCCACTGTTAA
GTGGTGTGGTTCCTGATCCTT
CCCGCCACTCCCGTAAT




SEQ ID NO: 797
SEQ ID NO: 1252
SEQ ID NO: 1707



lmo0880.7
CCATTGATCAAACAACAGGAACGAT
GGCTGCCACTTAAATTTGTATGTGT
ACGTAGTCGGTAAAAGTC




SEQ ID NO: 798
SEQ ID NO: 1253
SEQ ID NO: 1708



lmo0880.8
GTTGACACCTATTGATAATGCCGTTT
CGGTATTTGATTGTTGCACTTCCAA
TTGGCTCAGGGCAAAAT




SEQ ID NO: 799
SEQ ID NO: 1254
SEQ ID NO: 1709



lmo0880.9
GACGAAACAAAAAAGCTATACGAATAAAGC
CTTGTCCACCACTACCGTAATCATT
CACTGTCGCGTTTCTC




SEQ ID NO: 800
SEQ ID NO: 1255
SEQ ID NO: 1710



lmo0880.10
CAACAGATTACGGCAGCA
CGTTGTTTGCTCCCCGTTT
ACTAATGTATCATTACAAAATCA




SEQ ID NO: 801
SEQ ID NO: 1256
SEQ ID NO: 1711



lmo0880.11
CATAACCTCCTTGGAAATGCTACCA
TGCGGTTACTATCTAGCGCAA
TTGGTTGTACACTTGTAGAT




SEQ ID NO: 802
SEQ ID NO: 1257
ATTAC






SEQ ID NO: 1712



lmo0880.12
ATGAAAAAAAGATGGTTGGTATTTGCAAT
CCCGTAATCTGTTGCAGCTTCT
TCACTGGATTTTTAAGCCC




SEQ ID NO: 803
SEQ ID NO: 1258
SEQ ID NO: 1713



lmo0880.13
ACTTACGATACTAAAATCACCACGAAACAA
CGGTTGCATTTCTTGAAACTGCAT
AAGCCACTTTATCAGGTGACAAT




SEQ ID NO: 804
SEQ ID NO: 1259
SEQ ID NO: 1714



lmo0880.14
GCCGGTCAAAAATTACAACTAACGA
CGCTTGTTGTGCTAGTCACTTTT
CAGGTGGAATGGTGATTTT




SEQ ID NO: 805
SEQ ID NO: 1260
SEQ ID NO: 1715



lmo0880.15
CAGACTTTGGACCAATTGAAGTTGTC
GCAACGCCTGGTAAAGTATCG
ATCTTGTTCGGAATCTTT




SEQ ID NO: 806
SEQ ID NO: 1261
SEQ ID NO: 1716



lmo0880.16
CGGATACTTTACAAGCCGGTCAAAA
GCACAGGTGGCACGGTAAT
TTTGATAAGAGCGTTTTTTC




SEQ ID NO: 807
SEQ ID NO: 1262
SEQ ID NO: 1717



lmo0880.17
CTGTGAAAAATACGACCCAAACGAT
CCTGTACCGCCACCAGTAT
ACGCCTTTATTAGCAAAGTT




SEQ ID NO: 808
SEQ ID NO: 1263
SEQ ID NO: 1718



lmo0880.18
CCACCAATATCCAACCAATTACGCT
TGTTTCGTCGTAATTTTCGTATCATACGT
ATGCGAATCGAAATTT




SEQ ID NO: 809
SEQ ID NO: 1264
SEQ ID NO: 1719



lmo0880.19
GGCGAATGGATGATAAAGACTTGAG
CATTATCAATAGGTGTCAGCGCATT
ACATTGGACCGTTACTTTAA




SEQ ID NO: 810
SEQ ID NO: 1265
SEQ ID NO: 1720



lmo0880.20
AGTTGCAAGTGGAGAAACAATGACT
GTCATTCACTGGAAAACCACCAAAA
CCGGAACAGCTGAAATTAATTA




SEQ ID NO: 811
SEQ ID NO: 1266
SEQ ID NO: 1721





lmo051
lmo0514.0
GATGGTATTACAGTCAGCGGTGTA
AGTCGGAAAATCATAGCGTGCATTA
AAA GAAGAATTCGACAATCTT


4

SEQ ID NO: 812
SEQ ID NO: 1267
SEQ ID NO: 1722



lmo0514.1
GCCAGCTTTAAATACGCTTTTCTTACA
CGAATGCAGCAAGTGCTTTTAAATT
ATGGTCTAAAATCATCAATTCC




SEQ ID NO: 813
SEQ ID NO: 1268
SEQ ID NO: 1723



lmo0514.2
GGAAGCTGGAAATCTGGTAACACTA
CCGCCCACTGTTAAGTAAGTCAAA
CCGATTAAAAACCAAACTTC




SEQ ID NO: 814
SEQ ID NO: 1269
SEQ ID NO: 1724



lmo0514.3
CGCGACACTTACAAGCGATTTTAAT
CCGCGCTCATTTTCAGCATTTAAT
CCACACCAGGAAAATA




SEQ ID NO: 815
SEQ ID NO: 1270
SEQ ID NO: 1725



lmo0514.4
TTAAGCTTGATGTACCAGGCGAAT
CTTTGAGTCCTGCAGCATTTTCT
ACCGTGACATTAAACGC




SEQ ID NO: 816
SEQ ID NO: 1271
SEQ ID NO: 1726



lmo0514.5
ACACGTTAGATTTAACAGCGGATGA
CCATCGTCCGTTTTTGCTTGAAC
CATTTCTGAAGAACAATTTT




SEQ ID NO: 817
SEQ ID NO: 1272
SEQ ID NO: 1727



lmo0514.6
GGGCGGAGACAATGTAAAAGATAGT
TCATGGAGTTTTGCGCATAGAGAT
AAGACATTATGCGTCACTTCA




SEQ ID NO: 818
SEQ ID NO: 1273
SEQ ID NO: 1728



lmo0514.7
CAGGTGCGAATTATAGCGATTTAACAG
GCTAGTGTTTGGATGCTCGTGTTAT
AAGCAGCATCAAACCTT




SEQ ID NO: 819
SEQ ID NO: 1274
SEQ ID NO: 1729



lmo0514.8
GCTGGTCTAAAAGCGGATCCAATAA
TGTCGGATCTGCTGTGATAACTG
TTTTTCATGAACAACTACT




SEQ ID NO: 820
SEQ ID NO: 1275
TTTAC






SEQ ID NO: 1730



lmo0514.9
CCAAACACTTGAACCGATTAAAAACCA
ACAAGTCCATTTAAATCTACGAAAA
TCCGCCCACTGTTAAGT




SEQ ID NO: 821
GACTATCTT
SEQ ID NO: 1731





SEQ ID NO: 1276




lmo0514.10
TTGCCAGCATTAACAACGCTTTT
TTTGTCCAAATGCTGCTAAAGCTTTT
ATGGAATTGATGATTTTCG




SEQ ID NO: 822
SEQ ID NO: 1277
SEQ ID NO: 1732



lmo0514.11
GGTTGGTGGAGACAATGTAACAGAT
GACTAACATTTTTACTGCTAATACTT
AAGCATGTAAATCAACAAACG




SEQ ID NO: 823
ATACTTTTCAAGGTT
SEQ ID NO: 1733





SEQ ID  NO: 1278




lmo0514.12
CCAGCCTTAACAACACTTTTCTTACAA
GAGGGCTTTCAAGTTGCCATTTT
CAAAGTCATTTAAAGGTCT




SEQ ID NO: 824
SEQ ID NO: 1279
AAAATC






SEQ ID NO: 1734



lmo0514.13
GAAGAAACCGACCCAACAATCATC
TTGCATTATTTTCTTTCACTTGGT
CCTCAAAGCGAAAATT




SEQ ID NO: 825
CTTCTG
SEQ ID NO: 1735





SEQ ID NO: 1280




lmo0514.14
AGCCTCTTTGCCAGCATTAACA
TTTGTCCAAATGCTGCTAAAG
ACGCTTTTTGTGCAATTTG




SEQ ID NO: 826
SEQ ID NO: 1281
SEQ ID NO: 1736



lmo0514.15
CCCAGGCGAATATACCGTAACTTTA
GTCGCTTGTAGTCACTGTTACGA
ACCGCGGCCAAAAA




SEQ ID NO: 827
SEQ ID NO: 1282
SEQ ID NO: 1737



lmo0514.16
CGACTTCCGCAAGTAATACTTATTTAGGA
CACCGCTGACTGTAATACCATCAT
TTGGGAGTGCCACATCAT




SEQ ID NO: 828
SEQ ID NO: 1283
SEQ ID NO: 1738



lmo0514.17
CACGGTCACATTAAACGCAGAAAAT
GTAGGATCTGCTGTGATAACAGGTT
CACAGGAGTTGCTTTTAG




SEQ ID NO: 829
SEQ ID NO: 1284
SEQ ID NO: 1739



lmo0514.18
TGGCACGGTTGCTCCTTTT
CGGTAATGGAAAGACGTGAGCTT
CCACATCATTAAATCCTA




SEQ ID NO: 830
SEQ ID NO: 1285
AATAAG






SEQ ID NO: 1740



lmo0514.19
CTGGAAATGCCGTTTTAACAAGTGA
GCCGCGGTCATTTATTGCATTTAA
ACCCCAGGCGAATAT




SEQ ID NO: 831
SEQ ID NO: 1286
SEQ ID NO: 1741



lmo0514.20
AGACCCTGTAACCGTAGTTGTGA
GTTGGTGGAACCGGATTAACATG
CCGTCGCTAGTAGTCACT




SEQ ID NO: 832
SEQ ID NO: 1287
SEQ ID NO: 1742





lmo129
lmo1290.0
CGACTGTTGTAGATCTTTCCAAACC
ACTTGCACTGGCAAAGCTTTT
AAACGCAGAAAATGATTTAC


0

SEQ ID NO: 833
SEQ ID NO: 1288
SEQ ID NO: 1743



lmo1290.1
AGGACTAAAAGCTAGCCAAGATGTC
GCATCAGCAGATTTGCCAGTTAAAA
CCGGATCTGGAATATT




SEQ ID NO: 834
SEQ ID NO: 1289
SEQ ID NO: 1744



lmo1290.2
CGGGCTTAGTAATCTTGAACGCTTA
CCAGTAGAGTTAAATTAGTCAACCCACTT
CAGCTCCCATAATGCG




SEQ ID NO: 835
SEQ ID NO: 1290
SEQ ID NO: 1745



lmo1290.3
GGAACCGCGATTACAAGTGATTTTG
GCTTTTTGCAAATCATTTTCCGCATT
TTCCTGGTTTAGAAAGATCT




SEQ ID NO: 836
SEQ ID NO: 1291
SEQ ID NO: 1746



lmo1290.4
CAACCAGTGACAGAAGCAGAATTTT
CGTTCCAGGAGTCTTGAAATCTACT
CAACTGTTACAAGTGATTTC




SEQ ID NO: 837
SEQ ID NO: 1292
SEQ ID NO: 1747



lmo1290.5
TGCTTTACCTAAAACAGGAGATTCTTTACC
TCTCCTTGAAACAATAAAGCTTAATCCGA
ATCCTACAGAAATCCC




SEQ ID NO: 838
SEQ ID NO: 1293
SEQ ID NO: 1748



lmo1290.6
CAGTGCAAGTGATGGTTATTGTTGA
GGATTAGGTGTTGGACTTGGATCTG
TCGGGTCTGGTATTGGTG




SEQ ID NO: 839
SEQ ID NO: 1294
SEQ ID NO: 1749



lmo1290.7
TGTGCATGATTATCGAGGGATTGAA
TTTTACCGCCTATGGTTTGGCTAT
AAGCAGTGTATTCAATTTAG




SEQ ID NO: 840
SEQ ID NO: 1295
SEQ ID NO: 1750



lmo1290.8
TGGGACGTACACAGTTACTCTACAA
GCAGTAATCGTTGTCTTCGCTTTAA
CACCTGTTCAAGTAAACG




SEQ ID NO: 841
SEQ ID NO: 1296
SEQ ID NO: 1751



lmo1290.9
GAATCAACTGTATGCATTTTCCCAAACT
GTCATCAAGCTGAATGGGACGTA
ATGCAGAAAAGCAAACATTA




SEQ ID NO: 842
SEQ ID NO: 1297
SEQ ID NO: 1752



lmo1290.10
AACATCTCAGCTGACAGTGGAAAA
GTTGATCCGTCATCTGTTTTTGCAT
ACCAGTGACAGAAGCAG




SEQ ID NO: 843
SEQ ID NO: 1298
SEQ ID NO: 1753



lmo1290.11
GCACAGTGCACATGATGATTCTATT
TTTTAAGTGGCATGATATCCGTTATTGC
ACCATTATAACTAAGGTCA




SEQ ID NO: 844
SEQ ID NO: 1299
ATACT






SEQ ID NO: 1754



lmo1290.12
CGCTGCCAGAACTTAAGAGCTT
TGGCCATATGCATACAGTTGATTCA
CATGCACTCCATCGTATTGA




SEQ ID NO: 845
SEQ ID NO: 1300
SEQ ID NO: 1755



lmo1290.13
CGCATTATGGGAGCTGATGTTACAT
ATGAGCACTGTGTGAAAGATCCA
AACCCACTTAAATTCG




SEQ ID NO: 846
SEQ ID NO: 1301
SEQ ID NO: 1756



lmo1290.14
ACTCCTGGAACGTACACAGTTACT
GCCGTAATCGCTGTCTTCTCTTTAA
TTACAATCTGAGAATAATTCC




SEQ ID NO: 847
SEQ ID NO: 1302
SEQ ID NO: 1757



lmo1290.15
TTCACACAGTGCTCATGATGATTCT
GGCATAATATCTGTTATTGCACCATTGT
CTAAGGTCGATGCTAGTAACT




SEQ ID NO: 848
SEQ ID NO: 1303
SEQ ID NO: 1758



lmo1290.16
CCAGAAGTGCCAAGTCACAAAAT
CTCTTTGCTTGTTTCTGCTTTAGCT
TCCATCTTTAACTGTAAATGAG




SEQ ID NO: 849
SEQ ID NO: 1304
SEQ ID NO: 1759



lmo1290.17
GTGCCAAGTCACAAAATTCCATCTT
AGGCAAGGAATCCCCTGTTTT
AAGCTAAAGCAGAAACAAG




SEQ ID NO: 850
SEQ ID NO: 1305
SEQ ID NO: 1760



lmo1290.18
TGGAGTACAACGCGAAAATCGA
CAGATATATTGTACGCCCCACCATT
TTGAGTTCTCAAACTTATAA




SEQ ID NO: 851
SEQ ID NO: 1306
TATTC






SEQ ID NO: 1761



lmo1290.19
AATCTTACAATATTCCGGAACAGTTCCA
GATGTTCAACGAATGGTCTACAGTGA
ATGGTGGCTCTTACACTATAT




SEQ ID NO: 852
SEQ ID NO: 1307
SEQ ID NO: 1762



lmo1290.20
GTAACATTAAATGCGGAAAATGATTTGCA
TCGGATCTGGTATTGGTGTTTCTTT
CATTGGTGCAGCTTTT




SEQ ID NO: 853
SEQ ID NO: 1308
SEQ ID NO: 1763





hlyA
hlyA
CCAGATTTTTCGGCAAAGCT
TGCAGGAGGATTTTCTGCATT
AGAGCAGTTGCAAGCG




SEQ ID NO: 854
SEQ ID NO: 1309
SEQ ID NO: 1764









The assays were evaluated under uninduced conditions as well as under induced conditions using pure cultures of Listeria monocytogenes. The extracted nucleic acids were assayed for induction by real-time reverse-transcriptase-PCR (DNA+RNA). To measure contribution due to DNA alone, control reactions were run without addition of the reverse transcriptase (DNA). Transcriptional activity (contribution to Ct value by RNA alone) was estimated by subtracting the Ct value obtained for DNA and RNA (with reverse transcriptase reaction) from the Ct value obtained for DNA alone (without reverse transcriptase reaction) for both uninduced and induced samples.


Heat-induction: Duplicate samples were maintained at 37° C. (uninduced) or 48° C. (heat-induced) for 20 minutes before processing for nucleic acids. Targets were initially evaluated using a pure culture of Listeria (FIG. 5A-FIG. 5F). Overall, addition of the reverse transcription step improved signal for both uninduced and induced samples. Heat-induction proved to be one of the milder inducers for Listeria, improving the signal by ˜2 Ct (FIG. 5A and FIG. 5B).



FIG. 5A-FIG. 5F show data for evaluation of targets under various inducible conditions for Listeria. FIG. 5A and FIG. 5B provide results using heat-induction. Ct (FIG. 5A) or Delta Ct (FIG. 5B) values are provided for various targets for uninduced (37° C.) and induced (48° C.) samples before processing for nucleic acids. FIG. 5C and FIG. 5D provide results using activated charcoal induction. Samples were grown in enrichment media treated with 0.2% activated charcoal for 5 hours, along with parallel uninduced samples. FIG. 5E and FIG. 5F provide results using salt induction. An aliquot of an exponentially grown culture was treated to enrichment media containing 0.3M NaCl (final concentration) for 10 minutes. Uninduced samples were processed the same way with media alone. FIG. 5A, FIG. 5C and FIG. 5E—The extracted nucleic acids were assayed for induction by real-time reverse-transcriptase-PCR (hatched bars). To measure contribution due to DNA, control reactions were run without addition of the reverse transcriptase (solid bars). FIG. 5B, FIG. 5D and FIG. 5F show transcriptional activity was estimated by subtracting the Ct value obtained for DNA and RNA (with reverse transciptase reactions) from the Ct value obtained for DNA alone (without reverse transcriptase reactions) for uninduced (solid bars) and induced (striped bars) samples.


Charcoal-induction: A parallel sample was grown in enrichment media treated with 0.2% activated charcoal for 5 hours, along with parallel uninduced samples. Growth in media treated with activated charcoal (FIG. 5C and FIG. 5D) proved to be a strong inducer of a transcriptional response. While for most genes, transcriptional activity was in the 0.5-1.5Ct range, multiple genes were strongly induced (Delta Ct=2-6; 4-64 fold differences).


Salt-Induction: One aliquot of an exponentially grown culture was treated to enrichment media containing 0.3M NaCl (final concentration) for 10 minutes. Uninduced samples were processed the same way with media alone. Brief exposure to high salt (FIG. 5E and FIG. 5F) proved also to be a strong inducer of lmo2522 (transcriptional activity=5 Ct), a gene that was also strongly induced by growth in media treated with activated charcoal.


Acid Induction: For acid conditions, a bacterial culture (2 mL) was diluted in 6 mL acidified BHI (acidified BHI prepared by adding HCl to BHI, and checking pH: such as 100 ul HCl to 5 ml BHI resulted in pH=2.5); incubation at 37° C., 10 minutes, with shaking. The moderately inducible RNA targets were: lmo0189 (encoding a sequence highly similar to B. subtilis Veg protein) and lmo2522 (encoding a sequence similar to hypothetical cell wall binding protein from B. subtilis). For both transcripts, acid conditions produced ˜3 fold induction. At the same time, the amount of an additional lmo0699 transcript (encoding a sequence similar to flagellar switch protein FliM) was ˜3 fold reduced under the acidic conditions.


Cold Induction: For cold conditions, a culture was placed on ice for 16, 20, or 24 minutes. The moderately inducible RNA targets were: lmo0189 (encoding a sequence highly similar to B. subtilis Veg protein) and lmo2522 (encoding a sequence similar to hypothetical cell wall binding protein from B. subtilis). For both transcripts, cold conditions produced ˜4 fold induction.


The Listeria targets were also evaluated in the context of a time-course study for activated charcoal induction in a milk sample. Raw milk (50 ml) was spiked with approximately 60 cfu of L. monocytogenes. The sample was split equally into 2×25 ml samples. One 25 ml sample was enriched in 225 ml of BLEB with supplements (Buffered Listeria Enrichment Broth, EMD Chemicals, Gibbstown, N.J.). The other 25 ml aliquot was enriched in BLEB treated with 0.2% activated charcoal (supplements added at the beginning of enrichment). Samples were incubated at 37° C. and withdrawn at 16 and 24 hours post-enrichment. FIG. 6A shows that extracted nucleic acids were assayed for induction by real-time reverse-transcriptase-PCR (hatched bars). To measure contribution due to DNA, control reactions were run without addition of the reverse transcriptase (solid bars). FIG. 6B. shows transcriptional activity was estimated by subtracting the Ct value obtained for DNA and RNA (with reverse transciptase reactions) from the Ct value obtained for DNA alone (without reverse transcriptase reactions) for uninduced (solid bars) and induced (striped bars) samples. As shown by the data of FIGS. 6A and 6B, greater effects of induction were observed during the earlier times of enrichment (16 hours versus 24 hours). The combination of induction and reverse transcription to detect RNA induced target dropped the signal to a more robust detection range for both targets tested; the data for target lmo0189 are particularly noted (FIG. 6A and FIG. 6B).



FIG. 9A and FIG. 9B provide data on the use of heat induction to detect Listeria monocytogenes by measuring the target hlyA. The data demonstrate that including the reverse transcriptase step in detection allows for more sensitive detection by 2 Cts.


Considering the long generation times for Listeria growth, an improvement of 0.5-1Ct in a detection assay can translate into reducing the enrichment times by 1-1.5 hours and a difference of 4 Ct will allow for at least a 4 hour reduction in enrichment time.


Results for enriched samples were confirmed by plating on CHROMagar™ plates (CHROMager Microbiology, Paris France). That is, following enrichment, samples were withdrawn for RNA extraction and, in parallel, samples were also plated for culture confirmation (CHROMAgar) to verify presence of pathogen. The plate results were recorded following overnight growth at 37° C. A 100% correlation was obtained between RT-PCR results and plate confirmation.


Example 3
Inducible RNA Targets for Early Detection of Vibrio

The present example provides identification and evaluation of inducible RNA targets for detection of the pathogenic microbe Vibrio cholerae using real-time RT-PCR. The normal growth temperature of Vibrio species is at 30° C.; it was discovered that growing Vibrio at 37° C. induced RNA such that reverse transcription RT-PCR detection increased sensitivity of the assay.


Sample Preparation and Real-time PCR: A single Vibrio cholerae bacterial colony was inoculated into 5 ml of nutrient enrichment broth containing 3% NaCl and grown overnight at 37° C. Nucleic acids were prepared for real-time PCR and real-time RT-PCR using PrepSEQ™ nucleic acids extraction protocol. Samples were assayed with and without the inclusion of the reverse transcriptase step.


Primers and Probes: TAQMAN® real-time PCR assay primers and probes are listed in Table 3. The hsp60 gene contains several polymorphic sequences and thus, a combination of three probes is provided for detecting all Vibrio cholerae strains. The probes were labeled with a FAM™ dye to enable detection by real-time PCR.









TABLE 3







TaqMan®  assays designed against the hsp60 gene of Vibrio










Gene
Forward Primer
Reverse Primer
Probe





hsp60
GGTAGAAGAGTTGAAAGCACTGTC
ATGGTACCTACTTGGGCAATCG
CCTTGTGCCGATACTAAA



(SEQ ID NO: 1765)
(SEQ ID NO: 1766)
(SEQ ID NO: 1767)





CCTTGTGCTGATACTAAA





(SEQ ID NO: 1768)





ACCTGTGCAGATACTAAA





(SEQ ID NO: 1769)









Results from PCR and reverse transcriptase RT-PCR assays for the hsp60 target demonstrate a significant difference in detection levels as shown by the data of FIG. 7. More than 10 Ct difference was detected when the value of Ct for DNA targets was compared to the value of Ct for RNA and DNA targets, which corresponds to more than 1000 fold difference in target concentration.


Example 4
Inducible RNA Targets for Early Detection: Evaluation on Food Testing Work Flows

The present disclosure has evaluated food testing workflow methods using inducible RNA targets in assays for detection of various bacteria. A fast workflow method is provided based on inducible transcription response in bacteria.


A typical workflow, according to this disclosure, includes a shortened enrichment step, a rapid induction step, an automated sample preparation step, and specific detection of induced target using reverse transcriptase RT-PCR.


In one embodiment, a workflow of the disclosure for Salmonella is as follows:


Enrichment (6 hours)custom-characterInduction+Sample Prep (45 min)custom-characterReal-Time RT-PCR (1 hour)


An example workflow is shown in FIG. 10A. As depicted in FIGS. 10B-10C, 25 g/25 ml food samples (chicken wings in FIG. 10 B and ground beef in FIG. 10C respectively) were spiked with known number of Salmonella and enriched in 225 ml media for 6 hours at 37° C. A 250 μl enriched sample was processed through AutoMate Express® System for induction and sample preparation. Eluted nucleic acid samples were evaluated by real-time reverse transcriptase PCR.


As shown in FIGS. 10 B and 10C, DNA (dark gray bars) and DNA plus induced RNA (light gray bars) were evaluated using real-time PCR in the absence or presence of ArrayScript®M-MLV reverse transcriptase. 100% detection was observed with induced RNA in all samples containing Salmonella, whereas few samples were not detected with DNA alone. All samples that were determined as positive by induced RNA were also confirmed to have Salmonella by a traditional culture method.


Additionally, FIG. 10B depicts detection of induced RNA in chicken wing samples spiked with Salmonella and shows an enrichment time of 6 hours with a Detection=100%. Similarly, FIG. 10C shows detection of induced RNA in ground beef samples spiked with Salmonella having an enrichment time of 6 hours and a Detection=100%.


Example workflows provided herein allowed for detection of 1-5 cfu of Salmonella in less then 8 hr (in 6 hours for the workflows shown in FIGS. 10B and 10C) and Listeria in less than 12 hr in food samples (results described in Example 2), thereby greatly reducing the time-to-result for testing, which is very important for industries such as the food industry, where valuable shelf life can be increased, if the testing time for food safety testing is reduces by the workflow methods provided herein.


Example 5
Use of Present Methods in Viability Testing

The present disclosure describes methods of detecting viable bacteria as induced RNA gene targets are only expressed in live organisms thus, detecting only live organisms and not dead organisms (which cannot cause diseases in samples). Accordingly, methods of the disclosure also reduce wastage of food attributed to amplification of dead microbes by traditional testing methods.


To test viability of detected bacteria, duplicate samples of Salmonella culture were prepared. One set was heat-treated at 95° C. for 15 minutes to kill the bacteria. A control set was maintained at 37° C. Both sets were induced at 45° C. for 15 minutes, followed by sample extraction. Assays were evaluated by real-time PCR in the presence and absence of ArrayScript® M-MLV reverse transcriptase. Live and viable cells responded to the heat-induction by increase in target mRNA production, while the heat-killed cells did not. These results are shown in FIG. 11A and FIG. 11B, where FIG. 11A shows live and viable Salmonella cells responding to the heat-induction by increase in target mRNA production, while in FIG. 11B heat-killed Salmonella cells do not increase target mRNA production.


The terms and expressions which have been employed herein are used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed in part by preferred embodiments, exemplary embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and such modifications and variations are considered to be within the scope of this invention as defined by the appended claims. The specific embodiments provided herein are examples of useful embodiments of the present invention and it will be apparent to one skilled in the art that the present invention may be carried out using a large number of variations of the compositions, kits and methods steps set forth in the present description.


When a group of materials, compositions, components or compounds is disclosed herein, it is understood that all individual members of those groups and all subgroups thereof are disclosed separately. When a Markush group or other grouping is used herein, all individual members of the group and all combinations and subcombinations possible of the group are intended to be individually included in the disclosure. Every formulation or combination of components described or exemplified herein can be used to practice the invention, unless otherwise stated. Whenever a range is given in the specification, for example, a temperature range, a time range, or a composition range, all intermediate ranges and subranges, as well as all individual values included in the ranges given are intended to be included in the disclosure.

Claims
  • 1. A method of detecting presence of a microorganism in a sample, comprising: exposing the sample to an RNA-inducing agent for a time to induce a gene responsive to the RNA-inducing agent;detecting presence of an RNA corresponding to the gene responsive to the RNA-inducing agent; anddetermining presence of the microorganism, wherein the detection of presence of the RNA corresponding to the gene responsive to the RNA-inducing agent in comparison to a control sample is indicative of the presence of the microorganism in the sample.
  • 2. The method of claim 1, further comprising the step of culturing the sample in a microorganism enrichment medium to form an enriched sample, and wherein the exposing the sample comprises exposing the enriched sample to the RNA-inducing agent.
  • 3. The method of claim 1 wherein the sample is a food sample, an environmental sample, or a clinical sample.
  • 4. The method of claim 1 wherein exposing the sample to an RNA-inducing agent comprises exposing the sample to a thermal condition, a chemical agent, a high salt concentration, a pH change, a stress, activated charcoal, or a nutritive deficiency.
  • 5. The method of claim 1, wherein the microorganism is a pathogen.
  • 6. The method of claim 5 wherein the pathogen is Salmonella.
  • 7. The method of claim 6 wherein the gene responsive to the RNA-inducing agent is a cspH, a hilA, a hsp60, a dnaK, a ibpAB, a uspA, or a agsA gene.
  • 8. The method of claim 5 wherein the pathogen is Listeria.
  • 9. The method of claim 8 wherein the gene responsive to the RNA-inducing agent is a inlA, a inlB, a inlC, a inlG, a inlJ, a lmo0539, a lmo2158, a lmo0596, a lmo0189, a lmo0880, a lmo1290, a lmo0514, a lmo0670, a bsh, a plcA, a clpE, a cspL, a lmo0699, a lmo0782, a lmo2230, a lmo2522, a opuCA, a cpn60, or a hlyA gene
  • 10. The method of claim 5 wherein the pathogen is Vibrio.
  • 11. The method of claim 10 wherein and the gene responsive to the RNA-inducing agent is a hsp60 gene.
  • 12. The method of claim 1 wherein detecting presence of RNA is by a reverse transcriptase RT-PCR assay.
  • 13. The method of claim 12 further comprising detecting presence of DNA corresponding to the gene by an RT-PCR assay.
  • 14. The method of claim 13 further comprising subtracting a CT value of RNA and DNA detection from a CT value for DNA detection.
  • 15. A kit comprising: at least one primer pair selected from:a primer pair operable to detect a Salmonella spp in a sample comprising at least one Salmonella-specific primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Salmonella or a fragment thereof wherein the RNA-inducing agent-responsive gene is a cspH, a hilA, a hsp60, a dnaK, a ibpAB, a uspA, and/or a agsA gene;a primer pair operable to detect a Listeria spp in a sample comprising at least one Listeria-specific primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria or a fragment thereof wherein the RNA-inducing agent-responsive gene is a inlA, a inlB, a inlC, a inlG, a inlJ, a lmo0539, a lmo2158, a lmo0596, a lmo0189, a lmo0880, a lmo1290, a lmo0514, a lmo0670, a bsh, a plcA, a clpE, a cspL, a lmo0699, a lmo0782, a lmo2230, a lmo2522, a opuCA, a cpn60, or a hlyA gene; anda primer pair operable to detect a Vibrio spp in a sample comprising at least one Vibrio-specific primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Vibrio or a fragment thereof wherein the RNA-inducing agent-responsive gene is a hsp60 gene.
  • 16. The kit of claim 15 further comprising a probe having hybridization specificity for said RNA-inducing agent-responsive gene.
  • 17. The kit of claim 15 further comprising at least one of a reverse transcriptase, a DNA polymerase, dNTP's, a filtration medium, a surfactant, magnetic beads, a spin column and combinations thereof.
  • 18. The kits of claim 15, further comprising at least three primer pairs comprising at least one Salmonella-specific primer pair, at least one Listeria-specific primer pair and at least one Vibrio-specific primer pair.
  • 19. A compositions for detecting the presence of Salmonella in a sample comprising: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Salmonella wherein the RNA-inducing agent-responsive gene is a cspH, a hilA, a hsp60, a dnaK, a ibpAB, a uspA, or a agsA gene; andoptionally comprising at least one probe having hybridization specificity for said RNA-inducing agent-responsive gene.
  • 20.-33. (canceled)
  • 34. A composition for detecting the presence of Listeria in a sample comprising: at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Listeria wherein the RNA-inducing agent-responsive gene is a inlA, a inlB, a inlC, a inlG, a inlJ, a lmo0539, a lmo2158, a lmo0596, a lmo0189, a lmo0880, a lmo1290, a lmo0514, a lmo0670, a bsh, a plcA, a clpE, a cspL, a lmo0699, a lmo0782, a lmo2230, a lmo2522, a opuCA, a cpn60, or a hlyA gene; andoptionally comprising at least one probe having hybridization specificity for said RNA-inducing agent-responsive gene.
  • 35-80. (canceled)
  • 81. A compositions for detecting the presence of a Vibrio spp in a sample comprising at least one primer pair having hybridization specificity for priming amplification of an RNA-inducing agent-responsive gene of Vibrio wherein the RNA-inducing agent-responsive gene is a hsp60 gene.
  • 82.-83. (canceled)
CROSS REFERENCE RELATED APPLICATIONS

This patent application claims priority under 35 U.S.C. §119(e) to United States Provisional Patent Application, U.S. Ser. No. 61/360,337, filed Jun. 30, 2010, the entire contents of which are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
61360337 Jun 2010 US