Inducing Cellular Immune Responses to Plasmodium Falciparum Using Peptide and Nucleic Acid Compositions

Information

  • Patent Application
  • 20160193316
  • Publication Number
    20160193316
  • Date Filed
    December 28, 2015
    9 years ago
  • Date Published
    July 07, 2016
    8 years ago
Abstract
This invention uses our knowledge of the mechanisms by which antigen is recognized by T cells to identify and prepare Plasmodium falciparum epitopes, and to develop epitope-based vaccines directed towards malaria. More specifically, this application communicates our discovery of pharmaceutical compositions and methods of use in the prevention and treatment of malaria. In particular, this application discloses isolated peptides comprising oligopeptides, for example the oligopeptides LLACAGLAY, FLIFFDLFLV, FMKAVCVEV, VLAGLLGNV, GLIMVLSFL, KILSVFFLA, GLLGNVSTV, VLLGGVGLVL, ILSVSSFLFV, QTNFKSLLR, LACAGLAYK, ALFFIIFNK, LLACAGLAYK, HVLSHNSYEK, FILVNLLIFH, FQDEENIGIY, PSDGKCNLY, YYIPHQSSL, FYFILVNLL, KYLVIVFLI and KYKLATSVL, or isolated peptides conjugated with T helper peptides that are used as antigens in epitope-based vaccines to prevent and/or treat malaria.
Description
REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY

The content of the electronically submitted sequence listing (Name: 2473 0510005_SeqListing_ST25.txt, Size: 962,033 bytes; and Date of Creation: Dec. 21, 2015) filed herewith was originally filed with U.S. application Ser. No. 09/390,061 and is incorporated herein by reference in its entirety.


INDEX
I. Background of the Invention
II. Summary of the Invention
III. Brief Description of the Figures
IV. Detailed Description of the Invention





    • A. Definitions

    • B. Stimulation of CTL and HTL responses

    • C. Binding Affinity of Peptide Epitopes for HLA Molecules

    • D. Peptide Epitope Binding Motifs and Supermotifs
      • 1. HLA-A1 supermotif
      • 2. HLA-A2 supermotif
      • 3. HLA-A3 supermotif
      • 4. HLA-A24 supermotif
      • 5. HLA-B7 supermotif
      • 6. HLA-B27 supermotif
      • 7. HLA-B44 supermotif
      • 8. HLA-B58 supermotif
      • 9. HLA-B62 supermotif
      • 10. HLA-A1 motif
      • 11. HLA-A2.1 motif
      • 12. HLA-A3 motif
      • 13. HLA-A11 motif
      • 14. HLA-A24 motif
      • 15. HLA-DR-1-4-7 supermotif
      • 16. HLA-DR3 motifs

    • E. Enhancing Population Coverage of the Vaccine

    • F. Immune Response-Stimulating Peptide Epitope Analogs

    • G. Computer Screening of Protein Sequences from Disease-Related Antigens for Supermotif- or Motif-Containing Epitopes

    • H. Preparation of Peptide Epitopes

    • I. Assays to Detect T-Cell Responses

    • J. Use of Peptide Epitopes for Evaluating Immune Responses

    • K. Vaccine Compositions
      • 1. Minigene Vaccines
      • 2. Combinations of CTL Peptides with Helper Peptides

    • L. Administration of Vaccines for Therapeutic or Prophylactic Purposes

    • M. Kits





V. Examples
VI. Claims
VII. Abstract
I. BACKGROUND OF THE INVENTION

Malaria, which is caused by infection with the parasite Plasmodium falciparum (PF), represents a major world health problem. Approximately 500 million people in the world are at risk from the disease, with approximately 200 million people actually harboring the parasites. An estimated 1 to 2 million deaths occur each year due to malaria. (Miller et al., Science 234:1349, 1986).


Fatal outcomes are not confined to first infections, and constant exposure is apparently a prerequisite for maintaining immunity. Naturally acquired sterile immunity is rare, if it exists at all. Accordingly, major efforts to develop an efficacious malaria vaccine have been undertaken.


Human volunteers injected with irradiated PF sporozoites are resistant to subsequent sporozoite challenges, which demonstrates that development of a malaria vaccine is indeed immunologically feasible. Furthermore, these immune individuals developed a vigorous response, including antibodies, and cytotoxic T lymphocyte (CTL) and helper T lymphocyte (HTL) components, directed against multiple antigens. Reproducing the breadth and multiplicity of this response in a vaccine, however, is a task of large proportions. The epitope approach, as described herein, may represent a solution to this challenge, in that it allows the incorporation of various antibody, CTL and HTL epitopes, from various proteins, in a single vaccine composition.


Anti-sporozoite antibodies are by themselves, in general, not completely efficacious in clearing the infection (Egan et al., Science 236:453, 1987). However, high concentrations of antibodies directed against the repeated region of the major B cell antigen of the sporozoite/circumsporozoite protein (CSP) have been shown to prevent liver cell infection in certain experimental models (Egan et al., Science 236:453, 1987; Potocnjak, P. et al., Science 207:71, 1980). The present inventors have shown that constructs encompassing CSP-repeat B cell epitopes and the optimized helper epitope PADRE™ (San Diego, Calif.) are highly immunogenic, and can protect in vitro against sporozoite invasion in both mouse and human liver cells, and protect mice in vivo against live sporozoite challenge (Franke et al., Vaccine 17:1201-1205, 1999)


PF-specific CD4+ T cells also have a role in malarial immunity beyond providing help for B cell and CTL responses. Experiments by Renia et al. (Renia, et al., Proc. Natl. Acad. Sci. USA 88:7963, 1991) demonstrated that HTLs directed against the Plasmodium yoelli CS protein could in fact adoptivley transfer protection against malaria.


Considerable data implicate CTLs in protection against pre-erythrocytic-stage malaria. CD8+ CTLs can eliminate Plasmodium berghei- or Plasmodium yoelii-infected mouse hepatocytes from in vitro culture in a major histocompatibility complex (MHC)-restricted and antigen-restricted manner (Hoffman et al., Science 244:1078-1081, 1989; Weiss et al., J. Exp. Med. 171:763-773, 1990). Further, it has also been shown that the immunity that developed in mice vaccinated with irradiated sporozoites is also dependent upon the present of CD8+ T cells. These T cells accumulate in inflammatory liver infiltrates subsequent to challenge. Passive transfer of circumsporozoite (CSP)-specific CTL clones as long as three hours after inoculation of sporozoites (i.e., after the parasites have left the bloodstream and infected liver cells) were capable of protecting animals against infection (Romero et al., Nature 341:323, 1989).


It is notable that CTL-restricted responses directed against a single antigen are insufficient to protect mice with different MHC alleles, and a combination of multiple antigens was required even to protect mice from the most common laboratory strains of Plasmodium. These data indicate that a combination of epitopes form several antigens is necessary to elicit a protective CTL response.


Indirect evidence that CTLs are important in protective immunity against Pf in humans has also accumulated. It has been reported that cytotoxic CD8+ T cells can be identified in humans immunized with PF sporozoites (Moreno, et al., Int. Immunol. 3:997, 1991). Further, humans immunized with irradiated sporozoites or naturally exposed to malaria can generate a CTL response to the pre-erythrocytic-stage antigens, CSP, sporozoite surface protein 2 (SSP2), liver-stage antigen-1 (LSA-1), and exported protein-1 (Exp-1) (see, e.g. Malik et al., Proc. Natl. Acad. Sci. USA 88, 3300-3304, 1991; Doolan et al., Int. Immunol. 3:511-516, 1991; Hill et al., Nature 360:434-439, 1992). Additionally, there is evidence that the polymorphism within the CSP may be the result of selection by CTLs of parasites that express variant forms (MCutchan and Water, Immunol. Lett. 25:23-26, 1990). This is based on the observation that the variation is nonsynonymous at the nucleotide level, thereby indicating selective pressure at the protein level. The polymorphism primarily maps to identified CTL and T helper epitopes (Doolan et al., Int. Immunol. 5:27-46, 1993); and CTL responses to some of the parasite variants do not cross-react (Hill et al., supra). Finally, the MHC class I human leukocyte antigen (HLA)-Bw53 has been associated with resistance to severe malaria in The Gambia, and CTLs to a conserved epitope restricted by the HLA-Bw53 allele have been identified on P. falciparum LSA-1 (Hill et al., Nature 352:595-600, 1991; Hill et al., Nature 340:434-439, 1992). Since HLA-Bw53 is found in 15%-40% of the population of sub-Saharan Africa but in less than 1% of Caucasians and Asians, these data suggest evolutionary selection on the basis of protection against severe malaria.


Thus, antibody, and both HLA class I and class II restricted responses directed against multiple sporozoite antigens appear to be involved in generating protective immunity to malaria. Furthermore, several important antigenic epitopes against which humoral and cellular immunity is focused have already been exactly delineated.


HLA class I molecules are expressed on the surface of almost all nucleated cells. Following intracellular processing of antigens, epitopes from the antigens are presented as a complex with the HLA class I molecules on the surface of such cells. CTL recognize the peptide-HLA class I complex, which then results in the destruction of the cell bearing the HLA-peptide complex directly by the CTL and/or via the activation of non-destructive mechanisms e.g., the production of interferon.


In view of the heterogeneous immune response observed with PF infection, induction of a multi-specific cellular immune response directed simultaneously against multiple PF epitopes appears to be important for the development of an efficacious vaccine against PF. There is a need, however, to establish vaccine embodiments that elicit immune responses that correspond to responses seen in patients that clear PF infection.


The information provided in this section is intended to disclose the presently understood state of the art as of the filing date of the present application. Information is included in this section which was generated subsequent to the priority date of this application. Accordingly, information in this section is not intended, in any way, to delineate the priority date for the invention.


II. SUMMARY OF THE INVENTION

This invention applies our knowledge of the mechanisms by which antigen is recognized by T cells, for example, to develop epitope-based vaccines directed towards PF. More specifically, this application communicates our discovery of specific epitope pharmaceutical compositions and methods of use in the prevention and treatment of PF infection.


Upon development of appropriate technology, the use of epitope-based vaccines has several advantages over current vaccines, particularly when compared to the use of whole antigens in vaccine compositions. There is evidence that the immune response to whole antigens is directed largely toward variable regions of the antigen, allowing for immune escape due to mutations. The epitopes for inclusion in an epitope-based vaccine are selected from conserved regions of antigens of pathogenic organisms or tumor-associated antigens, which thereby reduces the likelihood of escape mutants. Furthermore, immunosuppressive epitopes that may be present in whole antigens can be avoided with the use of epitope-based vaccines.


An additional advantage of an epitope-based vaccine approach is the ability to combine selected epitopes (CTL and HTL), and further, to modify the composition of the epitopes, achieving, for example, enhanced immunogenicity. Accordingly, the immune response can be modulated, as appropriate, for the target disease. Similar engineering of the response is not possible with traditional approaches.


Another major benefit of epitope-based immune-stimulating vaccines is their safety. The possible pathological side effects caused by infectious agents or whole protein antigens, which might have their own intrinsic biological activity, is eliminated.


An epitope-based vaccine also provides the ability to direct and focus an immune response to multiple selected antigens from the same pathogen. Thus, patient-by-patient variability in the immune response to a particular pathogen may be alleviated by inclusion of epitopes from multiple antigens from that pathogen in a vaccine composition. A “pathogen” may be an infectious agent or a tumor associated molecule.


One of the most formidable obstacles to the development of broadly efficacious epitope-based immunotherapeutics, however, has been the extreme polymorphism of HLA molecules. To date, effective non-genetically biased coverage of a population has been a task of considerable complexity; such coverage has required that epitopes be used that are specific for HLA molecules corresponding to each individual HLA allele; impractically large numbers of epitopes would therefore have to be used in order to cover ethnically diverse populations. Thus, there has existed a need for peptide epitopes that are bound by multiple HLA antigen molecules for use in epitope-based vaccines. The greater the number of HLA antigen molecules bound, the greater the breadth of population coverage by the vaccine.


Furthermore, as described herein in greater detail, a need has existed to modulate peptide binding properties, e.g., so that peptides that are able to bind to multiple HLA antigens do so with an affinity that will stimulate an immune response. Identification of epitopes restricted by more than one HLA allele at an affinity that correlates with immunogenicity is important to provide thorough population coverage, and to allow the elicitation of responses of sufficient vigor to prevent or clear an infection in a diverse segment of the population. Such a response can also target a broad array of epitopes. The technology disclosed herein provides for such favored immune responses.


In a preferred embodiment, epitopes for inclusion in vaccine compositions of the invention are selected by a process whereby protein sequences of known antigens are evaluated for the presence of motif or supermotif-bearing epitopes. Peptides corresponding to a motif- or supermotif-bearing epitope are then synthesized and tested for the ability to bind to the HLA molecule that recognizes the selected motif. Those peptides that bind at an intermediate or high affinity i.e., an IC50 (or a KD value) of 500 nM or less for HLA class I molecules or an IC50 of 1000 nM or less for HLA class II molecules, are further evaluated for their ability to induce a CTL or HTL response. Immunogenic peptide epitopes are selected for inclusion in vaccine compositions.


Supermotif-bearing peptides may additionally be tested for the ability to bind to multiple alleles within the HLA supertype family. Moreover, peptide epitopes may be analogued to modify binding affinity and/or the ability to bind to multiple alleles within an HLA supertype.


The invention also includes embodiments comprising methods for monitoring or evaluating an immune response to PF in patient having a known HLA-type. Such methods comprise incubating a T cell sample from the patient with a peptide composition comprising an PF epitope consisting essentially of an amino acid sequence described in Tables VII to Table XX or Table XXII which binds the product of at least one HLA allele present in the patient, and detecting for the presence of a T cell that binds to the peptide. A CTL peptide epitope may, for example, be used as a component of a tetrameric complex for such an analysis.


An alternative modality for defining the peptide epitopes in accordance with the invention is to recite the physical properties, such as length; primary structure; or charge, which are correlated with binding to a particular allele-specific HLA molecule or group of allele-specific HLA molecules. A further modality for defining peptide epitopes is to recite the physical properties of an HLA binding pocket, or properties shared by several allele-specific HLA binding pockets (e.g. pocket configuration and charge distribution) and reciting that the peptide epitope fits and binds to said pocket or pockets.


As will be apparent from the discussion below, other methods and embodiments are also contemplated. Further, novel synthetic peptides produced by any of the methods described herein are also part of the invention.





III. BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 provides a graph of total frequency of genotypes as a function of the number of PF candidate epitopes bound by HLA-A and B molecules, in an average population.





IV. DETAILED DESCRIPTION OF THE INVENTION

The peptide epitopes and corresponding nucleic acid compositions of the present invention are useful for stimulating an immune response to PF by stimulating the production of CTL or HTL responses. The peptide epitopes, which are derived directly or indirectly from native PF protein amino acid sequences, are able to bind to HLA molecules and stimulate an immune response to PF. The complete sequence of the PF proteins to be analyzed can be obtained from Genbank. Peptide epitopes and analogs thereof can also be readily determined from sequence information that may subsequently be discovered for heretofore unknown variants of PF, as will be clear from the disclosure provided below.


The peptide epitopes of the invention have been identified in a number of ways, as will be discussed below. Also discussed in greater detail is that analog peptides have been derived and the binding activity for HLA molecules modulated by modifying specific amino acid residues to create peptide analogs exhibiting altered immunogenicity. Further, the present invention provides compositions and combinations of compositions that enable epitope-based vaccines that are capable of interacting with HLA molecules encoded by various genetic alleles to provide broader population coverage than prior vaccines.


IV.A. DEFINITIONS

The invention can be better understood with reference to the following definitions, which are listed alphabetically:


A “computer” or “computer system” generally includes: a processor; at least one information storage/retrieval apparatus such as, for example, a hard drive, a disk drive or a tape drive; at least one input apparatus such as, for example, a keyboard, a mouse, a touch screen, or a microphone; and display structure. Additionally, the computer may include a communication channel in communication with a network. Such a computer may include more or less than what is listed above.


“Cross-reactive binding” indicates that a peptide is bound by more than one HLA molecule; a synonym is degenerate binding.


A “cryptic epitope” elicits a response by immunization with an isolated peptide, but the response is not cross-reactive in vitro when intact whole protein which comprises the epitope is used as an antigen.


A “dominant epitope” is an epitope that induces an immune response upon immunization with a whole native antigen (see, e.g., Sercarz, et al., Annu. Rev. Immunol. 11:729-766, 1993). Such a response is cross-reactive in vitro with an isolated peptide epitope.


With regard to a particular amino acid sequence, an “epitope” is a set of amino acid residues which is involved in recognition by a particular immunoglobulin, or in the context of T cells, those residues necessary for recognition by T cell receptor (TCR) proteins and/or Major Histocompatibility Complex (MHC) receptors. In an immune system setting, in vivo or in vitro, an epitope is the collective features of a molecule, such as primary, secondary and tertiary peptide structure, and charge, that together form a site recognized by an immunoglobulin, TCR or HLA molecule. Throughout this disclosure epitope and peptide are often used interchangeably. It is to be appreciated, however, that isolated or purified protein or peptide molecules larger than and comprising an epitope of the invention are still within the bounds of the invention.


“Human Leukocyte Antigen” or “HLA” is a human class I or class II MHC protein (see, e.g., Stites, et al., IMMUNOLOGY, 8TH ED., Lange Publishing, Los Altos, Calif. (1994).


An “HLA supertype or family”, as used herein, describes sets of HLA molecules grouped on the basis of shared peptide-binding specificities. HLA class I molecules that share somewhat similar binding affinity for peptides bearing certain amino acid motifs are grouped into HLA supertypes. The terms HLA superfamily, HLA supertype family, HLA family, and HLA xx-like molecules (where xx denotes a particular HLA type), are synonyms.


Throughout this disclosure, results are expressed in terms of “IC50's.” IC50 is the concentration of peptide in a binding assay at which 50% inhibition of binding of a reference peptide is observed. Given the conditions in which the assays are run (i.e., limiting HLA proteins and labeled peptide concentrations), these values approximate KD values. Assays for determining binding are described in detail, e.g., in PCT publications WO 94/20127 and WO 94/03205. It should be noted that IC50 values can change, often dramatically, if the assay conditions are varied, and depending on the particular reagents used (e.g., HLA preparation, etc.). For example, excessive concentrations of HLA molecules will increase the apparent measured IC50 of a given ligand.


Alternatively, binding is expressed relative to a reference peptide. Although as a particular assay becomes more, or less, sensitive, the IC50's of the peptides tested may change somewhat, the binding relative to the reference peptide will not significantly change. For example, in an assay run under conditions such that the IC50 of the reference peptide increases 10-fold, the IC50 values of the test peptides will also shift approximately 10-fold. Therefore, to avoid ambiguities, the assessment of whether a peptide is a good, intermediate, weak, or negative binder is generally based on its IC50, relative to the IC50 of a standard peptide.


Binding may also be determined using other assay systems including those using: live cells (e.g., Ceppellini et al., Nature 339:392, 1989; Christnick et al., Nature 352:67, 1991; Busch et al., Immunol. 2:443, 1990; Hill et al., J. Immunol. 147:189, 1991; del Guercio et al., J. Immunol. 154:685, 1995), cell free systems using detergent lysates (e.g., Cerundolo et al., J. Immunol. 21:2069, 1991), immobilized purified MHC (e.g., Hill et al., J. Immunol. 152, 2890, 1994; Marshall et al., J. Immunol. 152:4946, 1994), ELISA systems (e.g., Reay et al., EMBO J. 11:2829, 1992), surface plasmon resonance (e.g., Khilko et al., J. Biol. Chem. 268:15425, 1993); high flux soluble phase assays (Hammer et al., J. Exp. Med. 180:2353, 1994), and measurement of class I MHC stabilization or assembly (e.g., Ljunggren et al., Nature 346:476, 1990; Schumacher et al., Cell 62:563, 1990; Townsend et al., Cell 62:285, 1990; Parker et al., J. Immunol. 149:1896, 1992).


As used herein, “high affinity” with respect to HLA class I molecules is defined as binding with an IC50, or KD value, of 50 nM or less; “intermediate affinity” is binding with an IC50 or KD value of between about 50 and about 500 nM. “High affinity” with respect to binding to HLA class II molecules is defined as binding with an IC50 or KD value of 100 nM or less; “intermediate affinity” is binding with an IC50 or KD value of between about 100 and about 1000 nM.


The terms “identical” or percent “identity,” in the context of two or more peptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues that are the same, when compared and aligned for maximum correspondence over a comparison window, as measured using a sequence comparison algorithm or by manual alignment and visual inspection.


An “immunogenic peptide” or “peptide epitope” is a peptide that comprises an allele-specific motif or supermotif such that the peptide will bind an HLA molecule and induce a CTL and/or HTL response. Thus, immunogenic peptides of the invention are capable of binding to an appropriate HLA molecule and thereafter inducing a cytotoxic T cell response, or a helper T cell response, to the antigen from which the immunogenic peptide is derived.


The phrases “isolated” or “biologically pure” refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state. Thus, isolated peptides in accordance with the invention preferably do not contain materials normally associated with the peptides in their in situ environment.


“Major Histocompatibility Complex” or “MHC” is a cluster of genes that plays a role in control of the cellular interactions responsible for physiologic immune responses. In humans, the MHC complex is also known as the HLA complex. For a detailed description of the MHC and HLA complexes, see, Paul, FUNDAMENTAL IMMUNOLOGY, 3RD ED., Raven Press, New York, 1993.


The term “motif” refers to the pattern of residues in a peptide of defined length, usually a peptide of from about 8 to about 13 amino acids for a class I HLA motif and from about 6 to about 25 amino acids for a class II HLA motif, which is recognized by a particular HLA molecule. Peptide motifs are typically different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues.


A “negative binding residue” or “deleterious residue” is an amino acid which, if present at certain positions (typically not primary anchor positions) in a peptide epitope, results in decreased binding affinity of the peptide for the peptide's corresponding HLA molecule.


The term “peptide” is used interchangeably with “oligopeptide” in the present specification to designate a series of residues, typically L-amino acids, connected one to the other, typically by peptide bonds between the alpha-amino and carboxyl groups of adjacent amino acids. The preferred CTL-inducing peptides of the invention are 13 residues or less in length and usually consist of between about 8 and about 11 residues, preferably 9 or 10 residues. The preferred HTL-inducing peptides are less than about 50 residues in length and usually consist of between about 6 and about 30 residues, more usually between about 12 and 25, and often between about 15 and 20 residues.


“Pharmaceutically acceptable” refers to a non-toxic, inert, and physiologically compatible composition.


A “primary anchor residue” is an amino acid at a specific position along a peptide sequence which is understood to provide a contact point between the immunogenic peptide and the HLA molecule. One to three, usually two, primary anchor residues within a peptide of defined length generally defines a “motif” for an immunogenic peptide. These residues are understood to fit in close contact with peptide binding grooves of an HLA molecule, with their side chains buried in specific pockets of the binding grooves themselves. In one embodiment, for example, the primary anchor residues are located at position 2 (from the amino terminal position) and at the carboxyl terminal position of a 9-residue peptide epitope in accordance with the invention. The primary anchor positions for each motif and supermotif are set forth in Table 1. For example, analog peptides can be created by altering the presence or absence of particular residues in these primary anchor positions. Such analogs are used to modulate the binding affinity of a peptide comprising a particular motif or supermotif.


“Promiscuous recognition” is where a distinct peptide is recognized by the same T cell clone in the context of various HLA molecules. Promiscuous recognition or binding is synonymous with cross-reactive binding.


A “protective immune response” or “therapeutic immune response” refers to a CTL and/or an HTL response to an antigen derived from an infectious agent or a tumor antigen, which prevents or at least partially arrests disease symptoms or progression. The immune response may also include an antibody response which has been facilitated by the stimulation of helper T cells.


The term “residue” refers to an amino acid or amino acid mimetic incorporated into an oligopeptide by an amide bond or amide bond mimetic.


A “secondary anchor residue” is an amino acid at a position other than a primary anchor position in a peptide which may influence peptide binding. A secondary anchor residue occurs at a significantly higher frequency amongst bound peptides than would be expected by random distribution of amino acids at one position. The secondary anchor residues are said to occur at “secondary anchor positions.” A secondary anchor residue can be identified as a residue which is present at a higher frequency among high or intermediate affinity binding peptides, or a residue otherwise associated with high or intermediate affinity binding. For example, analog peptides can be created by altering the presence or absence of particular residues in these secondary anchor positions. Such analogs are used to finely modulate the binding affinity of a peptide comprising a particular motif or supermotif.


A “subdominant epitope” is an epitope which evokes little or no response upon immunization with whole antigens which comprise the epitope, but for which a response can be obtained by immunization with an isolated peptide, and this response (unlike the case of cryptic epitopes) is detected when whole protein is used to recall the response in vitro or in vivo.


A “supermotif” is a peptide binding specificity shared by HLA molecules encoded by two or more HLA alleles. Preferably, a supermotif-bearing peptide is recognized with high or intermediate affinity (as defined herein) by two or more HLA antigens.


“Synthetic peptide” refers to a peptide that is not naturally occurring, but is man-made using such methods as chemical synthesis or recombinant DNA technology.


The nomenclature used to describe peptide compounds follows the conventional practice wherein the amino group is presented to the left (the N-terminus) and the carboxyl group to the right (the C-terminus) of each amino acid residue. When amino acid residue positions are referred to in a peptide epitope they are numbered in an amino to carboxyl direction with position one being the position closest to the amino terminal end of the epitope, or the peptide or protein of which it may be a part. In the formulae representing selected specific embodiments of the present invention, the amino- and carboxyl-terminal groups, although not specifically shown, are in the form they would assume at physiologic pH values, unless otherwise specified. In the amino acid structure formulae, each residue is generally represented by standard three letter or single letter designations. The L-form of an amino acid residue is represented by a capital single letter or a capital first letter of a three-letter symbol, and the D-form for those amino acids having D-forms is represented by a lower case single letter or a lower case three letter symbol. Glycine has no asymmetric carbon atom and is simply referred to as “Gly” or G. Symbols for the amino acids are shown below.














Single Letter
Three Letter
Amino


Symbol
Symbol
Acids







A
Ala
Alanine


C
Cys
Cysteine


D
Asp
Aspartic Acid


E
Glu
Glutamic Acid


F
Phe
Phenylalanine


G
Gly
Glycine


H
His
Histidine


I
Ile
Isoleucine


K
Lys
Lysine


L
Leu
Leucine


M
Met
Methionine


N
Asn
Asparagine


P
Pro
Proline


Q
Gln
Glutamine


R
Arg
Arginine


S
Ser
Serine


T
Thr
Threonine


V
Val
Valine


W
Trp
Tryptophan


Y
Tyr
Tyrosine









IV.B. STIMULATION OF CTL AND HTL RESPONSES

The mechanism by which T cells recognize antigens has been delineated during the past ten years. Based on our understanding of the immune system we have developed efficacious peptide epitope vaccine compositions that can induce a therapeutic or prophylactic immune response to PF in a broad population. For an understanding of the value and efficacy of the claimed compositions, a brief review of immunology-related technology is provided.


A complex of an HLA molecule and a peptidic antigen acts as the ligand recognized by HLA-restricted T cells (Buus, S. et al., Cell 47:1071, 1986; Babbitt, B. P. et al., Nature 317:359, 1985; Townsend, A. and Bodmer, H., Annu. Rev. Immunol. 7:601, 1989; Germain, R. N., Annu. Rev. Immunol. 11:403, 1993). Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues that correspond to motifs required for specific binding to HLA antigen molecules have been identified and are described herein and are set forth in Tables I, II, and III (see also, e.g., Southwood, et al., J. Immunol. 160:3363, 1998; Rammensee, et al., Immunogenetics 41:178, 1995; Rammensee et al., SYFPEITHI, access via web at: http://134.2.96.221/scripts.hlaserver.d11/home.htm; Sette, A. and Sidney, J. Curr. Opin. Immunol. 10:478, 1998; Engelhard, V. H., Curr. Opin. Immunol. 6:13, 1994; Sette, A. and Grey, H. M., Curr. Opin. Immunol. 4:79, 1992; Sinigaglia, F. and Hammer, J. Curr. Biol. 6:52, 1994; Ruppert et al., Cell 74:929-937, 1993; Kondo et al., J. Immunol. 155:4307-4312, 1995; Sidney et al., J. Immunol. 157:3480-3490, 1996; Sidney et al., Human Immunol. 45:79-93, 1996; Sette, A. and Sidney, J. Immunogenetics, in press, 1999).


Furthermore, x-ray crystallographic analysis of HLA-peptide complexes has revealed pockets within the peptide binding cleft of HLA molecules which accommodate, in an allele-specific mode, residues borne by peptide ligands; these residues in turn determine the HLA binding capacity of the peptides in which they are present. (See, e.g., Madden, D. R. Annu. Rev. Immunol. 13:587, 1995; Smith, et al., Immunity 4:203, 1996; Fremont et al., Immunity 8:305, 1998; Stern et al., Structure 2:245, 1994; Jones, E. Y. Curr. Opin. Immunol. 9:75, 1997; Brown, J. H. et al., Nature 364:33, 1993; Guo, H. C. et al., Proc. Natl. Acad. Sci. USA 90:8053, 1993; Guo, H. C. et al., Nature 360:364, 1992; Silver, M. L. et al., Nature 360:367, 1992; Matsumura, M. et al., Science 257:927, 1992; Madden et al., Cell 70:1035, 1992; Fremont, D. H. et al., Science 257:919, 1992; Saper, M. A., Bjorkman, P. J. and Wiley, D. C., J. Mol. Biol. 219:277, 1991.)


Accordingly, the definition of class I and class II allele-specific HLA binding motifs, or class I or class II supermotifs allows identification of regions within a protein that have the potential of binding particular HLA antigen(s).


The present inventors have found that the correlation of binding affinity with immunogenicity, which is disclosed herein, is an important factor to be considered when evaluating candidate peptides. Thus, by a combination of motif searches and HLA-peptide binding assays, candidates for epitope-based vaccines have been identified. After determining their binding affinity, additional confirmatory work can be performed to select, amongst these vaccine candidates, epitopes with preferred characteristics in terms of population coverage, antigenicity, and immunogenicity.


Various strategies can be utilized to evaluate immunogenicity, including:


1) Evaluation of primary T cell cultures from normal individuals (see, e.g., Wentworth, P. A. et al., Mol. Immunol. 32:603, 1995; Celis, E. et al., Proc. Natl. Acad. Sci. USA 91:2105, 1994; Tsai, V. et al., J. Immunol. 158:1796, 1997; Kawashima, I. et al., Human Immunol. 59:1, 1998); This procedure involves the stimulation of peripheral blood lymphocytes (PBL) from normal subjects with a test peptide in the presence of antigen presenting cells in vitro over a period of several weeks. T cells specific for the peptide become activated during this time and are detected using, e.g., a 51Cr-release assay involving peptide sensitized target cells.


2) Immunization of HLA transgenic mice (see, e.g., Wentworth, P. A. et al., J. Immunol. 26:97, 1996; Wentworth, P. A. et al., Int. Immunol. 8:651, 1996; Alexander, J. et al., J. Immunol. 159:4753, 1997); In this method, peptides in incomplete Freund's adjuvant are administered subcutaneously to HLA transgenic mice. Several weeks following immunization, splenocytes are removed and cultured in vitro in the presence of test peptide for approximately one week. Peptide-specific T cells are detected using, e.g., a 51Cr-release assay involving peptide sensitized target cells and target cells expressing endogenously generated antigen.


3) Demonstration of recall T cell responses from immune individuals who have effectively been vaccinated, recovered from infection, and/or from chronically infected patients (see, e.g., Rehermann, B. et al., J. Exp. Med. 181:1047, 1995; Doolan, D. L. et al., Immunity 7:97, 1997; Bertoni, R. et al., J. Clin. Invest. 100:503, 1997; Threlkeld, S. C. et al., J. Immunol. 159:1648, 1997; Diepolder, H. M. et al., J. Virol. 71:6011, 1997). In applying this strategy, recall responses are detected by culturing PBL from subjects that have been naturally exposed to the antigen, for instance through infection, and thus have generated an immune response “naturally”, or from patients who were vaccinated against the infection. PBL from subjects are cultured in vitro for 1-2 weeks in the presence of test peptide plus antigen presenting cells (APC) to allow activation of “memory” T cells, as compared to “naive” T cells. At the end of the culture period, T cell activity is detected using assays for T cell activity including 51Cr release involving peptide-sensitized targets, T cell proliferation, or lymphokine release.


The following describes the peptide epitopes and corresponding nucleic acids of the invention.


IV.C. BINDING AFFINITY OF PEPTIDE EPITOPES FOR HLA MOLECULES

As indicated herein, the large degree of HLA polymorphism is an important factor to be taken into account with the epitope-based approach to vaccine development. To address this factor, epitope selection encompassing identification of peptides capable of binding at high or intermediate affinity to multiple HLA molecules is preferably utilized, most preferably these epitopes bind at high or intermediate affinity to two or more allele-specific HLA molecules.


CTL-inducing peptides of interest for vaccine compositions preferably include those that have an IC50 or binding affinity value for class I HLA molecules of 500 nM or better (i.e., the value is ≦500 nM). HTL-inducing peptides preferably include those that have an IC50 or binding affinity value for class II HLA molecules of 1000 nM or better, (i.e., the value is ≦1,000 nM). For example, peptide binding is assessed by testing the capacity of a candidate peptide to bind to a purified HLA molecule in vitro. Peptides exhibiting high or intermediate affinity are then considered for further analysis. Selected peptides are tested on other members of the supertype family. In preferred embodiments, peptides that exhibit cross-reactive binding are then used in cellular screening analyses or vaccines.


As disclosed herein, higher HLA binding affinity is correlated with greater immunogenicity. Greater immunogenicity can be manifested in several different ways. Immunogenicity corresponds to whether an immune response is elicited at all, and to the vigor of any particular response, as well as to the extent of a population in which a response is elicited. For example, a peptide might elicit an immune response in a diverse array of the population, yet in no instance produce a vigorous response. In accordance with these principles, close to 90% of high binding peptides have been found to be immunogenic, as contrasted with about 50% of the peptides which bind with intermediate affinity. Moreover, higher binding affinity peptides leads to more vigorous immunogenic responses. As a result, less peptide is required to elicit a similar biological effect if a high affinity binding peptide is used. Thus, in preferred embodiments of the invention, high affinity binding epitopes are particularly useful.


The relationship between binding affinity for HLA class I molecules and immunogenicity of discrete peptide epitopes on bound antigens has been determined for the first time in the art by the present inventors. The correlation between binding affinity and immunogenicity was analyzed in two different experimental approaches (see, e.g., Sette, et al., J. Immunol. 153:5586-5592, 1994). In the first approach, the immunogenicity of potential epitopes ranging in HLA binding affinity over a 10,000-fold range was analyzed in HLA-A*0201 transgenic mice. In the second approach, the antigenicity of approximately 100 different hepatitis B virus (HBV)-derived potential epitopes, all carrying A*0201 binding motifs, was assessed by using PBL from acute hepatitis patients. Pursuant to these approaches, it was determined that an affinity threshold value of approximately 500 nM (preferably 50 nM or less) determines the capacity of a peptide epitope to elicit a CTL response. These data are true for class I binding affinity measurements for naturally processed peptides and for synthesized T cell epitopes. These data also indicate the important role of determinant selection in the shaping of T cell responses (see, e.g., Schaeffer et al. Proc. Natl. Acad. Sci. USA 86:4649-4653, 1989).


An affinity threshold associated with immunogenicity in the context of HLA class II DR molecules has also been delineated (see, e.g., Southwood et al. J. Immunology 160:3363-3373,1998, and U.S. Ser. No. 09/009,953 filed Jan. 21, 1998, now U.S. Pat. No. 6,413,517). In order to define a biologically significant threshold of DR binding affinity, a database of the binding affinities of 32 DR-restricted epitopes for their restricting element (i.e., the HLA molecule that binds the motif) was compiled. In approximately half of the cases (15 of 32 epitopes), DR restriction was associated with high binding affinities, i.e. binding affinity values of 100 nM or less. In the other half of the cases (16 of 32), DR restriction was associated with intermediate affinity (binding affinity values in the 100-1000 nM range). In only one of 32 cases was DR restriction associated with an IC50 of 1000 nM or greater. Thus, 1000 nM can be defined as an affinity threshold associated with immunogenicity in the context of DR molecules.


The binding affinity of peptides for HLA molecules can be determined as described in Example 1, below.


IV.D. PEPTIDE EPITOPE BINDING MOTIFS AND SUPERMOTIFS

Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues required for allele-specific binding to HLA molecules have been identified. The presence of these residues correlates with binding affinity for HLA molecules. The identification of motifs and/or supermotifs that correlate with high and intermediate affinity binding is an important issue with respect to the identification of immunogenic peptide epitopes for the inclusion in a vaccine. Kast et al. (J. Immunol. 152:3904-3912, 1994) have shown that motif-bearing peptides account for 90% of the epitopes that bind to allele-specific HLA class I molecules. In this study all possible peptides of 9 amino acids in length and overlapping by eight amino acids (240 peptides), which cover the entire sequence of the E6 and E7 proteins of human papillomavirus type 16, were evaluated for binding to five allele-specific HLA molecules that are expressed at high frequency among different ethnic groups. This unbiased set of peptides allowed an evaluation of the predictive value of HLA class I motifs. From the set of 240 peptides, 22 peptides were identified that bound to an allele-specific HLA molecule with high or intermediate affinity. Of these 22 peptides, 20 (i.e. 91%) were motif-bearing. Thus, this study demonstrates the value of motifs for the identification of peptide epitopes for inclusion in a vaccine: application of motif-based identification techniques will identify about 90% of the potential epitopes in a target antigen protein sequence.


Such peptide epitopes are identified in the Tables described below.


Peptides of the present invention may also comprise epitopes that bind to MEW class II DR molecules. A greater degree of heterogeneity in both size and binding frame position of the motif, relative to the N and C termini of the peptide, exists for class II peptide ligands. This increased heterogeneity of HLA class II peptide ligands is due to the structure of the binding groove of the HLA class II molecule which, unlike its class I counterpart, is open at both ends. Crystallographic analysis of HLA class II DRB*0101-peptide complexes showed that the major energy of binding is contributed by peptide residues complexed with complementary pockets on the DRB*0101 molecules. An important anchor residue engages the deepest hydrophobic pocket (see, e.g., Madden, D. R. Ann. Rev. Immunol. 13:587, 1995) and is referred to as position 1 (P1). P1 may represent the N-terminal residue of a class II binding peptide epitope, but more typically is flanked towards the N-terminus by one or more residues. Other studies have also pointed to an important role for the peptide residue in the 6th position towards the C-terminus, relative to P1, for binding to various DR molecules.


In the past few years evidence has accumulated to demonstrate that a large fraction of HLA class I and class II molecules can be classified into a relatively few supertypes, each characterized by largely overlapping peptide binding repertoires, and consensus structures of the main peptide binding pockets. Thus, peptides of the present invention are identified by any one of several HLA-specific amino acid motifs (see, e.g., Tables or if the presence of the motif corresponds to the ability to bind several allele-specific HLA antigens, a supermotif. The HLA molecules that bind to peptides that possess a particular amino acid supermotif are collectively referred to as an HLA “supertype.”


The peptide motifs and supermotifs described below, and summarized in Tables I-III, provide guidance for the identification and use of peptide epitopes in accordance with the invention.


Examples of peptide epitopes bearing a respective supermotif or motif are included in Tables as designated in the description of each motif or supermotif below. The Tables include a binding affinity ratio listing for some of the peptide epitopes. The ratio may be converted to IC50 by using the following formula: IC50 of the standard peptide/ratio=IC50 of the test peptide (i.e., the peptide epitope). The IC50 values of standard peptides used to determine binding affinities for Class I peptides are shown in Table IV. The IC50 values of standard peptides used to determine binding affinities for Class II peptides are shown in Table V. The peptides used as standards for the binding assays described herein are examples of standards; alternative standard peptides can also be used when performing binding analyses.


To obtain the peptide epitope sequences listed in each Table, protein sequence data for four P. falciparum antigens were evaluated for the presence of the designated supermotif or motif. These antigens are: EXP-1, LSA-1, SSP2, and CSP. Nineteen sequences were available for CSP, 10 sequences were available for SSP, and one sequence each was available for EXP-1 and LSA-1. Peptide epitopes were additionally evaluated on the basis of their conservancy among the protein sequences for the PF antigens for which multiple sequences were available. A criterion for conservancy requires that the entire sequence of an HLA class I binding peptide be totally (i.e., 100%) conserved in 79% of the sequences available for a specific protein. Similarly, a criterion for conservancy requires that the entire 9-mer core region of an HLA class II binding peptide be totally conserved in 79% of the sequences available for a specific protein. The percent conservancy of the selected peptide epitopes is indicated on the Tables. The frequency, i.e. the number of sequences of the PF protein antigen in which the totally conserved peptide sequence was identified, is also shown. The “pos” (position) column in the Tables designates the amino acid position in the PF protein that corresponds to the first amino acid residue of the epitope. The “number of amino acids” indicates the number of residues in the epitope sequence.


HLA Class I Motifs Indicative of CTL Inducing Peptide Epitopes:

The primary anchor residues of the HLA class I peptide epitope supermotifs and motifs delineated below are summarized in Table I. The HLA class I motifs set out in Table I(a) are those most particularly relevant to the invention claimed here. Primary and secondary anchor positions are summarized in Table II. Allele-specific HLA molecules that comprise HLA class I supertype families are listed in Table VI. In some cases, peptide epitopes may be listed in both a motif and a supermotif Table. The relationship of a particular motif and respective supermotif is indicated in the description of the individual motifs.


IV.D.1. HLA-A1 SUPERMOTIF

The HLA-A1 supermotif is characterized by the presence in peptide ligands of a small (T or S) or hydrophobic (L, I, V, or M) primary anchor residue in position 2, and an aromatic (Y, F, or W) primary anchor residue at the C-terminal position of the epitope (see, e.g., Sette and Sidney, Immunogenetics, in press, 1999). The corresponding family of HLA molecules that bind to the A1 supermotif (i.e., the HLA-A1 supertype) is comprised of at least A*0101, A*2601, A*2602, A*2501, and A*3201 (see, e.g., DiBrino, M. et al., J. Immunol. 151:5930, 1993; DiBrino, M. et al., J. Immunol. 152:620, 1994; Kondo, A. et al., Immunogenetics 45:249, 1997). Other allele-specific HLA molecules predicted to be members of the A1 supertype are shown in Table VI. Peptides binding to each of the individual HLA proteins can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.


Representative peptide epitopes that comprise the A1 supermotif are set forth on the attached Table VII.


IV.D.2. HLA-A2 Supermotif

Primary anchor specificities for allele-specific HLA-A2.1 molecules (see, e.g., Falk et al., Nature 351:290-296, 1991; Hunt et al., Science 255:1261-1263, 1992; Parker et al., J. Immunol. 149:3580-3587, 1992; Ruppert et al., Cell 74:929-937, 1993) and cross-reactive binding among HLA-A2 and -A28 molecules have been described. (See, e.g., Fruci et al., Human Immunol. 38:187-192, 1993; Tanigaki et al., Human Immunol. 39:155-162, 1994; Del Guercio et al., J. Immunol. 154:685-693, 1995; Kast et al., J. Immunol. 152:3904-3912, 1994 for reviews of relevant data.) These primary anchor residues define the HLA-A2 supermotif; which presence in peptide ligands corresponds to the ability to bind several different HLA-A2 and -A28 molecules. The HLA-A2 supermotif comprises peptide ligands with L, I, V, M, A, T, or Q as a primary anchor residue at position 2 and L, I, V, M, A, or T as a primary anchor residue at the C-terminal position of the epitope.


The corresponding family of HLA molecules (i.e., the HLA-A2 supertype that binds these peptides) is comprised of at least: A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, A*0209, A*0214, A*6802, and A*6901. Other allele-specific HLA molecules predicted to be members of the A2 supertype are shown in Table VI. As explained in detail below, binding to each of the individual allele-specific HLA molecules can be modulated by substitutions at the primary anchor and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.


Representative peptide epitopes that comprise an A2 supermotif are set forth on the attached Table VIII. The motifs comprising the primary anchor residues V, A, T, or Q at position 2 and L, I, V, A, or T at the C-terminal position are those most particularly relevant to the invention claimed herein.


IV.D.3. HLA-A3 Supermotif

The HLA-A3 supermotif is characterized by the presence in peptide ligands of A, L, I, V, M, S, or, T as a primary anchor at position 2, and a positively charged residue, R or K, at the C-terminal position of the epitope, e.g., in position 9 of 9-mers (see, e.g., Sidney et al., Hum. Immunol. 45:79, 1996). Exemplary members of the corresponding family of HLA molecules (the HLA-A3 supertype) that bind the A3 supermotif include at least A*0301, A*1101, A*3101, A*3301, and A*6801. Other allele-specific HLA molecules predicted to be members of the A3 supertype are shown in Table VI. As explained in detail below, peptide binding to each of the individual allele-specific HLA proteins can be modulated by substitutions of amino acids at the primary and/or secondary anchor positions of the peptide, preferably choosing respective residues specified for the supermotif.


Representative peptide epitopes that comprise the A3 supermotif are set forth on the attached Table IX.


IV.D.4. HLA-A24 Supermotif

The HLA-A24 supermotif is characterized by the presence in peptide ligands of an aromatic (F, W, or Y) or hydrophobic aliphatic (L, I, V, M, or T) residue as a primary anchor in position 2, and Y, F, W, L, I, or M as primary anchor at the C-terminal position of the epitope (see, e.g., Sette and Sidney, Immunogenetics, in press, 1999). The corresponding family of HLA molecules that bind to the A24 supermotif (i.e., the A24 supertype) includes at least A*2402, A*3001, and A*2301. Other allele-specific HLA molecules predicted to be members of the A24 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.


Representative peptide epitopes that comprise the A24 supermotif are set forth on the attached Table X.


IV.D.5. HLA-B7 Supermotif

The HLA-B7 supermotif is characterized by peptides bearing proline in position 2 as a primary anchor, and a hydrophobic or aliphatic amino acid (L, I, V, M, A, F, W, or Y) as the primary anchor at the C-terminal position of the epitope. The corresponding family of HLA molecules that bind the B7 supermotif (i.e., the HLA-B7 supertype) is comprised of at least twenty six HLA-B proteins including: B*0702, B*0703, B*0704, B*0705, B*1508, B*3501, B*3502, B*3503, B*3504, B*3505, B*3506, B*3507, B*3508, B*5101, B*5102, B*5103, B*5104, B*5105, B*5301, B*5401, B*5501, B*5502, B*5601, B*5602, B*6701, and B*7801 (see, e.g., Sidney, et al., J. Immunol. 154:247, 1995; Barber, et al., Curr. Biol. 5:179, 1995; Hill, et al., Nature 360:434, 1992; Rammensee, et al., Immunogenetics 41:178, 1995 for reviews of relevant data). Other allele-specific HLA molecules predicted to be members of the B7 supertype are shown in Table VI. As explained in detail below, peptide binding to each of the individual allele-specific HLA proteins can be modulated by substitutions at the primary and/or secondary anchor positions of the peptide, preferably choosing respective residues specified for the supermotif.


Representative peptide epitopes that comprise the B7 supermotif are set forth on the attached Table XI.


IV.D.6. HLA-B27 Supermotif

The HLA-B27 supermotif is characterized by the presence in peptide ligands of a positively charged (R, H, or K) residue as a primary anchor at position 2, and a hydrophobic (F, Y, L, W, M, I, A, or V) residue as a primary anchor at the C-terminal position of the epitope (see, e.g., Sidney and Sette, Immunogenetics, in press, 1999). Exemplary members of the corresponding family of HLA molecules that bind to the B27 supermotif (i.e., the B27 supertype) include at least B*1401, B*1402, B*1509, B*2702, B*2703, B*2704, B*2705, B*2706, B*3801, B*3901, B*3902, and B*7301. Other allele-specific HLA molecules predicted to be members of the B27 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.


Representative peptide epitopes that comprise the B27 supermotif are set forth on the attached Table XII.


IV.D.7. HLA-B44 Supermotif

The HLA-B44 supermotif is characterized by the presence in peptide ligands of negatively charged (D or E) residues as a primary anchor in position 2, and hydrophobic residues (F, W, Y, L, I, M, V, or A) as a primary anchor at the C-terminal position of the epitope (see, e.g., Sidney et al., Immunol. Today 17:261, 1996). Exemplary members of the corresponding family of HLA molecules that bind to the B44 supermotif (i.e., the B44 supertype) include at least: B*1801, B*1802, B*3701, B*4001, B*4002, B*4006, B*4402, B*4403, and B*4006. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions; preferably choosing respective residues specified for the supermotif.


IV.D.8. HLA-B58 Supermotif

The HLA-B58 supermotif is characterized by the presence in peptide ligands of a small aliphatic residue (A, S, or T) as a primary anchor residue at position 2, and an aromatic or hydrophobic residue (F, W, Y, L, I, V, M, or A) as a primary anchor residue at the C-terminal position of the epitope (see, e.g., Sidney and Sette, Immunogenetics, in press, 1999 for reviews of relevant data). Exemplary members of the corresponding family of HLA molecules that bind to the B58 supermotif (i.e., the B58 supertype) include at least: B*1516, B*1517, B*5701, B*5702, and B*5801. Other allele-specific HLA molecules predicted to be members of the B58 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.


Representative peptide epitopes that comprise the B58 supermotif are set forth on the attached Table XIII.


IV.D.9. HLA-B62 Supermotif

The HLA-B62 supermotif is characterized by the presence in peptide ligands of the polar aliphatic residue Q or a hydrophobic aliphatic residue (L, V, M, I, or P) as a primary anchor in position 2, and a hydrophobic residue (F, W, Y, M, I, V, L, or A) as a primary anchor at the C-terminal position of the epitope (see, e.g., Sidney and Sette, Immunogenetics, in press, 1999). Exemplary members of the corresponding family of HLA molecules that bind to the B62 supermotif (i.e., the B62 supertype) include at least: B*1501, B*1502, B*1513, and B5201. Other allele-specific HLA molecules predicted to be members of the B62 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.


Representative peptide epitopes that comprise the B62 supermotif are set forth on the attached Table XIV.


IV.D.10. HLA-A1 Motif

The HLA-A1 motif is characterized by the presence in peptide ligands of T, S, or M as a primary anchor residue at position 2 and the presence of Y as a primary anchor residue at the C-terminal position of the epitope. An alternative allele-specific A1 motif is characterized by a primary anchor residue at position 3 rather than position 2. This motif is characterized by the presence of D, E, A, or S as a primary anchor residue in position 3, and a Y as a primary anchor residue at the C-terminal position of the epitope (see, e.g., DiBrino et al., J. Immunol., 152:620, 1994; Kondo et al., Immunogenetics 45:249, 1997; and Kubo et al., J. Immunol. 152:3913, 1994 for reviews of relevant data). Peptide binding to HLA A1 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.


Representative peptide epitopes that comprise either A1 motif are set forth on the attached Table XV. Those epitopes comprising T, S, or M at position 2 and Y at the C-terminal position are also included in the listing of HLA-A1 supermotif-bearing peptide epitopes listed in Table VII, as these residues are a subset of the A1 supermotif primary anchors.


IV.D.11. HLA-A*0201 Motif

An HLA-A2*0201 motif was determined to be characterized by the presence in peptide ligands of L or M as a primary anchor residue in position 2, and L or V as a primary anchor residue at the C-terminal position of a 9-residue peptide (see, e.g., Falk et al., Nature 351:290-296, 1991) and was further found to comprise an I at position 2 and I or A at the C-terminal position of a nine amino acid peptide (see, e.g., Hunt et al., Science 255:1261-1263, Mar. 6, 1992; Parker et al., J. Immunol. 149:3580-3587, 1992). The A*0201 allele-specific motif has also been defined by the present inventors to additionally comprise V, A, T, or Q as a primary anchor residue at position 2, and M or T as a primary anchor residue at the C-terminal position of the epitope (see, e.g., Kast et al., J. Immunol. 152:3904-3912, 1994). Thus, the HLA-A*0201 motif comprises peptide ligands with L, I, V, M, A, T, or Q as primary anchor residues at position 2 and L, I, V, M, A, or T as a primary anchor residue at the C-terminal position of the epitope. The preferred and tolerated residues that characterize the primary anchor positions of the HLA-A*0201 motif are identical to the residues describing the A2 supermotif. (For reviews of relevant data, see, e.g., Del Guercio et al., J. Immunol. 154:685-693, 1995; Ruppert et al., Cell 74:929-937, 1993; Sidney et al., Immunol. Today 17:261-266, 1996; Sette and Sidney, Curr. Opin. in Immunol. 10:478-482, 1998). Secondary anchor residues that characterize the A*0201 motif have additionally been defined (see, e.g., Ruppert et al., Cell 74:929-937, 1993). These are shown in Table II. Peptide binding to HLA-A*0201 molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.


Representative peptide epitopes that comprise an A*0201 motif are set forth on the attached Table VIII. The A*0201 motifs comprising the primary anchor residues V, A, T, or Q at position 2 and L, I, V, A, or T at the C-terminal position are those most particularly relevant to the invention claimed herein


IV.D.12. HLA-A3 Motif

The HLA-A3 motif is characterized by the presence in peptide ligands of L, M, V, I, S, A, T, F, C, G, or D as a primary anchor residue at position 2, and the presence of K, Y, R, H, F, or A as a primary anchor residue at the C-terminal position of the epitope (see, e.g., DiBrino et al., Proc. Natl. Acad. Sci USA 90:1508, 1993; and Kubo et al., J. Immunol. 152:3913-3924, 1994). Peptide binding to HLA-A3 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.


Representative peptide epitopes that comprise the A3 motif are set forth on the attached Table XVI. Those peptide epitopes that also comprise the A3 supermotif are also listed in Table IX. The A3 supermotif primary anchor residues comprise a subset of the A3- and A11-allele specific motif primary anchor residues.


IV.D.13. HLA-A11 Motif

The HLA-A11 motif is characterized by the presence in peptide ligands of V, T, M, L, I, S, A, G, N, C, D, or F as a primary anchor residue in position 2, and K, R, Y, or H as a primary anchor residue at the C-terminal position of the epitope (see, e.g., Zhang et al., Proc. Natl. Acad. Sci USA 90:2217-2221, 1993; and Kubo et al., J. Immunol. 152:3913-3924, 1994). Peptide binding to HLA-A11 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.


Representative peptide epitopes that comprise the A11 motif are set forth on the attached Table XVII; peptide epitopes comprising the A3 allele-specific motif are also present in this Table because of the extensive overlap between the A3 and A11 motif primary anchor specificities. Further, those peptide epitopes that comprise the A3 supermotif are also listed in Table IX.


IV.D.14. HLA-A24 Motif

The HLA-A24 motif is characterized by the presence in peptide ligands of Y, F, W, or M as a primary anchor residue in position 2, and F, L, I, or W as a primary anchor residue at the C-terminal position of the epitope (see, e.g., Kondo et al., J. Immunol. 155:4307-4312, 1995; and Kubo et al., J. Immunol. 152:3913-3924, 1994). Peptide binding to HLA-A24 molecules can be modulated by substitutions at primary and/or secondary anchor positions; preferably choosing respective residues specified for the motif.


Representative peptide epitopes that comprise the A24 motif are set forth on the attached Table XVIII. These epitopes are also listed in Table X, which sets forth HLA-A24-supermotif-bearing peptide epitopes, as the primary anchor residues characterizing the A24 allele-specific motif comprise a subset of the A24 supermotif primary anchor residues.


Motifs Indicative of Class II HTL Inducing Peptide Epitopes

The primary and secondary anchor residues of the HLA class II peptide epitope supermotifs and motifs delineated below are summarized in Table III.


IV.D.15. HLA DR-1-4-7 Supermotif

Motifs have also been identified for peptides that bind to three common HLA class II allele-specific HLA molecules: HLA DRB1*0401, DRB1*0101, and DRB1*0701 (see, e.g., the review by Southwood et al. J. Immunology 160:3363-3373,1998). Collectively, the common residues from these motifs delineate the HLA DR-1-4-7 supermotif. Peptides that bind to these DR molecules carry a supermotif characterized by a large aromatic or hydrophobic residue (Y, F, W, L, I, V, or M) as a primary anchor residue in position 1, and a small, non-charged residue (S, T, C, A, P, V, I, L, or M) as a primary anchor residue in position 6 of a 9-mer core region. Allele-specific secondary effects and secondary anchors for each of these HLA types have also been identified (Southwood et al., supra). These are set forth in Table III. Peptide binding to HLA-DRB1*0401, DRB1*0101, and/or DRB1*0701 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.


Conserved 9-mer core regions (i.e., sequences that are 100% conserved in at least 79% of the PF antigen protein sequences used for the analysis), comprising the DR-1-4-7 supermotif, wherein position 1 of the supermotif is at position 1 of the nine-residue core, are set forth in Table XIXa. Respective exemplary peptide epitopes of 15 amino acid residues in length, each of which comprise a conserved nine residue core, are also shown in section “a” of the Table. Cross-reactive binding data for exemplary 15-residue supermotif-bearing peptides are shown in Table XIXb.


IV.D.16. HLA DR3 Motifs

Two alternative motifs (i.e., submotifs) characterize peptide epitopes that bind to HLA-DR3 molecules (see, e.g., Geluk et al., J. Immunol. 152:5742, 1994). In the first motif (submotif DR3A) a large, hydrophobic residue (L, I, V, M, F, or Y) is present in anchor position 1 of a 9-mer core, and D is present as an anchor at position 4, towards the carboxyl terminus of the epitope. As in other class II motifs, core position 1 may or may not occupy the peptide N-terminal position.


The alternative DR3 submotif provides for lack of the large, hydrophobic residue at anchor position 1, and/or lack of the negatively charged or amide-like anchor residue at position 4, by the presence of a positive charge at position 6 towards the carboxyl terminus of the epitope. Thus, for the alternative allele-specific DR3 motif (submotif DR3B): L, I, V, M, F, Y, A, or Y is present at anchor position 1; D, N, Q, E, S, or T is present at anchor position 4; and K, R, or H is present at anchor position 6. Peptide binding to HLA-DR3 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.


Conserved 9-mer core regions (i.e., those sequences that are 100% conserved in at least 79% of the PF antigen protein sequences used for the analysis) corresponding to a nine residue sequence comprising the DR3A submotif (wherein position 1 of the motif is at position 1 of the nine residue core) are set forth in Table XXa. Respective exemplary peptide epitopes of 15 amino acid residues in length, each of which comprise a conserved nine residue core, are also shown in Table XXa. Table XXb shows binding data of exemplary DR3 submotif A-bearing peptides.


Conserved 9-mer core regions (i.e., those that are 100% conserved in at least 79% conserved in the PF antigen protein sequences used for the analysis) comprising the DR3B submotif and respective exemplary 15-mer peptides comprising the DR3 submotif-B epitope are set forth in Table XXc. Table XXd shows binding data of exemplary DR3 submotif B-bearing peptides.


Each of the HLA class I or class II peptide epitopes set out in the Tables herein are deemed singly to be an inventive aspect of this application. Further, it is also an inventive aspect of this application that each peptide epitope may be used in combination with any other peptide epitope.


IV.E. ENHANCING POPULATION COVERAGE OF THE VACCINE

Vaccines that have broad population coverage are preferred because they are more commercially viable and generally applicable to the most people. Broad population coverage can be obtained using the peptides of the invention (and nucleic acid compositions that encode such peptides) through selecting peptide epitopes that bind to HLA alleles which, when considered in total, are present in most of the population. Table XXI lists the overall frequencies of the HLA class I supertypes in various ethnicities (Table XXIa) and the combined population coverage achieved by the A2-, A3-, and B7-supertypes (Table XXIb). The A2-, A3-, and B7 supertypes are each present on the average of over 40% in each of these five major ethnic groups. Coverage in excess of 80% is achieved with a combination of these supermotifs. These results suggest that effective and non-ethnically biased population coverage is achieved upon use of a limited number of cross-reactive peptides. Although the population coverage reached with these three main peptide specificities is high, coverage can be expanded to reach 95% population coverage and above, and more easily achieve truly multispecific responses upon use of additional supermotif or allele-specific motif bearing peptides.


The B44-, A1-, and A24-supertypes are present, on average, in a range from 25% to 40% in these major ethnic populations (Table XXIa). While less prevalent overall, the B27-, B58-, and B62 supertypes are each present with a frequency >25% in at least one major ethnic group (Table XXIa). Table XXIb summarizes the estimated prevalence of combinations of HLA supertypes that have been identified in five major ethnic groups. The incremental coverage obtained by the inclusion of A1-, A24-, and B44-supertypes with the A2, A3, and B7 coverage and coverage obtained with all of the supertypes described herein, is shown.


The data presented herein, together with the previous definition of the A2-, A3-, and B7-supertypes, indicates that all antigens, with the possible exception of A29, B8, and B46, can be classified into a total of nine HLA supertypes. By including epitopes from the six most frequent supertypes, an average population coverage of 99% is obtained for five major ethnic groups.


IV.F. IMMUNE RESPONSE-STIMULATING PEPTIDE ANALOGS

In general, CTL and HTL responses are not directed against all possible epitopes. Rather, they are restricted to a few “immunodominant” determinants (Zinkernagel, et al., Adv. Immunol. 27:5159, 1979; Bennink, et al., J. Exp. Med. 168:19351939, 1988; Rawle, et al., J. Immunol. 146:3977-3984, 1991). It has been recognized that immunodominance (Benacerraf, et al., Science 175:273-279, 1972) could be explained by either the ability of a given epitope to selectively bind a particular HLA protein (determinant selection theory) (Vitiello, et al., J. Immunol. 131:1635, 1983); Rosenthal, et al., Nature 267:156-158, 1977), or to be selectively recognized by the existing TCR (T cell receptor) specificities (repertoire theory) (Klein, J., IMMUNOLOGY, THE SCIENCE OF SELFNONSELF DISCRIMINATION, John Wiley & Sons, New York, pp. 270-310, 1982). It has been demonstrated that additional factors, mostly linked to processing events, can also play a key role in dictating, beyond strict immunogenicity, which of the many potential determinants will be presented as immunodominant (Sercarz, et al., Annu. Rev. Immunol. 11:729-766, 1993).


The concept of dominance and subdominance is relevant to immunotherapy of both infectious diseases and cancer. For example, in the course of chronic infectious disease, recruitment of subdominant epitopes can be important for successful clearance of the infection, especially if dominant CTL or HTL specificities have been inactivated by functional tolerance, suppression, mutation of viruses and other mechanisms (Franco, et al., Curr. Opin. Immunol. 7:524-531, 1995). In the case of cancer and tumor antigens, CTLs recognizing at least some of the highest binding affinity peptides might be functionally inactivated. Lower binding affinity peptides are preferentially recognized at these times, and may therefore be preferred in therapeutic or prophylactic anti-cancer vaccines.


In particular, it has been noted that a significant number of epitopes derived from known non-viral tumor associated antigens (TAA) bind HLA class I with intermediate affinity (IC50 in the 50-500 nM range). For example, it has been found that 8 of 15 known TAA peptides recognized by tumor infiltrating lymphocytes (TIL) or CTL bound in the 50-500 nM range. (These data are in contrast with estimates that 90% of known viral antigens were bound by HLA class I molecules with IC50 of 50 nM or less, while only approximately 10% bound in the 50-500 nM range (Sette, et al., J. Immunol., 153:558-5592, 1994). In the cancer setting this phenomenon is probably due to elimination or functional inhibition of the CTL recognizing several of the highest binding peptides, presumably because of T cell tolerization events.


Without intending to be bound by theory, it is believed that because T cells to dominant epitopes may have been clonally deleted, selecting subdominant epitopes may allow existing T cells to be recruited, which will then lead to a therapeutic or prophylactic response. However, the binding of HLA molecules to subdominant epitopes is often less vigorous than to dominant ones. Accordingly, there is a need to be able to modulate the binding affinity of particular immunogenic epitopes for one or more HLA molecules, and thereby to modulate the immune response elicited by the peptide, for example to prepare analog peptides which elicit a more vigorous response. This ability would greatly enhance the usefulness of peptide epitope-based vaccines and therapeutic agents.


Although peptides with suitable cross-reactivity among all alleles of a superfamily are identified by the screening procedures described above, cross-reactivity is not always as complete as possible, and in certain cases procedures to increase cross-reactivity of peptides can be useful; moreover, such procedures can also be used to modify other properties of the peptides such as binding affinity or peptide stability. Having established the general rules that govern cross-reactivity of peptides for HLA alleles within a given motif or supermotif, modification (i.e., analoging) of the structure of peptides of particular interest in order to achieve broader (or otherwise modified) HLA binding capacity can be performed. More specifically, peptides which exhibit the broadest cross-reactivity patterns, can be produced in accordance with the teachings herein. The present concepts related to analog generation are set forth in greater detail in U.S. Ser. No. 09/226,775 filed Jan. 6, 1999, now abandoned.


In brief, the strategy employed utilizes the motifs or supermotifs which correlate with binding to certain HLA molecules. The motifs or supermotifs are defined by having primary anchors, and in many cases secondary anchors. Analog peptides can be created by substituting amino acid residues at primary anchor, secondary anchor, or at primary and secondary anchor positions. Generally, analogs are made for peptides that already bear a motif or supermotif. Preferred secondary anchor residues of supermotifs and motifs that have been defined for HLA class I and class II binding peptides are shown in Tables II and III, respectively.


For a number of the motifs or supermotifs in accordance with the invention, residues are defined which are deleterious to binding to allele-specific HLA molecules or members of HLA supertypes that bind the respective motif or supermotif (Tables II and III). Accordingly, removal of such residues that are detrimental to binding can be performed in accordance with the present invention. For example, in the case of the A3 supertype, when all peptides that have such deleterious residues are removed from the population of peptides used for the analysis, the incidence of cross-reactivity increased from 22% to 37% (see, e.g., Sidney, J. et al., Hu. Immunol. 45:79, 1996). Thus, one strategy to improve the cross-reactivity of peptides within a given supermotif is simply to delete one or more of the deleterious residues present within a peptide and substitute a small “neutral” residue such as Ala (that may not influence T cell recognition of the peptide). An enhanced likelihood of cross-reactivity is expected if, together with elimination of detrimental residues within a peptide, “preferred” residues associated with high affinity binding to an allele-specific HLA molecule or to multiple HLA molecules within a superfamily are inserted.


To ensure that an analog peptide, when used as a vaccine, actually elicits a CTL response to the native epitope in vivo (or, in the case of class II epitopes, elicits helper T cells that cross-react with the wild type peptides), the analog peptide may be used to immunize T cells in vitro from individuals of the appropriate HLA allele. Thereafter, the immunized cells' capacity to induce lysis of wild type peptide sensitized target cells is evaluated. It will be desirable to use as antigen presenting cells, cells that have been either infected, or transfected with the appropriate genes, or, in the case of class II epitopes only, cells that have been pulsed with whole protein antigens, to establish whether endogenously produced antigen is also recognized by the relevant T cells.


Another embodiment of the invention is to create analogs of weak binding peptides. Class I binding peptides exhibiting binding affinities of 500-5000 nM, and carrying an acceptable but suboptimal primary anchor residue at one or both positions can be “fixed” by substituting preferred anchor residues in accordance with the respective supertype. The analog peptides can then be tested for crossbinding activity.


Another embodiment for generating effective peptide analogs involves the substitution of residues that have an adverse impact on peptide stability or solubility in, e.g., a liquid environment. This substitution may occur at any position of the peptide epitope. For example, a cysteine (C) can be substituted out in favor of α-amino butyric acid. Due to its chemical nature, cysteine has the propensity to form disulfide bridges and sufficiently alter the peptide structurally so as to reduce binding capacity. Substituting α-amino butyric acid for C not only alleviates this problem, but actually improves binding and crossbinding capability in certain instances (see, e.g., the review by Sette et al., In: Persistent Viral Infections, Eds. R. Ahmed and I. Chen, John Wiley & Sons, England, 1999). Substitution of cysteine with α-amino butyric acid may occur at any residue of a peptide epitope, i.e. at either anchor or non-anchor positions.


Representative analog peptides are set forth in Table XXII. The Table indicates the length and sequence of the analog peptide as well as the motif or supermotif, if appropriate. The information in the “Fixed Nomenclature” column indicates the residues substituted at the indicated position numbers for the respective analog.


IV.G. COMPUTER SCREENING OF PROTEIN SEQUENCES FROM DISEASE-RELATED ANTIGENS FOR SUPERMOTIF- OR MOTIF-BEARING PEPTIDES

In order to identify supermotif- or motif-bearing epitopes in a target antigen, a native protein sequence, e.g., a tumor-associated antigen, or sequences from an infectious organism, or a donor tissue for transplantation, is screened using a means for computing, such as an intellectual calculation or a computer, to determine the presence of a supermotif or motif within the sequence. The information obtained from the analysis of native peptide can be used directly to evaluate the status of the native peptide or may be utilized subsequently to generate the peptide epitope.


Computer programs that allow the rapid screening of protein sequences for the occurrence of the subject supermotifs or motifs are encompassed by the present invention; as are programs that permit the generation of analog peptides. These programs are implemented to analyze any identified amino acid sequence or operate on an unknown sequence and simultaneously determine the sequence and identify motif-bearing epitopes thereof; analogs can be simultaneously determined as well. Generally, the identified sequences will be from a pathogenic organism or a tumor-associated peptide. For example, the target molecules considered herein include, without limitation, the EXP1, LSA1, SSP2, and CSP1 proteins of PF.


In cases where the sequence of multiple variants of the same target protein are available, peptides may also be selected on the basis of their conservancy. A presently preferred criterion for conservancy defines that the entire sequence of an HLA class I binding peptide or the entire 9-mer core of a class II binding peptide, be totally (i.e., 100%) conserved in at least 79% of the sequences evaluated for a specific protein. This definition of conservancy has been employed herein; although, as appreciated by those in the art, lower or higher degrees of conservancy can be employed as appropriate for a given antigenic target.


It is important that the selection criteria utilized for prediction of peptide binding are as accurate as possible, to correlate most efficiently with actual binding. Prediction of peptides that bind, for example, to HLA-A*0201, on the basis of the presence of the appropriate primary anchors, is positive at about a 30% rate (see, e.g., Ruppert, J. et al. Cell 74:929, 1993). However, by extensively analyzing peptide-HLA binding data disclosed herein, data in related patent applications, and data in the art, the present inventors have developed a number of allele-specific polynomial algorithms that dramatically increase the predictive value over identification on the basis of the presence of primary anchor residues alone. These algorithms take into account not only the presence or absence of primary anchors, but also consider the positive or deleterious presence of secondary anchor residues (to account for the impact of different amino acids at different positions). The algorithms are essentially based on the premise that the overall affinity (or AG) of peptide-HLA interactions can be approximated as a linear polynomial function of the type:





ΔG=a1i×a2i×a3i . . . ×ani


where aji is a coefficient that represents the effect of the presence of a given amino acid (j) at a given position (i) along the sequence of a peptide of n amino acids. An important assumption of this method is that the effects at each position are essentially independent of each other. This assumption is justified by studies that demonstrated that peptides are bound to HLA molecules and recognized by T cells in essentially an extended conformation. Derivation of specific algorithm coefficients has been described, for example, in Gulukota, K. et al., J. Mol. Biol. 267:1258, 1997.


Additional methods to identify preferred peptide sequences, which also make use of specific motifs, include the use of neural networks and molecular modeling programs (see, e.g., Milik et al., Nature Biotechnology 16:753, 1998; Altuvia et al., Hum. Immunol. 58:1, 1997; Altuvia et al, J. Mol. Biol. 249:244, 1995; Buus, S. Curr. Opin. Immunol. 11:209-213, 1999; Brusic, V. et al., Bioinformatics 14:121-130, 1998; Parker et al., J. Immunol. 152:163, 1993; Meister et al., Vaccine 13:581, 1995; Hammer et al., J. Exp. Med. 180:2353, 1994; Sturniolo et al., Nature Biotechnol. 17:555 1999).


For example, it has been shown that in sets of A*0201 motif-bearing peptides containing at least one preferred secondary anchor residue while avoiding the presence of any deleterious secondary anchor residues, 69% of the peptides will bind A*0201 with an IC50 less than 500 nM (Ruppert, J. et al. Cell 74:929, 1993). These algorithms are also flexible in that cut-off scores may be adjusted to select sets of peptides with greater or lower predicted binding properties, as desired.


In utilizing computer screening to identify peptide epitopes, a protein sequence or translated sequence may be analyzed using software developed to search for motifs, for example the “FINDPATTERNS’ program (Devereux, et al. Nucl. Acids Res. 12:387-395, 1984) or MotifSearch 1.4 software program (D. Brown, San Diego, Calif.) to identify potential peptide sequences containing appropriate HLA binding motifs. The identified peptides can be scored using customized polynomial algorithms to predict their capacity to bind specific HLA class I or class II alleles. As appreciated by one of ordinary skill in the art, a large array of computer programming software and hardware options are available in the relevant art which can be employed to implement the motifs of the invention in order to evaluate (e.g., without limitation, to identify epitopes, identify epitope concentration per peptide length, or to generate analogs) known or unknown peptide sequences.


In accordance with the procedures described above, PF peptide epitopes and analogs thereof that are able to bind HLA supertype groups or allele-specific HLA molecules have been identified (Tables VII-XX; Table XXII).


IV.H. PREPARATION OF PEPTIDE EPITOPES

Peptides in accordance with the invention can be prepared synthetically, by recombinant DNA technology or chemical synthesis, or from natural sources such as native tumors or pathogenic organisms. Peptide epitopes may be synthesized individually or as polyepitopic peptides. Although the peptide will preferably be substantially free of other naturally occurring host cell proteins and fragments thereof, in some embodiments the peptides may be synthetically conjugated to native fragments or particles.


The peptides in accordance with the invention can be a variety of lengths, and either in their neutral (uncharged) forms or in forms which are salts. The peptides in accordance with the invention are either free of modifications such as glycosylation, side chain oxidation, or phosphorylation; or they contain these modifications, subject to the condition that modifications do not destroy the biological activity of the peptides as described herein.


Desirably, the peptide epitope will be as small as possible while still maintaining substantially all of the immunologic activity of the native protein. When possible, it may be desirable to optimize HLA class I binding peptide epitopes of the invention to a length of about 8 to about 13 amino acid residues, preferably 9 to 10. HLA class II binding peptide epitopes may be optimized to a length of about 6 to about 30 amino acids in length, preferably to between about 13 and about 20 residues. Preferably, the peptide epitopes are commensurate in size with endogenously processed pathogen-derived peptides or tumor cell peptides that are bound to the relevant HLA molecules.


The identification and preparation of peptides of other lengths can also be carried out using the techniques described herein. Moreover, it is preferred to identify native peptide regions that contain a high concentration of class I and/or class II epitopes. Such a sequence is generally selected on the basis that it contains the greatest number of epitopes per amino acid length. It is to be appreciated that epitopes can be present in a frame-shifted manner, e.g. a 10 amino acid long peptide could contain two 9 amino acid long epitopes and one 10 amino acid long epitope; upon intracellular processing, each epitope can be exposed and bound by an HLA molecule upon administration of such a peptide. This larger, preferably multi-epitopic, peptide can be generated synthetically, recombinantly, or via cleavage from the native source.


The peptides of the invention can be prepared in a wide variety of ways. For the preferred relatively short size, the peptides can be synthesized in solution or on a solid support in accordance with conventional techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. (See, for example, Stewart & Young, SOLID PHASE PEPTIDE SYNTHESIS, 2D. ED., Pierce Chemical Co., 1984). Further, individual peptide epitopes can be joined using chemical ligation to produce larger peptides that are still within the bounds of the invention.


Alternatively, recombinant DNA technology can be employed wherein a nucleotide sequence which encodes an immunogenic peptide of interest is inserted into an expression vector, transformed or transfected into an appropriate host cell and cultivated under conditions suitable for expression. These procedures are generally known in the art, as described generally in Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, Cold Spring Harbor Press, Cold Spring Harbor, N.Y. (1989). Thus, recombinant polypeptides which comprise one or more peptide sequences of the invention can be used to present the appropriate T cell epitope.


The nucleotide coding sequence for peptide epitopes of the preferred lengths contemplated herein can be synthesized by chemical techniques, for example, the phosphotriester method of Matteucci, et al., J. Am. Chem. Soc. 103:3185 (1981). Peptide analogs can be made simply by substituting the appropriate and desired nucleic acid base(s) for those that encode the native peptide sequence; exemplary nucleic acid substitutions are those that encode an amino acid defined by the motifs/supermotifs herein. The coding sequence can then be provided with appropriate linkers and ligated into expression vectors commonly available in the art, and the vectors used to transform suitable hosts to produce the desired fusion protein. A number of such vectors and suitable host systems are now available. For expression of the fusion proteins, the coding sequence will be provided with operably linked start and stop codons, promoter and terminator regions and usually a replication system to provide an expression vector for expression in the desired cellular host. For example, promoter sequences compatible with bacterial hosts are provided in plasmids containing convenient restriction sites for insertion of the desired coding sequence. The resulting expression vectors are transformed into suitable bacterial hosts. Of course, yeast, insect or mammalian cell hosts may also be used, employing suitable vectors and control sequences.


IV.I. ASSAYS TO DETECT T-CELL RESPONSES

Once HLA binding peptides are identified, they can be tested for the ability to elicit a T-cell response. The preparation and evaluation of motif-bearing peptides are described in PCT publications WO 94/20127 and WO 94/03205. Briefly, peptides comprising epitopes from a particular antigen are synthesized and tested for their ability to bind to the appropriate HLA proteins. These assays may involve evaluating the binding of a peptide of the invention to purified HLA class I molecules in relation to the binding of a radioiodinated reference peptide. Alternatively, cells expressing empty class I molecules (i.e. lacking peptide therein) may be evaluated for peptide binding by immunofluorescent staining and flow microfluorimetry. Other assays that may be used to evaluate peptide binding include peptide-dependent class I assembly assays and/or the inhibition of CTL recognition by peptide competition. Those peptides that bind to the class I molecule, typically with an affinity of 500 nM or less, are further evaluated for their ability to serve as targets for CTLs derived from infected or immunized individuals, as well as for their capacity to induce primary in vitro or in vivo CTL responses that can give rise to CTL populations capable of reacting with selected target cells associated with a disease. Corresponding assays are used for evaluation of HLA class II binding peptides. HLA class II motif-bearing peptides that are shown to bind, typically at an affinity of 1000 nM or less, are further evaluated for the ability to stimulate HTL responses.


Conventional assays utilized to detect T cell responses include proliferation assays, lymphokine secretion assays, direct cytotoxicity assays, and limiting dilution assays. For example, antigen-presenting cells that have been incubated with a peptide can be assayed for the ability to induce CTL responses in responder cell populations. Antigen-presenting cells can be normal cells such as peripheral blood mononuclear cells or dendritic cells. Alternatively, mutant non-human mammalian cell lines that are deficient in their ability to load class I molecules with internally processed peptides and that have been transfected with the appropriate human class I gene, may be used to test for the capacity of the peptide to induce in vitro primary CTL responses.


Peripheral blood mononuclear cells (PBMCs) may be used as the responder cell source of CTL precursors. The appropriate antigen-presenting cells are incubated with peptide, after which the peptide-loaded antigen-presenting cells are then incubated with the responder cell population under optimized culture conditions. Positive CTL activation can be determined by assaying the culture for the presence of CTLs that kill radio-labeled target cells, both specific peptide-pulsed targets as well as target cells expressing endogenously processed forms of the antigen from which the peptide sequence was derived.


More recently, a method has been devised which allows direct quantification of antigen-specific CTLs by staining with Fluorescein-labelled HLA tetrameric complexes (Altman, J. D. et al., Proc. Natl. Acad. Sci. USA 90:10330, 1993; Altman, J. D. et al., Science 274:94, 1996). Other relatively recent technical developments include staining for intracellular lymphokines, and interferon release assays or ELISPOT assays. Tetramer staining, intracellular lymphokine staining and ELISPOT assays all appear to be at least 10-fold more sensitive than more conventional assays (Lalvani, A. et al., J. Exp. Med. 186:859, 1997; Dunbar, P. R. et al., Curr. Biol. 8:413, 1998; Murali-Krishna, K. et al., Immunity 8:177, 1998).


HTL activation may also be assessed using such techniques known to those in the art such as T cell proliferation and secretion of lymphokines, e.g. IL-2 (see, e.g. Alexander et al., Immunity 1:751-761, 1994).


Alternatively, immunization of HLA transgenic mice can be used to determine immunogenicity of peptide epitopes. Several transgenic mouse models including mice with human A2.1, A11 (which can additionally be used to analyze HLA-A3 epitopes), and B7 alleles have been characterized and others (e.g., transgenic mice for HLA-A1 and A24) are being developed. HLA-DR1 and HLA-DR3 mouse models have also been developed. Additional transgenic mouse models with other HLA alleles may be generated as necessary. Mice may be immunized with peptides emulsified in Incomplete Freund's Adjuvant and the resulting T cells tested for their capacity to recognize peptide-pulsed target cells and target cells transfected with appropriate genes. CTL responses may be analyzed using cytotoxicity assays described above. Similarly, HTL responses may be analyzed using such assays as T cell proliferation or secretion of lymphokines. Exemplary immunogenic peptide epitopes are set out in Table XXIII


IV.J. USE OF PEPTIDE EPITOPES AS DIAGNOSTIC AGENTS AND FOR EVALUATING IMMUNE RESPONSES

HLA class I and class II binding peptides as described herein can be used, in one embodiment of the invention, as reagents to evaluate an immune response. The immune response to be evaluated may be induced by using as an immunogen any agent that may result in the production of antigen-specific CTLs or HTLs that recognize and bind to the peptide epitope(s) to be employed as the reagent. The peptide reagent need not be used as the immunogen. Assay systems that may be used for such an analysis include relatively recent technical developments such as tetramers, staining for intracellular lymphokines and interferon release assays, or ELISPOT assays.


For example, a peptide of the invention may be used in a tetramer staining assay to assess peripheral blood mononuclear cells for the presence of antigen-specific CTLs following exposure to a pathogen or immunogen. The HLA-tetrameric complex is used to directly visualize antigen-specific CTLs (see, e.g., Ogg et al., Science 279:2103-2106, 1998; and Altman et al., Science 174:94-96, 1996) and determine the frequency of the antigen-specific CTL population in a sample of peripheral blood mononuclear cells. A tetramer reagent using a peptide of the invention may be generated as follows: A peptide that binds to an HLA molecule is refolded in the presence of the corresponding HLA heavy chain and β2-microglobulin to generate a trimolecular complex. The complex is biotinylated at the carboxyl terminal end of the heavy chain at a site that was previously engineered into the protein. Tetramer formation is then induced by the addition of streptavidin. By means of fluorescently labeled streptavidin, the tetramer can be used to stain antigen-specific cells. The cells may then be identified, for example, by flow cytometry. Such an analysis may be used for diagnostic or prognostic purposes.


Peptides of the invention may also be used as reagents to evaluate immune recall responses. (see, e.g., Bertoni et al., J. Clin. Invest. 100:503-513, 1997 and Penna et al., J. Exp. Med. 174:1565-1570, 1991.) For example, patient PBMC samples from individuals infected with PF may be analyzed for the presence of antigen-specific CTLs or HTLs using specific peptides. A blood sample containing mononuclear cells may be evaluated by cultivating the PBMCs and stimulating the cells with a peptide of the invention. After an appropriate cultivation period, the expanded cell population may be analyzed, for example, for CTL or for HTL activity.


The peptides may also be used as reagents to evaluate the efficacy of a vaccine. PBMCs obtained from a patient vaccinated with an immunogen may be analyzed using, for example, either of the methods described above. The patient is HLA typed, and peptide epitope reagents that recognize the allele-specific molecules present in that patient are selected for the analysis. The immunogenicity of the vaccine is indicated by the presence of PF epitope-specific CTLs and/or HTLs in the PBMC sample.


The peptides of the invention may also be used to make antibodies, using techniques well known in the art (see, e.g. CURRENT PROTOCOLS IN IMMUNOLOGY, Wiley/Greene, NY; and Antibodies A Laboratory Manual Harlow, Harlow and Lane, Cold Spring Harbor Laboratory Press, 1989), which may be useful as reagents to diagnose PF infection. Such antibodies include those that recognize a peptide in the context of an HLA molecule, i.e., antibodies that bind to a peptide-WIC complex.


IV.K. VACCINE COMPOSITIONS

Vaccines that contain an immunogenically effective amount of one or more peptides as described herein are a further embodiment of the invention. Once appropriately immunogenic epitopes have been defined, they can be sorted and delivered by various means, herein referred to as “vaccine” compositions. Such vaccine compositions can include, for example, lipopeptides (e.g., Vitiello, A. et al., J. Clin. Invest. 95:341, 1995), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) (“PLG”) microspheres (see, e.g., Eldridge, et al., Molec. Immunol. 28:287-294, 1991: Alonso et al., Vaccine 12:299-306, 1994; Jones et al., Vaccine 13:675-681, 1995), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi et al., Nature 344:873-875, 1990; Hu et al., Clin Exp Immunol. 113:235-243, 1998), multiple antigen peptide systems (MAPs) (see e.g., Tam, J. P., Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413, 1988; Tam, J. P., J. Immunol. Methods 196:17-32, 1996), viral delivery vectors (Perkus, M. E. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 379, 1996; Chakrabarti, S. et al., Nature 320:535, 1986; Hu, S. L. et al., Nature 320:537, 1986; Kieny, M.-P. et al., AIDS Bio/Technology 4:790, 1986; Top, F. H. et al., J. Infect. Dis. 124:148, 1971; Chanda, P. K. et al., Virology 175:535, 1990), particles of viral or synthetic origin (e.g., Kofler, N. et al., J. Immunol. Methods. 192:25, 1996; Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993; Falo, L. D., Jr. et al., Nature Med. 7:649, 1995), adjuvants (Warren, H. S., Vogel, F. R., and Chedid, L. A. Annu. Rev. Immunol. 4:369, 1986; Gupta, R. K. et al., Vaccine 11:293, 1993), liposomes (Reddy, R. et al., J. Immunol. 148:1585, 1992; Rock, K. L., Immunol. Today 17:131, 1996), or, naked or particle absorbed cDNA (Ulmer, J. B. et al., Science 259:1745, 1993; Robinson, H. L., Hunt, L. A., and Webster, R. G., Vaccine 11:957, 1993; Shiver, J. W. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 423, 1996; Cease, K. B., and Berzofsky, J. A., Annu. Rev. Immunol. 12:923, 1994 and Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Mass.) may also be used.


Furthermore, vaccines in accordance with the invention encompass compositions of one or more of the claimed peptide(s). The peptide(s) can be individually linked to its own carrier; alternatively, the peptide(s) can exist as a homopolymer or heteropolymer of active peptide units. Such a polymer has the advantage of increased immunological reaction and, where different peptide epitopes are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that react with different antigenic determinants of the pathogenic organism or tumor-related peptide targeted for an immune response. The composition may be a naturally occurring region of an antigen or may be prepared, e.g., recombinantly or by chemical synthesis.


Furthermore, useful carriers that can be used with vaccines of the invention are well known in the art, and include, e.g., thyroglobulin, albumins such as human serum albumin, tetanus toxoid, polyamino acids such as poly L-lysine, poly L-glutamic acid, influenza, hepatitis B virus core protein, and the like. The vaccines can contain a physiologically tolerable (i.e., acceptable) diluent such as water, or saline, preferably phosphate buffered saline. The vaccines also typically include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum are examples of materials well known in the art. Additionally, as disclosed herein, CTL responses can be primed by conjugating peptides of the invention to lipids, such as tripalmitoyl-S-glycerylcysteinlyseryl-serine (P3CSS).


As disclosed in greater detail herein, upon immunization with a peptide composition in accordance with the invention, via injection, aerosol, oral, transdermal, transmucosal, intrapleural, intrathecal, or other suitable routes, the immune system of the host responds to the vaccine by producing large amounts of CTLs and/or HTLs specific for the desired antigen. Consequently, the host becomes at least partially immune to later infection, or at least partially resistant to developing an ongoing chronic infection, or derives at least some therapeutic benefit when the antigen was tumor-associated.


In some instances it may be desirable to combine the class I peptide vaccines of the invention with vaccines which induce or facilitate neutralizing antibody responses to the target antigen of interest, particularly to surface antigens. A preferred embodiment of such a composition comprises class I and class II epitopes in accordance with the invention. An alternative embodiment of such a composition comprises a class I and/or class II epitope in accordance with the invention, along with a PADRE™ (Epimmune, San Diego, Calif.) molecule (described, for example, in U.S. Pat. No. 5,736,142). Furthermore, any of these embodiments can be administered as a nucleic acid mediated modality.


The vaccine compositions of the invention may also be used in combination with antiviral drugs such as interferon-α.


For therapeutic or prophylactic immunization purposes, the peptides of the invention can also be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus, for example, as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into an acutely or chronically infected host or into a non-infected host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits a host CTL and/or HTL response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Pat. No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al., Nature 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, e.g. adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein.


Antigenic peptides are used to elicit a CTL and/or HTL response ex vivo, as well. Ex vivo administration is described, for example, in application U.S. Ser. No. 09/016,361 filed Jan. 30, 1998, now abandoned. The resulting CTL or HTL cells, can be used to treat chronic infections, or tumors in patients that do not respond to other conventional forms of therapy, or will not respond to a therapeutic vaccine peptide or nucleic acid in accordance with the invention. Ex vivo CTL or HTL responses to a particular antigen (infectious or tumor-associated antigen) are induced by incubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of antigen-presenting cells (APC), such as dendritic cells, and the appropriate immunogenic peptide. After an appropriate incubation time (typically about 14 weeks), in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cell (an infected cell or a tumor cell). Transfected dendritic cells may also be used as antigen presenting cells. Alternatively, dendritic cells are transfected, e.g., with a minigene construct in accordance with the invention, in order to elicit immune responses. Minigenes will be discussed in greater detail in a following section.


Vaccine compositions may also be administered in vivo in combination with dendritic cell mobilization whereby loading of dendritic cells occurs in vivo.


DNA or RNA encoding one or more of the peptides of the invention can also be administered to a patient. This approach is described, for instance, in Wolff et. al., Science 247:1465 (1990) as well as U.S. Pat. Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies include “naked DNA”, facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated (“gene gun”) or pressure-mediated delivery (see, e.g., U.S. Pat. No. 5,922,687).


Preferably, the following principles are utilized when selecting an array of epitopes for inclusion in a polyepitopic composition for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene. Exemplary epitopes that may be utilized in a vaccine to treat or prevent PF infection are set out in Tables XXXIII and XXXIV. The multiple epitopes to be incorporated in a given vaccine composition may be, but need not be, contiguous in sequence in the native antigen from which the epitopes are derived.


It is preferred that each of the following principles are balanced in order to make the selection.


1.) Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with PF clearance. For HLA Class I this includes 3-4 epitopes that come from at least one antigen of PF. For HLA Class II a similar rationale is employed; again 3-4 epitopes are selected from at least one PF antigen (see e.g., Rosenberg et al., Science 278:1447-1450).


2.) Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA Class I an IC50 of 500 nM or less, or for Class II an IC50 of 1000 nM or less.


3.) Sufficient supermotif bearing-peptides, or a sufficient array of allele-specific motif-bearing peptides, are selected to give broad population coverage. For example, it is preferable to have at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess the breadth, or redundancy of, population coverage.


4.) When selecting epitopes from cancer-related antigens it is often preferred to select analogs because the patient may have developed tolerance to the native epitope. When selecting epitopes for infectious disease-related antigens it is preferable to select either native or analoged epitopes. Of particular relevance for infectious disease vaccines (but for cancer-related vaccines as well), are epitopes referred to as “nested epitopes.” Nested epitopes occur where at least two epitopes overlap in a given peptide sequence. A peptide comprising “transcendent nested epitopes” is a peptide that has both HLA class I and HLA class II epitopes in it.


When providing nested epitopes, it is preferable to provide a sequence that has the greatest number of epitopes per provided sequence. Preferably, one avoids providing a peptide that is any longer than the amino terminus of the amino terminal epitope and the carboxyl terminus of the carboxyl terminal epitope in the peptide. When providing a longer peptide sequence, such as a sequence comprising nested epitopes, it is important to screen the sequence in order to insure that it does not have pathological or other deleterious biological properties.


5.) When creating a minigene, as disclosed in greater detail in the following section, an objective is to generate the smallest peptide possible that encompasses the epitopes of interest. The principles employed are similar, if not the same as those employed when selecting a peptide comprising nested epitopes. Furthermore, upon determination of the nucleic acid sequence to be provided as a minigene, the peptide encoded thereby is analyzed to determine whether any “junctional epitopes” have been created. A junctional epitope is an actual binding epitope, as predicted, e.g., by motif analysis, that only exists because two discrete peptide sequences are encoded directly next to each other. Junctional epitopes are generally to be avoided because the recipient may generate an immune response to that non-native epitope. Of particular concern is a junctional epitope that is a “dominant epitope.” A dominant epitope may lead to such a zealous response that immune responses to other epitopes are diminished or suppressed.


IV.K.1. Minigene Vaccines

A growing body of experimental evidence demonstrates that a number of different approaches are available which allow simultaneous delivery of multiple epitopes. Nucleic acids encoding the peptides of the invention are a particularly useful embodiment of the invention. Epitopes for inclusion in a minigene are preferably selected according to the guidelines set forth in the previous section. A preferred means of administering nucleic acids encoding the peptides of the invention uses minigene constructs encoding a peptide comprising one or multiple epitopes of the invention. The use of multi-epitope minigenes is described below and in, e.g., application U.S. Ser. No. 09/311,784, now U.S. Pat. No. 6,534,482; Ishioka et al., J. Immunol. 162:3915-3925, 1999; An, L. and Whitton, J. L., J. Virol. 71:2292, 1997; Thomson, S. A. et al., J. Immunol. 157:822, 1996; Whitton, J. L. et al., J. Virol. 67:348, 1993; Hanke, R. et al., Vaccine 16:426, 1998. For example, a multi-epitope DNA plasmid encoding nine dominant HLA-A*0201- and A11-restricted epitopes derived from the polymerase, envelope, and core proteins of HBV and human immunodeficiency virus (HIV), the PADRE™ universal HTL epitope, and an endoplasmic reticulum-translocating signal sequence was engineered. Immunization of HLA transgenic mice with this plasmid construct resulted in strong CTL induction responses against the nine epitopes tested, similar to those observed with a lipopeptide of known immunogenicity in humans, and significantly greater than immunization in oil-based adjuvants. Moreover, the immunogenicity of DNA-encoded epitopes in vivo correlated with the in vitro responses of specific CTL lines against target cells transfected with the DNA plasmid. Thus, these data show that the minigene served to both: 1.) generate a CTL response and 2.) that the induced CTLs recognized cells expressing the encoded epitopes. A similar approach may be used to develop minigenes encoding PF epitopes.


For example, to create a DNA sequence encoding the selected epitopes (minigene) for expression in human cells, the amino acid sequences of the epitopes may be reverse translated. A human codon usage table can be used to guide the codon choice for each amino acid. These epitope-encoding DNA sequences may be directly adjoined, so that when translated, a continuous polypeptide sequence is created. To optimize expression and/or immunogenicity, additional elements can be incorporated into the minigene design. Examples of amino acid sequences that can be reverse translated and included in the minigene sequence include: HLA class I epitopes, HLA class II epitopes, a ubiquitination signal sequence, and/or an endoplasmic reticulum targeting signal. In addition, HLA presentation of CTL and HTL epitopes may be improved by including synthetic (e.g. poly-alanine) or naturally-occurring flanking sequences adjacent to the CTL or HTL epitopes; these larger peptides comprising the epitope(s) are within the scope of the invention.


The minigene sequence may be converted to DNA by assembling oligonucleotides that encode the plus and minus strands of the minigene. Overlapping oligonucleotides (30-100 bases long) may be synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. The ends of the oligonucleotides can be joined, for example, using T4 DNA ligase. This synthetic minigene, encoding the epitope polypeptide, can then be cloned into a desired expression vector.


Standard regulatory sequences well known to those of skill in the art are preferably included in the vector to ensure expression in the target cells. Several vector elements are desirable: a promoter with a down-stream cloning site for minigene insertion; a polyadenylation signal for efficient transcription termination; an E. coli origin of replication; and an E. coli selectable marker (e.g. ampicillin or kanamycin resistance). Numerous promoters can be used for this purpose, e.g., the human cytomegalovirus (hCMV) promoter. See, e.g., U.S. Pat. Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences.


Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In some cases, introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene. The inclusion of mRNA stabilization sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression.


Once an expression vector is selected, the minigene is cloned into the polylinker region downstream of the promoter. This plasmid is transformed into an appropriate E. coli strain, and DNA is prepared using standard techniques. The orientation and DNA sequence of the minigene, as well as all other elements included in the vector, are confirmed using restriction mapping and DNA sequence analysis. Bacterial cells harboring the correct plasmid can be stored as a master cell bank and a working cell bank.


In addition, immunostimulatory sequences (ISSs or CpGs) appear to play a role in the immunogenicity of DNA vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance immunogenicity.


In some embodiments, a bi-cistronic expression vector which allows production of both the minigene-encoded epitopes and a second protein (included to enhance or decrease immunogenicity) can be used. Examples of proteins or polypeptides that could beneficially enhance the immune response if co-expressed include cytokines (e.g., IL-2, IL-12, GM-CSF), cytokine-inducing molecules (e.g., LeIF), costimulatory molecules, or for HTL responses, pan-DR binding proteins (PADRE™, Epimmune, San Diego, Calif.). HTL epitopes can be joined to intracellular targeting signals and expressed separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the HLA class II pathway, thereby improving HTL induction. In contrast to HTL or CTL induction, specifically decreasing the immune response by co-expression of immunosuppressive molecules (e.g. TGF-β) may be beneficial in certain diseases.


Therapeutic quantities of plasmid DNA can be produced for example, by fermentation in E. coli, followed by purification. Aliquots from the working cell bank are used to inoculate growth medium, and grown to saturation in shaker flasks or a bioreactor according to well known techniques. Plasmid DNA can be purified using standard bioseparation technologies such as solid phase anion-exchange resins supplied by QIAGEN, Inc. (Valencia, Calif.). If required, supercoiled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods.


Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffer saline (PBS). This approach, known as “naked DNA,” is currently being used for intramuscular (IM) administration in clinical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for formulating purified plasmid DNA may be desirable. A variety of methods have been described, and new techniques may become available. Cationic lipids can also be used in the formulation; in addition, glycolipids, fusogenic liposomes, peptides and compounds referred to collectively as protective, interactive, non-condensing compounds (PINC) can also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types (see, e.g., as described by WO 93/24640; Mannino & Gould-Fogerite, BioTechniques 6(7): 682 (1988); U.S. Pat. No. 5,279,833; WO 91/06309; and Felgner, et al., Proc. Nat'l Acad. Sci. USA 84:7413 (1987).


Target cell sensitization can be used as a functional assay for expression and HLA class I presentation of minigene-encoded CTL epitopes. For example, the plasmid DNA is introduced into a mammalian cell line that is suitable as a target for standard CTL chromium release assays. The transfection method used will be dependent on the final formulation. Electroporation can be used for “naked” DNA, whereas cationic lipids allow direct in vitro transfection. A plasmid expressing green fluorescent protein (GFP) can be co-transfected to allow enrichment of transfected cells using fluorescence activated cell sorting (FACS). These cells are then chromium-51 (51Cr) labeled and used as target cells for epitope-specific CTL lines; cytolysis, detected by 51Cr release, indicates both production of, and HLA presentation of, minigene-encoded CTL epitopes. Expression of HTL epitopes may be evaluated in an analogous manner using assays to assess HTL activity.


In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations. Transgenic mice expressing appropriate human HLA proteins are immunized with the DNA product. The dose and route of administration are formulation dependent (e.g., IM for DNA in PBS, intraperitoneal (IP) for lipid-complexed DNA).


Twenty-one days after immunization, splenocytes are harvested and restimulated for 1 week in the presence of peptides encoding each epitope being tested. Thereafter, for CTL effector cells, assays are conducted for cytolysis of peptide-loaded, 51Cr-labeled target cells using standard techniques. Lysis of target cells that were sensitized by HLA loaded with peptide epitopes, corresponding to minigene-encoded epitopes, demonstrates DNA vaccine function for in vivo induction of CTLs. Immunogenicity of HTL epitopes is evaluated in transgenic mice in an analogous manner.


Alternatively, the nucleic acids can be administered using ballistic delivery as described, for instance, in U.S. Pat. No. 5,204,253. Using this technique, particles comprised solely of DNA are administered. In a further alternative embodiment, DNA can be adhered to particles, such as gold particles.


IV.K.2. Combinations of CTL Peptides with Helper Peptides


Vaccine compositions comprising the peptides of the present invention, or analogs thereof, which have immunostimulatory activity may be modified to provide desired attributes, such as improved serum half life, or to enhance immunogenicity.


For instance, the ability of a peptide to induce CTL activity can be enhanced by linking the peptide to a sequence which contains at least one epitope that is capable of inducing a T helper cell response. The use of T helper epitopes in conjunction with CTL epitopes to enhance immunogenicity is illustrated, for example, in applications U.S. Ser. No. 08/197,484, now U.S. Pat. No. 6,419,931, and U.S. Ser. No. 08/464,234, now abandoned.


Particularly preferred CTL epitope/HTL epitope conjugates are linked by a spacer molecule. The spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selected from, e.g., Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will usually be at least one or two residues, more usually three to six residues. Alternatively, the CTL peptide may be linked to the T helper peptide without a spacer.


The CTL peptide epitope may be linked to the T helper peptide epitope either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide. The amino terminus of either the immunogenic peptide or the T helper peptide may be acylated. The HTL peptide epitopes used in the invention can be modified in the same manner as CTL peptides. For instance, they may be modified to include D-amino acids or be conjugated to other molecules such as lipids, proteins, sugars and the like.


In certain embodiments, the T helper peptide is one that is recognized by T helper cells present in the majority of the population. This can be accomplished by selecting amino acid sequences that bind to many, most, or all of the HLA class II molecules. These are known as “loosely HLA-restricted” or “promiscuous” T helper sequences. Examples of amino acid sequences that are promiscuous include sequences from antigens such as tetanus toxoid at positions 830-843 (QYIKANSKFIGITE; SEQ ID NO: 3799), Plasmodium falciparum CS protein at positions 378-398 (DIEKKIAKMEKASSVFNVVNS; SEQ ID NO: 3800), and Streptococcus 18 kD protein at positions 116 (GAVDSILGGVATYGAA; SEQ ID NO: 3801). Other examples include peptides bearing a DR 1-4-7 supermotif, or either of the DR3 motifs.


Alternatively, it is possible to prepare synthetic peptides capable of stimulating T helper lymphocytes, in a loosely HLA-restricted fashion, using amino acid sequences not found in nature (see, e.g., PCT publication WO 95/07707). These synthetic compounds called Pan-DR-binding epitopes (e.g., PADRE™, Epimmune, Inc., San Diego, Calif.) are designed to most preferrably bind most HLA-DR (human HLA class II) molecules. For instance, a pan-DR-binding epitope peptide having the formula: aKXVWANTLKAAa (SEQ ID NO: 3802), where “X” is either cyclohexylalanine, phenylalanine, or tyrosine, and a is either D-alanine or L-alanine, has been found to bind to most HLA-DR alleles, and to stimulate the response of T helper lymphocytes from most individuals, regardless of their HLA type. An alternative of a pan-DR binding epitope comprises all “L” natural amino acids and can be provided in the form of nucleic acids that encode the epitope.


HTL peptide epitopes can also be modified to alter their biological properties. For example, peptides comprising HTL epitopes can contain D-amino acids to increase their resistance to proteases and thus extend their serum half-life. Also, the epitope peptides of the invention can be conjugated to other molecules such as lipids, proteins or sugars, or any other synthetic compounds, to increase their biological activity. Specifically, the T helper peptide can be conjugated to one or more palmitic acid chains at either the amino or carboxyl termini.


In some embodiments it may be desirable to include in the pharmaceutical compositions of the invention at least one component which primes cytotoxic T cells. Lipids have been identified as agents capable of priming CTL in vivo against viral antigens. For example, palmitic acid residues can be attached to the ε- and α-amino groups of a lysine residue and then linked, e.g., via one or more linking residues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an immunogenic peptide. The lipidated peptide can then be administered either directly in a micelle or particle, incorporated into a liposome, or emulsified in an adjuvant, e.g., incomplete Freund's adjuvant. In a preferred embodiment, a particularly effective immunogenic comprises palmitic acid attached to ε- and α-amino groups of Lys, which is attached via linkage, e.g., Ser-Ser, to the amino terminus of the immunogenic peptide.


As another example of lipid priming of CTL responses, E. coli lipoproteins, such as tripalmitoyl-S-glycerylcysteinlyseryl-serine (P3CSS) can be used to prime virus specific CTL when covalently attached to an appropriate peptide. (See, e.g., Deres, et al., Nature 342:561, 1989). Peptides of the invention can be coupled to P3CSS, for example, and the lipopeptide administered to an individual to specifically prime a CTL response to the target antigen. Moreover, because the induction of neutralizing antibodies can also be primed with P3CSS-conjugated epitopes, two such compositions can be combined to more effectively elicit both humoral and cell-mediated responses to infection.


As noted herein, additional amino acids can be added to the termini of a peptide to provide for ease of linking peptides one to another, for coupling to a carrier support or larger peptide, for modifying the physical or chemical properties of the peptide or oligopeptide, or the like. Amino acids such as tyrosine, cysteine, lysine, glutamic or aspartic acid, or the like, can be introduced at the C- or N-terminus of the peptide or oligopeptide, particularly class I peptides. However, it is to be noted that modification at the carboxyl terminus of a CTL epitope may, in some cases, alter binding characteristics of the peptide. In addition, the peptide or oligopeptide sequences can differ from the natural sequence by being modified by terminal-NH2 acylation, e.g., by alkanoyl (C1-C20) or thioglycolyl acetylation, terminal-carboxyl amidation, e.g., ammonia, methylamine, etc. In some instances these modifications may provide sites for linking to a support or other molecule.


IV.L. ADMINISTRATION OF VACCINES FOR THERAPEUTIC OR PROPHYLACTIC PURPOSES

The peptides of the present invention and pharmaceutical and vaccine compositions of the invention are useful for administration to mammals, particularly humans, to treat and/or prevent malaria. Vaccine compositions containing the peptides of the invention are administered to an individual susceptible to, or otherwise at risk for, malaria or to a patient infected with PF to elicit an immune response against PF antigens and thus enhance the patient's own immune response capabilities. In therapeutic applications, peptide and/or nucleic acid compositions are administered to a patient in an amount sufficient to elicit an effective CTL and/or HTL response to the PF antigen and to cure or at least partially arrest or slow symptoms and/or complications. An amount adequate to accomplish this is defined as “therapeutically effective dose.” Amounts effective for this use will depend on, e.g., the particular composition administered, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician.


The vaccine compositions of the invention may also be used purely as prophylactic agents. The level of expected exposure (e.g., a traveler versus a resident of an area where malaria is endemic) determines the magnitude of response that is desired to be achieved by the vaccination. Therefore, some vaccination regimens may employ higher doses of the vaccine compositions, or more doses may be administered.


Generally the dosage for an initial prophylactic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1000 μg and the higher value is about 10,000; 20,000; 30,000; or 50,000 μg. Dosage values for a human typically range from about 500 μg to about 50,000 μg per 70 kilogram patient. This is followed by boosting dosages of between about 1.0 μg to about 50,000 μg of peptide administered at defined intervals from about four weeks to six months after the initial administration of vaccine. The immunogenicity of the vaccine may be assessed by measuring the specific activity of CTL and HTL obtained from a sample of the patient's blood.


As noted above, peptides comprising CTL and/or HTL epitopes of the invention induce immune responses when presented by HLA molecules and contacted with a CTL or HTL specific for an epitope comprised by the peptide. The manner in which the peptide is contacted with the CTL or HTL is not critical to the invention. For instance, the peptide can be contacted with the CTL or HTL either in vivo or in vitro. If the contacting occurs in vivo, the peptide itself can be administered to the patient, or other vehicles, e.g., DNA vectors encoding one or more peptides, viral vectors encoding the peptide(s), liposomes and the like, can be used, as described herein.


For pharmaceutical compositions, the immunogenic peptides of the invention, or DNA encoding them, are generally administered to an individual who has not been infected with PF. The peptides or DNA encoding them can be administered individually or as fusions of one or more peptide sequences.


The pharmaceutical compositions may also be used to treat individuals already infected with PF. Patients can be treated with the immunogenic peptide epitopes separately or in conjunction with other treatments, as appropriate.


For therapeutic use, administration should generally begin at the first diagnosis of PF infection. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter. Loading doses followed by boosting doses may be required.


The peptide or other compositions used for prophylaxis or the treatment of PF infection can be used, e.g., in persons who are not manifesting symptoms of disease but who act as a disease vector. In this context, it is generally important to provide an amount of the peptide epitope delivered by a mode of administration sufficient to effectively stimulate a cytotoxic T cell response; compositions which stimulate helper T cell responses can also be given in accordance with this embodiment of the invention.


The dosage for an initial therapeutic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1000 μg and the higher value is about 10,000; 20,000; 30,000; or 50,000 μg. Dosage values for a human typically range from about 500 μg to about 50,000 μg per 70 kilogram patient. Boosting dosages of between about 1.0 μg to about 50000 μg of peptide pursuant to a boosting regimen over weeks to months may be administered depending upon the patient's response and condition as determined by measuring the specific activity of CTL and HTL obtained from the patient's blood. The peptides and compositions of the present invention may be employed in serious disease states, that is, life-threatening or potentially life threatening situations. In such cases, as a result of the minimal amounts of extraneous substances and the relative nontoxic nature of the peptides in preferred compositions of the invention, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these peptide compositions relative to these stated dosage amounts.


Thus, for treatment of a chronically infected individual, a representative dose is in the range disclosed above. Initial doses followed by boosting doses at established intervals, e.g., from four weeks to six months, may be required, possibly for a prolonged period of time to effectively immunize an individual. Administration should continue until at least clinical symptoms or laboratory tests indicate that the PF infection has been eliminated or substantially abated and for a period thereafter. The dosages, routes of administration, and dose schedules are adjusted in accordance with methodologies known in the art.


The pharmaceutical compositions for therapeutic treatment are intended for parenteral, topical, oral, intrathecal, or local administration. Preferably, the pharmaceutical compositions are administered parentally, e.g., intravenously, subcutaneously, intradermally, or intramuscularly. Thus, the invention provides compositions for parenteral administration which comprise a solution of the immunogenic peptides dissolved or suspended in an acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers may be used, e.g., water, buffered water, 0.8% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well known sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservatives, and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, etc.


The concentration of peptides of the invention in the pharmaceutical formulations can vary widely, i.e., from less than about 0.1%, usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected.


A human unit dose form of the peptide composition is typically included in a pharmaceutical composition that comprises a human unit dose of an acceptable carrier, preferably an aqueous carrier, and is administered in a volume of fluid that is known by those of skill in the art to be used for administration of such compositions to humans (see, e.g., Remington's Pharmaceutical Sciences, 17th Edition, A. Gennaro, Editor, Mack Publishing Co., Easton, Pa., 1985).


The peptides of the invention may also be administered via liposomes, which serve to target the peptides to a particular tissue, such as lymphoid tissue, or to target selectively to infected cells, as well as to increase the half-life of the peptide composition. Liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations, the peptide to be delivered is incorporated as part of a liposome, alone or in conjunction with a molecule which binds to a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the peptide compositions. Liposomes for use in accordance with the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), and U.S. Pat. Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369.


For targeting cells of the immune system, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a peptide may be administered intravenously, locally, topically, etc. in a dose which varies according to, inter alia, the manner of administration, the peptide being delivered, and the stage of the disease being treated.


For solid compositions, conventional nontoxic solid carriers may be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10-95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of 25%-75%.


For aerosol administration, the immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are 0.01%-20% by weight, preferably 1%-10%. The surfactant must, of course, be nontoxic, and preferably soluble in the propellant. Representative of such agents are the esters or partial esters of fatty acids containing from 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute 0.1%-20% by weight of the composition, preferably 0.25-5%. The balance of the composition is ordinarily propellant. A carrier can also be included, as desired, as with, e.g., lecithin for intranasal delivery.


IV.M. KITS

The peptide and nucleic acid compositions of this invention can be provided in kit form together with instructions for vaccine administration. Typically the kit would include desired peptide compositions in a container, preferably in unit dosage form and instructions for administration. An alternative kit would include a minigene construct with desired nucleic acids of the invention in a container, preferably in unit dosage form together with instructions for administration. Lymphokines such as IL-2 or IL-12 may also be included in the kit. Other kit components that may also be desirable include, for example, a sterile syringe, booster dosages, and other desired excipients.


The invention will be described in greater detail by way of specific examples. The following examples are offered for illustrative purposes, and are not intended to limit the invention in any manner. Those of skill in the art will readily recognize a variety of non-critical parameters that can be changed or modified to yield alternative embodiments in accordance with the invention.


V. EXAMPLES

The following examples illustrate identification, selection, and use of immunogenic Class I and Class II peptide epitopes for inclusion in vaccine compositions.


Example 1
HLA Class I and Class II Binding Assays

The following example of peptide binding to HLA molecules demonstrates quantification of binding affinities of HLA class I and class II peptides. Binding assays can be performed with peptides that are either motif-bearing or not motif-bearing.


Epstein-Barr virus (EBV)-transformed homozygous cell lines, fibroblasts, CIR, or 721.22 transfectants were used as sources of HLA class I molecules. These cells were maintained in vitro by culture in RPMI 1640 medium supplemented with 2 mM L-glutamine (GIBCO, Grand Island, N.Y.), 50 μM 2-ME, 100 μg/ml of streptomycin, 100 U/ml of penicillin (Irvine Scientific) and 10% heat-inactivated FCS (Irvine Scientific, Santa Ana, Calif.). Cells were grown in 225-cm2 tissue culture flasks or, for large-scale cultures, in roller bottle apparatuses. The specific cell lines routinely used for purification of MHC class I and class II molecules are listed in Table XXIV.


Cell lysates were prepared and HLA molecules purified in accordance with disclosed protocols (Sidney et al., Current Protocols in Immunology 18.3.1 (1998); Sidney, et al., J. Immunol. 154:247 (1995); Sette, et al., Mol. Immunol. 31:813 (1994)). Briefly, cells were lysed at a concentration of 108 cells/ml in 50 mM Tris-HCl, pH 8.5, containing 1% Nonidet P-40 (Fluka Biochemika, Buchs, Switzerland), 150 mM NaCl, 5 mM EDTA, and 2 mM PMSF. Lysates were cleared of debris and nuclei by centrifugation at 15,000×g for 30 min.


HLA molecules were purified from lysates by affinity chromatography. Lysates prepared as above were passed twice through two pre-columns of inactivated Sepharose CL4-B and protein A-Sepharose. Next, the lysate was passed over a column of Sepharose CL-4B beads coupled to an appropriate antibody. The antibodies used for the extraction of HLA from cell lysates are listed in Table XXV. The anti-HLA column was then washed with 10-column volumes of 10 mM Tris-HCL, pH 8.0, in 1% NP-40, PBS, 2-column volumes of PBS, and 2-column volumes of PBS containing 0.4% n-octylglucoside. Finally, MHC molecules were eluted with 50 mM diethylamine in 0.15M NaCl containing 0.4% n-octylglucoside, pH 11.5. A 1/25 volume of 2.0M Tris, pH 6.8, was added to the eluate to reduce the pH to ˜8.0. Eluates were then be concentrated by centrifugation in Centriprep 30 concentrators at 2000 rpm (Amicon, Beverly, Mass.). Protein content was evaluated by a BCA protein assay (Pierce Chemical Co., Rockford, Ill.) and confirmed by SDS-PAGE.


A detailed description of the protocol utilized to measure the binding of peptides to Class I and Class II MEW has been published (Sette et al., Mol. Immunol. 31:813, 1994; Sidney et al., in Current Protocols in Immunology, Margulies, Ed., John Wiley & Sons, New York, Section 18.3, 1998). Briefly, purified MHC molecules (5 to 500 nM) were incubated with various unlabeled peptide inhibitors and 1-10 nM 125I-radiolabeled probe peptides for 48 h in PBS containing 0.05% Nonidet P-40 (NP40) (or 20% w/v digitonin for H-2 IA assays) in the presence of a protease inhibitor cocktail. The final concentrations of protease inhibitors (each from CalBioChem, La Jolla, Calif.) were 1 mM PMSF, 1.3 nM 1.10 phenanthroline, 73 μM pepstatin A, 8 mM EDTA, 6 mM N-ethylmaleimide (for Class II assays), and 200 μM N alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK). All assays were performed at pH 7.0 with the exception of DRB1*0301, which was performed at pH 4.5, and DRB1*1601 (DR2w21β1) and DRB4*0101 (DRw53), which were performed at pH 5.0. pH was adjusted as described elsewhere (see Sidney et al., in Current Protocols in Immunology, Margulies, Ed., John Wiley & Sons, New York, Section 18.3, 1998).


Following incubation, MHC-peptide complexes were separated from free peptide by gel filtration on 7.8 mm×15 cm TSK200 columns (TosoHaas 16215, Montgomeryville, Pa.), eluted at 1.2 mls/min with PBS pH 6.5 containing 0.5% NP40 and 0.1% NaN3. Because the large size of the radiolabeled peptide used for the DRB1*1501 (DR2w2β1) assay makes separation of bound from unbound peaks more difficult under these conditions, all DRB1*1501 (DR2w2β1) assays were performed using a 7.8 mm×30 cm TSK2000 column eluted at 0.6 mls/min. The eluate from the TSK columns was passed through a Beckman 170 radioisotope detector, and radioactivity was plotted and integrated using a Hewlett-Packard 3396A integrator, and the fraction of peptide bound was determined.


Radiolabeled peptides were iodinated using the chloramine-T method. Representative radiolabeled probe peptides utilized in each assay, and its assay specific IC50 nM, are summarized in Tables IV and V. Typically, in preliminary experiments, each MHC preparation was titered in the presence of fixed amounts of radiolabeled peptides to determine the concentration of HLA molecules necessary to bind 10-20% of the total radioactivity. All subsequent inhibition and direct binding assays were performed using these HLA concentrations.


Since under these conditions [label]<[HLA] and IC50≧[HLA], the measured IC50 values are reasonable approximations of the true KD values. Peptide inhibitors are typically tested at concentrations ranging from 120 μg/ml to 1.2 ng/ml, and are tested in two to four completely independent experiments. To allow comparison of the data obtained in different experiments, a relative binding figure is calculated for each peptide by dividing the IC50 of a positive control for inhibition by the IC50 for each tested peptide (typically unlabeled versions of the radiolabeled probe peptide). For database purposes, and inter-experiment comparisons, relative binding values are compiled. These values can subsequently be converted back into IC50 nM values by dividing the IC50 nM of the positive controls for inhibition by the relative binding of the peptide of interest. This method of data compilation has proven to be the most accurate and consistent for comparing peptides that have been tested on different days, or with different lots of purified MHC.


Because the antibody used for HLA-DR purification (LB3.1) is α-chain specific, β1 molecules are not separated from β3 (and/or β4 and β5) molecules. The β1 specificity of the binding assay is obvious in the cases of DRB1*0101 (DR1), DRB1*0802 (DR8w2), and DRB1*0803 (DR8w3), where no β3 is expressed. It has also been demonstrated for DRB1*0301 (DR3) and DRB3*0101 (DR52a), DRB1*0401 (DR4w4), DRB1*0404 (DR4w14), DRB1*0405 (DR4w15), DRB1*1101 (DR5), DRB1*1201 (DR5w12), DRB1*1302 (DR6w19) and DRB1*0701 (DR7). The problem of β chain specificity for DRB1*1501 (DR2w2β1), DRB5*0101 (DR2w2β2), DRB1*1601 (DR2w21β1), DRB5*0201 (DR51Dw21), and DRB4*0101 (DRw53) assays is circumvented by the use of fibroblasts. Development and validation of assays with regard to DRβ molecule specificity have been described previously (see, e.g., Southwood et al., J. Immunol. 160:3363-3373, 1998).


Binding assays as outlined above may be used to analyze supermotif and/or motif-bearing epitopes as, for example, described in Example 2.


Example 2
Identification of Conserved HLA Supermotif- and Motif-Bearing CTL Candidate Epitopes

Vaccine compositions of the invention may include multiple epitopes that comprise multiple HLA supermotifs or motifs to achieve broad population coverage. This example illustrates the identification of supermotif- and motif-bearing epitopes for the inclusion in such a vaccine composition. Additional experimental details that may be relevant to this example are found in Doolan, D. L. et al., Immunity 7:97, 1997. Calculation of population coverage was performed using the strategy described below.


Computer Searches and Algorithms for Identification of Supermotif and/or Motif-Bearing Epitopes


Computer searches for epitopes bearing HLA Class I or Class II supermotifs or motifs were performed as follows. All translated PF protein sequences were analyzed using a text string search software program, e.g., MotifSearch 1.4 (D. Brown, San Diego) to identify potential peptide sequences containing appropriate HLA binding motifs;


alternative programs are readily produced in accordance with information in the art in view of the motif/supermotif disclosure herein. Furthermore, such calculations can be made mentally. Identified A2-, A3-, and DR-supermotif sequences were scored using polynomial algorithms to predict their capacity to bind to specific HLA-Class I or Class II molecules. These polynomial algorithms take into account both extended and refined motifs (that is, to account for the impact of different amino acids at different positions), and are essentially based on the premise that the overall affinity (or AG) of peptide-HLA molecule interactions can be approximated as a linear polynomial function of the type:





“ΔG”=a1i×a2i×a3i×ani


where aji is a coefficient which represents the effect of the presence of a given amino acid (j) at a given position (i) along the sequence of a peptide of n amino acids. The crucial assumption of this method is that the effects at each position are essentially independent of each other (i.e., independent binding of individual side-chains). When residue j occurs at position i in the peptide, it is assumed to contribute a constant amount ji to the free energy of binding of the peptide irrespective of the sequence of the rest of the peptide. This assumption is justified by studies from our laboratories that demonstrated that peptides are bound to MHC and recognized by T cells in essentially an extended conformation (data omitted herein).


The method of derivation of specific algorithm coefficients has been described in Gulukota et al., J. Mol. Biol. 267:1258-126, 1997; (see also Sidney et al., Human Immunol. 45:79-93, 1996; and Southwood et al., J. Immunol. 160:3363-3373, 1998). Briefly, for all i positions, anchor and non-anchor alike, the geometric mean of the average relative binding (ARB) of all peptides carrying j is calculated relative to the remainder of the group, and used as the estimate of ji. For Class II peptides, if multiple alignments are possible, only the highest scoring alignment is utilized, following an iterative procedure. To calculate an algorithm score of a given peptide in a test set, the ARB values corresponding to the sequence of the peptide are multiplied. If this product exceeds a chosen threshold, the peptide is predicted to bind. Appropriate thresholds are chosen as a function of the degree of stringency of prediction desired.


Selection of HLA-A2 Supertype Cross-Reactive Peptides

Complete protein sequences from PF antigens were aligned, then scanned, utilizing motif identification software, to identify conserved 9- and 10-mer sequences containing the HLA-A*0201-motif main anchor specificity. Following conservancy determination and algorithm analysis to take into account the influence of secondary anchors, 53 peptides containing the HLA-A*0201 of potential interest were identified and tested for their capacity to bind to purified HLA-A*0201 molecules in vitro. Fifteen peptides bound A*0201 with IC50 values ≦500 nM.


Fourteen of these peptides were subsequently tested for immunogenicity as described below. Of these, 5 scored positive both in primary in vitro CTL responses and in HLA transgenic mice.


The five immunogenic peptides were then tested for the capacity to bind to additional A2-supertype molecules (A*0202, A*0203, A*0206, and A*6802). The peptide SSP214-23, which was immunogenic in primary human CTL cultures and contains the SSP214-22 epitope (rather than SSP214-22 itself), was included in the analysis. In addition, the peptide Exp-183, which was positive in the murine CTL assays and the peptide CSP425 and SSP2230, were also analyzed for cross-reactive binding. As shown in Table XXVI, all eight of these peptides were found to be A2-supertype cross-reactive binders with six of these binding to three or more A2 supertype alleles.


Selection of HLA-A3 Supermotif-Bearing Epitopes

The PF protein sequences scanned above were also examined for the presence of conserved peptides with the HLA-A3 supermotif primary anchors. Further analysis using the A03 and A11 algorithms (see, e.g., Gulukota et al, J. Mol. Biol. 267:1258-1267, 1997 and Sidney et al, Human Immunol. 45:79-93, 1996) identified 203 conserved 9- or 10-mer motif-containing peptide sequences that scored high in either or both algorithms. Of these candidates, twenty five peptides were identified that bound A3 and/or A11 with binding affinities of ≦500 nM. These peptides were then tested for binding cross-reactivity to the other common A3-supertype alleles (A*3101, A*3301, and A*6801). Seven of them bound at least three of the five HLA-A3-supertype molecules tested. An eighth peptide, LSA-111 was also considered for further study because it bound strongly to two of the A3 supertype alleles and weakly to the other two A3 supertype alleles. (Table XXVII)


In summary, eight HLA-A3 supertype cross-reactive binding peptides derived from conserved regions of PF proteins were identified.


Selection of HLA-B7 Supermotif Bearing Epitopes

When the same PF target antigen protein sequences were also analyzed for the presence of conserved 9- or 10-mer peptides with the HLA-B7-supermotif, 26 sequences were identified. Of these 26, 24 corresponding peptides were synthesized and tested for binding to HLA-B*0702, the most common B7-supertype allele (i.e., the prototype B7 supertype allele). Four of the peptides bound B*0702 with IC50 of ≦500 nM. These four peptides were then tested for binding to other common B7-supertype molecules (B*3501, B*51, B*5301, and B*5401). As shown in Table XXVIII, one peptide was capable of to four of the five B7 supertype alleles; another was found to bind three of the five alles.


Selection of A1 and A24 Motif-Bearing Epitopes

To further increase population coverage, HLA-A1 and -A24 epitopes can also be incorporated into potential vaccine constructs.


An analysis of the protein sequence data from the PF target antigens utilized above identified 40 A1- and 81 A24-motif-containing conserved sequences. Testing for binding to the appropriate HLA molecule (i.e., A1 or A24) was performed on a subset of those peptides. Four A1-motif peptides and four A24-motif peptides, shown in Table Table XXIX, were found to have binding capacities of 500 nM or less for the appropriate allele-specific HLA molecule.


Example 3
Confirmation of Immunogenicity
Evaluation of A*0201 Immunogenicity

It has been shown that CTL induced in A*0201/Kb transgenic mice exhibit specificity similar to CTL induced in the human system (see, e.g., Vitiello et al., J Exp. Med. 173:1007-1015, 1991; Wentworth et al., Eur. J. Immunol. 26:97-101, 1996). Accordingly, these mice were used to evaluate the immunogenicity of the fourteen conserved A*0201 motif-bearing high affinity binding peptides identified in Example 2 above.


CTL induction in transgenic mice following peptide immunization has been described (Vitiello et al., J. Exp. Med. 173:1007-1015, 1991; Alexander et al.; J. Immunol. 159:4753-4761, 1997). In these studies, mice were injected subcutaneously at the base of the tail with each peptide (50 μg/mouse) emulsified in IFA in the presence of an excess of an IAb-restricted helper peptide (140 μg/mouse) (HBV core 128-140, Sette et al., J Immunol. 153:5586-5592, 1994). Eleven days after injection, splenocytes were incubated in the presence of peptide-loaded syngenic LPS blasts. After six days, cultures were assayed for cytotoxic activity using peptide-pulsed targets. The data indicated that 5 of the 14 peptides were capable of inducing primary CTL responses in A*0201/Kb transgenic mice. (For these studies, a peptide was considered positive if it induced CTL (L.U. 30/106 cells in at least two transgenic animals (Wentworth et al., Eur. Immunol. 26:97-101, 1996).


The fourteen peptides that bound to HLA-A*0201 with good affinity were also tested for immunogenicity with PBMCs from at least four malaria-naive human donors. The induction of primary CTL responses in vitro with PBMCs from normal naive humans requires a brief treatment of the antigen-presenting cells with acidic buffer and subsequent neutralization in the presence of excess B2-microglobulin and exogenous peptide (Wentworth et al., supra). By ensuring that the majority of the HLA class I molecules are occupied by exogenous peptide, these steps are essential for the induction of primary CTL responses. Such responses cannot be induced using methods developed for the induction of recall CTL responses. A peptide was considered positive if yielding more than 2 LU30/106 cells (lytic units 20% per 104 cells, where one lytic unit corresponds to the number of effector cells required to induce 30% 51Cr release from 10,000 target cells during a 6 hr assay.) or 15% peptide-specific lysis, respectively, in at least two different primary CTL cultures. The five peptides that were positive in HLA transgenic mice were also shown to induce primary CTL responses.


The HLA-A2 cross-reactive binding peptides were tested for their ability to elicit in vitro recall responses from PBMCs of six volunteers, each of whom had an HLA-A*0201 allele, immunized with irradiated sporozoites. The results demonstrated that all of the A2-binding peptides were recognized in association with HLA-A*0201.


In addition to investigating whether the peptides could be recognized as CTL epitopes, the ability of the peptides to induce specific cytokine responses was also measured. In particular, induction of interferon-γ and TNF-α were measured, both of which have been implicated in protective immunity against malaria. PBMC from irradiated sporozoite-immunized volunteers and PBMC from naturally exposed individuals were tested. The results indicate that significant peptide-induced cytokine responses were observed for all of the A2 supermotif-bearing peptides. (See Doolan et al., Immunity 7:97-112, 1997.)


Evaluation of A*03/A11 Immunogenicity

The immunogenicity of the eight supermotif-bearing peptides was also evaluated in recall responses using PBMC from volunteers bearing HLA-A3 supertype alleles who had previously been immunized with irradiated sporozoites. All the peptides were recognized in association with both A3 and A33. The fraction of individuals responding to each peptide varied for the supertype overall from 50% for one of the peptides to 100% for three of the peptides.


Immunogenicity was also evaluated using PBMCs of semi-immune or nonimmune individuals naturally exposed to malaria. In this population, recall CTL responses (percentage specific lysis greater than 10%) were detected for five of the eight A3-binding peptides.


Immunogenicity of A3 supermotif-bearing peptides can also be evaluated in transgenic mice that bear a human HLA-A11 allele using methodology analagous to that for immunogenicity studies using HLA-A2.1 transgenic mice.


Evaluation of B7 Immunogenicity

Immunogenicity of two B7 supermotif-bearing peptides, SSP2539 and the HLA-B-restricted peptide Pfs1677 was also examined in individuals who had been exposed to PF, either through immunization or natural exposure, as described for the evaluation of A2- and A3-supermotif-bearing peptides.


Both peptides were found to be capable of inducing CTL responses. The two peptides were recognized as CTL epitopes in the context of three of the five B7 supertype alleles.


Example 4
Implementation of the Extended Supermotif to Improve the Binding Capacity of Native Epitopes by Creating Analogs

HLA motifs and supermotifs (comprising primary and/or secondary residues) are useful in the identification and preparation of highly cross-reactive native peptides, as demonstrated herein. Moreover, the definition of HLA motifs and supermotifs also allows one to engineer highly cross-reactive epitopes by identifying residues within a native peptide sequence which can be analogued, or “fixed” to confer upon the peptide certain characteristics, e.g. greater cross-reactivity within the group of HLA molecules that comprise a supertype, and/or greater binding affinity for some or all of those HLA molecules. Examples of analog peptides that exhibit modulated binding affinity are set forth in this example.


Analoging at Primary Anchor Residues

The primary anchor residues are analogued to modulate binding activity. For example, peptide engineering strategies are implemented to further increase the cross-reactivity of the A3-supertype candidate epitopes identified above. On the basis of the data disclosed, e.g., in related and U.S. Ser. No. 09/226,775, now abandoned, the main anchors of A3-supermotif-bearing peptides are altered, for example, to introduce a preferred V, S, or M at position 2.


To analyze the cross-reactivity of the analog peptides, each engineered analog is initially tested for binding to the prototype A3 supertype alleles A3 and A11; then, if binding capacity is maintained, for additional A3-supertype cross-reactivity.


Similarly, analogs of HLA-A2 supermotif-bearing epitopes may also be generated. For example, peptides binding to A2-supertype molecules may be engineered at primary anchor residues to possess a preferred residue (L, I, V, or M) at position 2 and/or a preferred I or V as a position 9 primary anchor residue.


The analog peptides are then tested for the ability to bind the A2 supermotif prototype allele, A*0201. Those peptides that demonstrate 500 nM binding capacity are then tested for A2-supertype cross-reactivity.


Similarly to the A2- and A3-motif bearing peptides, peptide binding to B7-supertype alleles may be improved, where possible, to achieve increased cross-reactive binding. B7 supermotif-bearing peptides may, for example, be engineered to possess a preferred residue (V, I, L, or F) at the C-terminal primary anchor position, as demonstrated by Sidney et al. (J. Immunol. 157:3480-3490, 1996).


Analoging at Secondary Anchor Residues

Moreover, HLA supermotifs are of value in engineering highly cross-reactive peptides and/or peptides that bind HLA molecules with increased affinity by identifying particular residues at secondary anchor positions that are associated with such properties. For example, the binding capacity of an analog of the B7 supermotif-bearing peptide Pf SSP2126, representing a discreet single amino acid substitution at position one, is analyzed. The peptide may be substituted with an F at position 1, rather than and L. The peptide, which binds to 3 of 5 B7 supertype alles, is then analyzed for the ability to bind all five B7-supertype molecules with a good affinity.


Because so few B7-supertype cross-reactive epitopes were identified in the initial binding screen, results from previous binding evaluations may be analyzed to identify conserved (8-, 9-, 10-, or 11-mer) peptides which bind, minimally, 3/5 B7 supertype molecules with weak affinity (IC50 of 500 nM-5 μM). This analysis identifies additional candidate peptides that can be analogued. These peptides are tested for enhanced binding affinity and B7-supertype cross-reactivity.


Engineered analogs with sufficiently improved binding capacity or cross-reactivity are tested as described in Example 2 for the ability of the peptide to induce CTL responses using PBMC from individuals who had previously been exposed to Pf antigens. Immunogenicity may also be studied in HLA-B7-transgenic mice, following for example, IFA immunization or lipopeptide immunization.


In conclusion, these data demonstrate that by the use of even single amino acid substitutions, it is possible to increase the binding affinity and/or cross-reactivity of peptide ligands for HLA supertype molecules.


Example 5
Identification of Conserved PF-Derived Sequences with HLA-DR Binding Motifs

Peptide epitopes bearing an HLA class II supermotif or motif may also be identified as outlined below using methodology similar to that described in Examples 1-3.


Selection of HLA-DR-Supermotif-Bearing Epitopes

To identify PF-derived, HLA class II HTL epitopes, the protein sequences from the same four PF antigens used for the identification of HLA Class I supermotif/motif sequences were analyzed for the presence of sequences bearing an HLA-DR-motif or supermotif. Specifically, 15-mer sequences were selected comprising a DR-supermotif, further comprising a 9-mer core, and three-residue N- and C-terminal flanking regions (15 amino acids total). It was also required that the 9-mer core sequence be 100% conserved in at least 79% of the sequences analyzed.


The conserved, PF-derived peptides identified above were tested for their binding capacity for various common HLA-DR molecules. All peptides were initially tested for binding to the DR molecules in the primary panel: DR1, DR4w4, and DR7. Peptides binding at least 2 of these 3 DR molecules were then tested for binding to DR2w2 β1, DR2w2 β2, DR6w19, and DR9 molecules in secondary assays. Finally, peptides binding at least 2 of the 4 secondary panel DR molecules, and thus cumulatively at least 4 of 7 different DR molecules, were screened for binding to DR4w15, DR5w11, and DR8w2 molecules in tertiary assays. Peptides binding at least 7 of the 10 DR molecules comprising the primary, secondary, and tertiary screening assays were considered cross-reactive DR binders. The composition of these screening panels, and the phenotypic frequency of associated antigens, are shown in Table XXX.


In conclusion, 8 cross-reactive DR-binding peptides derived from 6 independent regions were identified that bind 7 or more HLA DR alleles. Five other peptides were also identified that bound between 4 and 6 DR alleles (Table XXXI).


Selection of Conserved DR3 Motif Peptides

Because HLA-DR3 is an allele that is prevalent in Caucasian, Black, and Hispanic populations, DR3 binding capacity is an important criterion in the selection of HTL epitopes. However, data generated previously indicated that DR3 only rarely cross-reacts with other DR alleles (Sidney et al., J. Immunol. 149:2634-2640, 1992; Geluk et al., J. Immunol. 152:5742-5748, 1994; Southwood et al., J. Immunol. 160:3363-3373, 1998). This is not entirely surprising in that the DR3 peptide-binding motif appears to be distinct from the specificity of most other DR alleles.


To efficiently identify peptides that bind DR3, target proteins were analyzed for conserved sequences carrying one of the two DR3 specific binding motifs reported by Geluk et al. (J. Immunol. 152:5742-5748, 1994). Peptides containing a DR3 motif were then synthesized and tested for their DR3 binding capacity. Three peptides were found to bind DR3 with an affinity of 1 μM or less (Table XXXI), and thereby qualify as HLA class II high affinity binders. On of these peptides was also identified above as a cross-reactive DR binding peptide.


DR3 binding epitopes identified in this manner that are found to induce immunological responses as in Example 6 below may then be included in vaccine compositions with DR supermotif-bearing peptide epitopes.


Example 6
Immunogenicity of PF-Derived HTL Epitopes

The immunogenicity of the HLA class II binding epitopes identified in Example 5 was evaluated in a study testing PBMC from either healthy volunteers previously immunized with an irradiated sporozoite vaccine, and thereby immune to malaria, or PBMC from naturally exposed individuals from the Irian Java (Indonesia) region where malaria is highly endemic. Vigorous responses were seen in volunteers vaccinated with whole irradiate sporozoites. All peptides were recognized in at least one immune individual, but not in either of the two individuals for which pre-immunization sample were available. All individuals recognized at least two, and up to nine different epitopes.


In the case of Irian Java population, PBMC from over 100 different individuals were screened for reactivity. Proliferation and secretion of various lymphokines has been measured. The results demonstrate that also in this semi-immune chronically exposed population, all peptides are recognized, with the percentage of individuals yielding positive responses ranging from 7% to 29% for IFN-γ, 36% to 51% for TNF-α and 12% to 2% for proliferative responses (Table XXII.


In conclusion, the immunogenicity of class II epitopes derived from conserved regions of the PF genome has been demonstrated.


Example 7
Calculation of Phenotypic Frequencies of HLA-Supertypes in Various Ethnic Backgrounds to Determine Breadth of Population Coverage

This example illustrates the assessment of the breadth of population coverage of a vaccine composition comprised of multiple epitopes comprising multiple supermotifs and/or motifs.


In order to analyze population coverage, gene frequencies of HLA alleles were determined. Gene frequencies for each HLA allele were calculated from antigen or allele frequencies utilizing the binomial distribution formulae gf=1−(SQRT(1−af)) (see, e.g., Sidney et al., Human Immunol. 45:79-93, 1996). To obtain overall phenotypic frequencies, cumulative gene frequencies were calculated, and the cumulative antigen frequencies derived by the use of the inverse formula [af=1−(1−Cgf)2].


Where frequency data was not available at the level of DNA typing, correspondence to the serologically defined antigen frequencies was assumed. To obtain total potential supertype population coverage no linkage disequilibrium was assumed, and only alleles confirmed to belong to each of the supertypes were included (minimal estimates). Estimates of total potential coverage achieved by inter-loci combinations were made by adding to the A coverage the proportion of the non-A covered population that could be expected to be covered by the B alleles considered (e.g., total=A+B*(1−A)). Confirmed members of the A3-like supertype are A3, A11, A31, A*3301, and A*6801. Although the A3-like supertype may also include A34, A66, and A*7401, these alleles were not included in overall frequency calculations. Likewise, confirmed members of the A2-like supertype family are A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, A*6802, and A*6901. Finally, the B7-like supertype-confirmed alleles are: B7, B*3501-03, B51, B*5301, B*5401, B*5501-2, B*5601, B*6701, and B*7801 (potentially also B*1401, B*3504-06, B*4201, and B*5602).


Population coverage achieved by combining the A2-, A3- and B7-supertypes is approximately 86% in five major ethnic groups (see Table XXI). Coverage may be extended by including peptides bearing the A1 and A24 motifs. On average, A1 is present in 12% and A24 in 29% of the population across five different major ethnic groups (Caucasian, North American Black, Chinese, Japanese, and Hispanic). Together, these alleles are represented with an average frequency of 39% in these same ethnic populations. The total coverage across the major ethnicities when A1 and A24 are combined with the coverage of the A2-, A3- and B7-supertype alleles is >95%. An analagous approach can be used to estimate population coverage achieved with combinations of class II motif-bearing epitopes.


Summary of Candidate HLA Class I and Class II Epitopes

In summary, on the basis of the data presented in the above examples, candidate peptide epitopes derived from conserved regions of PF have been identified (Table XXXIII) These include eight HLA-A2 supermotif-bearing epitopes, eight HLA-A3 supermotif-bearing epitopes, and two HLA-B7 supermotif-bearing epitope, each capable of binding to multiple A2-, A3-, or B7-supertype molecules, and immunogenic in HLA transgenic mice or antigenic for human PBL. In addition four A1 motif-bearing and four A24 motif-bearing epitopes are also include candidate CTL epitopes for inclusion in a vaccine composition.


With these 26 CTL epitopes (as disclosed herein and from the art), average population coverage, (i.e., recognition of at least one PF epitope), is predicted to be, on average, greater than 95% (range of 90.6%-99.1%), in five major ethnic populations. The potential redundancy of coverage afforded by these epitopes can be estimated using the game theory Monte Carlo simulation analysis, which is known in the art (see e.g., Osborne, M. J. and Rubinstein, A. “A course in game theory” MIT Press, 1994). As shown in FIG. 1, it is estimated that 90% of the individuals in a population comprised of the Caucasian, North American Black, Japanese, Chinese, and Hispanic ethnic groups would recognize 8 or more of the candidate epitopes described herein.


A list of PF-derived HTL epitopes that would be preferred for use in the design of minigene constructs or other vaccine formulations is summarized in Table XXXIV. As shown, 13 different peptide-binding regions have been identified which bind multiple HLA-DR molecules or bind HLA-DR3.


It is estimated that each of 10 common DR molecules recognizing the DR supermotif, and DR3, are covered by a minimum of 2 epitopes. Correspondingly, the total estimated population coverage represented by this panel of epitopes is, on average, in excess of 94% in each of the 5 major ethnic populations (Table XXXV).


Example 8
Recognition of Generation of Endogenous Processed Antigens after Priming

This example determines that CTL induced by native or analogued peptide epitopes identified and selected as described in Examples 1-6 recognize endogenously synthesized, i.e., native antigens.


Effector cells isolated from transgenic mice that are immunized with peptide epitopes as in Example 3, for example HLA-A2 supermotif-bearing epitopes, are re-stimulated in vitro using peptide-coated stimulator cells. Six days later, effector cells are assayed for cytotoxicity and the cell lines that contain peptide-specific cytotoxic activity are further re-stimulated. An additional six days later, these cell lines are tested for cytotoxic activity on 51Cr labeled Jurkat-A2.1/Kb target cells in the absence or presence of peptide, and also tested on 51Cr labeled target cells bearing the endogenously synthesized antigen, i.e. cells that are stably transfected with PF expression vectors.


The result will demonstrate that CTL lines obtained from animals primed with peptide epitope recognize endogenously synthesized PF antigen. The choice of transgenic mouse model to be used for such an analysis depends upon the epitope(s) that is being evaluated. In addition to HLA-A*0201/Kb transgenic mice, several other transgenic mouse models including mice with human A11, which may also be used to evaluate A3 epitopes, and B7 alleles have been characterized and others (e.g., transgenic mice for HLA-A1 and A24) are being developed. HLA-DR1 and HLA-DR3 mouse models have also been developed, which may be used to evaluate HTL epitopes.


Example 9
Activity of CTL-HTL Conjugated Epitopes in Transgenic Mice

This example illustrates the induction of CTLs and HTLs in transgenic mice by use of a PF CTL/HTL peptide conjugate whereby the vaccine composition comprises peptides administered to a PF-infected patient or an individual at risk for malaria. The peptide composition can comprise multiple CTL and/or HTL epitopes. This analysis demonstrates enhanced immunogenicity that can be achieved by inclusion of one or more HTL epitopes in a vaccine composition. Such a peptide composition can comprise a lipidated HTL epitope conjugated to a preferred CTL epitope containing, for example, at least one CTL epitope selected from Tables VII-XVIII, or an analog of that epitope. The HTL epitope is, for example, selected from Table XIX or XX.


Lipopeptide preparation: Lipopeptides are prepared by coupling the appropriate fatty acid to the amino terminus of the resin bound peptide. A typical procedure is as follows: A dichloromethane solution of a four-fold excess of a pre-formed symmetrical anhydride of the appropriate fatty acid is added to the resin and the mixture is allowed to react for two hours. The resin is washed with dichloromethane and dried. The resin is then treated with trifluoroacetic acid in the presence of appropriate scavengers [e.g. 5% (v/v) water] for 60 minutes at 20° C. After evaporation of excess trifluoroacetic acid, the crude peptide is washed with diethyl ether, dissolved in methanol and precipitated by the addition of water. The peptide is collected by filtration and dried.


Immunization procedures: Immunization of transgenic mice is performed as described (Alexander et al., J. Immunol. 159:4753-4761, 1997). For example, A2/Kb mice, which are transgenic for the human HLA A2.1 allele and are useful for the assessment of the immunogenicity of HLA-A*0201 motif- or HLA-A2 supermotif-bearing epitopes, are primed subcutaneously (base of the tail) with 0.1 ml of peptide conjugate formulated in saline, or DMSO/saline. Seven days after priming, splenocytes obtained from these animals are restimulated with syngenic irradiated LPS-activated lymphoblasts coated with peptide.


Cell lines: Target cells for peptide-specific cytotoxicity assays are Jurkat cells transfected with the HLA-A2.1/Kb chimeric gene (e.g., Vitiello et al., J. Exp. Med. 173:1007, 1991)


In vitro CTL activation: One week after priming, spleen cells (30×106 cells/flask) are co-cultured at 37° C. with syngeneic, irradiated (3000 rads), peptide coated lymphoblasts (10×106 cells/flask) in 10 ml of culture medium/T25 flask. After six days, effector cells are harvested and assayed for cytotoxic activity.


Assay for cytotoxic activity: Target cells (1.0 to 1.5×106) are incubated at 37° C. in the presence of 200 μl of 51Cr. After 60 minutes, cells are washed three times and resuspended in R10 medium. Peptide is added where required at a concentration of 1 μg/ml. For the assay, 104 51Cr-labeled target cells are added to different concentrations of effector cells (final volume of 200 μl) in U-bottom 96-well plates. After a 6 hour incubation period at 37° C., a 0.1 ml aliquot of supernatant is removed from each well and radioactivity is determined in a Micromedic automatic gamma counter. The percent specific lysis is determined by the formula: percent specific release=100×(experimental release−spontaneous release)/(maximum release−spontaneous release). To facilitate comparison between separate CTL assays run under the same conditions, % 51Cr release data is expressed as lytic units/106 cells. One lytic unit is arbitrarily defined as the number of effector cells required to achieve 30% lysis of 10,000 target cells in a 6 hour 51Cr release assay. To obtain specific lytic units/106, the lytic units/106 obtained in the absence of peptide is subtracted from the lytic units/106 obtained in the presence of peptide. For example, if 30% 51Cr release is obtained at the effector (E): target (T) ratio of 50:1 (i.e., 5×105 effector cells for 10,000 targets) in the absence of peptide and 5:1 (i.e., 5×104 effector cells for 10,000 targets) in the presence of peptide, the specific lytic units would be: [(1/50,000)−(1/500,000)]×106=18 LU.


The results are analyzed to assess the magnitude of the CTL responses of animals injected with the immunogenic CTL/HTL conjugate vaccine preparation and are compared to the magnitude of the CTL response achieved using the CTL epitope as outlined in Example 3. Analyses similar to this may be performed to evaluate the immunogenicity of peptide conjugates containing multiple CTL epitopes and/or multiple HTL epitopes. In accordance with these procedures it is found that a CTL response is induced, and concomitantly that an HTL response is induced, upon administration of such compositions.


Example 10
Selection of CTL and HTL Epitopes for Inclusion in a PF-Specific Vaccine

This example illustrates the procedure for the selection of peptide epitopes for vaccine compositions of the invention. The peptides in the composition may be in the form of a nucleic acid sequence, either single or one or more sequences (i.e., minigene) that encodes peptide(s), or may be single and/or polyepitopic peptides.


The following principles are utilized when selecting an array of epitopes for inclusion in a vaccine composition. Each of the following principles are balanced in order to make the selection.


1.) Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with PF clearance. For HLA Class I this includes 3-4 epitopes that come from at least one antigen of PF. In other words, it has been observed that patients who spontaneously clear PF generate an immune response to at least 3 epitopes on at least one PF antigen. For HLA Class II a similar rationale is employed; again 3-4 epitopes are selected from at least one PF antigen.


2.) Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA Class I an IC50 of 500 nM or less, or for Class II an IC50 of 1000 nM or less.


3.) Sufficient supermotif bearing peptides, or a sufficient array of allele-specific motif bearing peptides, are selected to give broad population coverage. For example, epitopes are selected to provide at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art and discussed herein, can be employed to assess breadth, or redundancy, of population coverage.


4.) When selecting epitopes for PF antigens it may be preferable to select native epitopes. Therefore, of particular relevance for infectious disease vaccines, are epitopes referred to as “nested epitopes.” Nested epitopes occur where at least two epitopes overlap in a given peptide sequence. A peptide comprising “transcendent nested epitopes” is a peptide that has both HLA class I and HLA class II epitopes in it.


When providing nested epitopes, a sequence that has the greatest number of epitopes per provided sequence is provided. A limitation on this principle is to avoid providing a peptide that is any longer than the amino terminus of the amino terminal epitope and the carboxyl terminus of the carboxyl terminal epitope in the peptide. When providing a longer peptide sequence, such as a sequence comprising nested epitopes, the sequence is screened in order to insure that it does not have pathological or other deleterious biological properties.


5.) When creating a minigene, as disclosed in greater detail in Example 11, an objective is to generate the smallest peptide possible that encompasses the epitopes of interest. The principles employed are similar, if not the same as those employed when selecting a peptide comprising nested epitopes. Additionally, however, upon determination of the nucleic acid sequence to be provided as a minigene, the peptide encoded thereby is analyzed to determine whether any “junctional epitopes” have been created. A junctional epitope is an actual binding epitope, as predicted, e.g., by motif analysis. Junctional epitopes are generally to be avoided because the recipient may generate an immune response to that epitope, which is not present in a native PF protein sequence. Of particular concern is a junctional epitope that is a “dominant epitope.” A dominant epitope may lead to such a zealous response that immune responses to other epitopes are diminished or suppressed.


Peptide epitopes for inclusion in vaccine compositions are, for example, selected from those listed in Tables XXXIII and XXXIV. A vaccine composition comprised of selected peptides, when administered, is safe, efficacious, and elicits an immune response similar in magnitude of an immune response that clears an acute PF infection.


Example 11
Construction of Minigene Multi-Epitope DNA Plasmids

This example describes the design and construction of a minigene expression plasmid. Minigene plasmids may, of course, contain various configurations of CTL and/or HTL epitopes or epitope analogs as described herein. Expression plasmids have been constructed and evaluated as described, for example, in U.S. Ser. No. 09/311,784 filed May 13, 1999, now U.S. Pat. No. 6,534,482, and in Ishioka et al., J. Immunol. 162:3915-3925, 1999.


A minigene expression plasmid may include multiple CTL and HTL peptide epitopes. In the present example, HLA-A2, -A3, -B7 supermotif-bearing peptide epitopes and HLA-A1 and -A24 motif-bearing peptide epitopes are used in conjunction with DR supermotif-bearing epitopes and/or DR3 epitopes. Preferred epitopes are identified, for example, in Tables XXXIII and XXXIV. HLA class I supermotif or motif-bearing peptide epitopes derived from multiple PF antigens, e.g., EXP-1, SSP2, CSP and LSA-1, are selected such that multiple supermotifs/motifs are represented to ensure broad population coverage. Similarly, HLA class II epitopes are selected from multiple PF antigens to provide broad population coverage, i.e. both HLA DR-1-4-7 supermotif-bearing epitopes and HLA DR-3 motif-bearing epitopes are selected for inclusion in the minigene construct. The selected CTL and HTL epitopes are then incorporated into a minigene for expression in an expression vector.


This example illustrates the methods to be used for construction of such a minigene-bearing expression plasmid. Other expression vectors that may be used for minigene compositions are available and known to those of skill in the art.


The minigene DNA plasmid contains a consensus Kozak sequence and a consensus murine kappa Ig-light chain signal sequence followed by CTL and/or HTL epitopes selected in accordance with principles disclosed herein. The sequence encodes an open reading frame fused to the Myc and His antibody epitope tag coded for by the pcDNA 3.1 Myc-His vector.


Overlapping oligonucleotides, for example eight oligonucleotides, averaging approximately 70 nucleotides in length with 15 nucleotide overlaps, are synthesized and HPLC-purified. The oligonucleotides encode the selected peptide epitopes as well as appropriate linker nucleotides, Kozak sequence, and signal sequence. The final multiepitope minigene is assembled by extending the overlapping oligonucleotides in three sets of reactions using PCR. A Perkin/Elmer 9600 PCR machine is used and a total of 30 cycles are performed using the following conditions: 95° C. for 15 sec, annealing temperature (5° below the lowest calculated Tm of each primer pair) for 30 sec, and 72° C. for 1 min.


For the first PCR reaction, 5 μg of each of two oligonucleotides are annealed and extended: Oligonucleotides 1+2, 3+4, 5+6, and 7+8 are combined in 100 μl reactions containing Pfu polymerase buffer (1×=10 mM KCL, 10 mM (NH4)2SO4, 20 mM Tris-chloride, pH 8.75, 2 mM MgSO4, 0.1% Triton X-100, 100 μg/ml BSA), 0.25 mM each dNTP, and 2.5 U of Pfu polymerase. The full-length dimer products are gel-purified, and two reactions containing the product of 1+2 and 3+4, and the product of 5+6 and 7+8 are mixed, annealed, and extended for 10 cycles. Half of the two reactions are then mixed, and 5 cycles of annealing and extension carried out before flanking primers are added to amplify the full length product for 25 additional cycles. The full-length product is gel-purified and cloned into pCR-blunt (Invitrogen) and individual clones are screened by sequencing.


Example 12
The Plasmid Construct and the Degree to which it Induces Immunogenicity

The degree to which the plasmid construct prepared using the methodology outlined in Example 11 is able to induce immunogenicity is evaluated through in vivo injections into mice and subsequent in vitro assessment of CTL and HTL activity, which are analysed using cytotoxicity and proliferation assays, respectively, as detailed e.g., in U.S. Ser. No. 09/311,784 filed May 13, 1999, now U.S. Pat. No. 6,534,482, and Alexander et al., Immunity 1:751-761, 1994. To assess the capacity of the pMin minigene construct to induce CTLs in vivo, HLA-A11/Kb transgenic mice, for example, are immunized intramuscularly with 100 μg of naked cDNA. As a means of comparing the level of CTLs induced by cDNA immunization, a control group of animals is also immunized with an actual peptide composition that comprises multiple epitopes synthesized as a single polypeptide as they would be encoded by the minigene.


Splenocytes from immunized animals are stimulated twice with each of the respective compositions (peptide epitopes encoded in the minigene or the polyepitopic peptide), then assayed for peptide-specific cytotoxic activity in a 51Cr release assay. The results indicate the magnitude of the CTL response directed against the A3-restricted epitope, thus indicating the in vivo immunogenicity of the minigene vaccine and polyepitopic vaccine. It is, therefore, found that the minigene elicits immune responses directed toward the HLA-A3 supermotif peptide epitopes as does the polyepitopic peptide vaccine. A similar analysis is also performed using other HLA-A2 and HLA-B7 transgenic mouse models to assess CTL induction by HLA-A2 and HLA-B7 motif or supermotif epitopes.


To assess the capacity of a class II epitope encoding minigene to induce HTLs in vivo, I-Ab restricted mice, for example, are immunized intramuscularly with 100 μg of plasmid DNA. As a means of comparing the level of HTLs induced by DNA immunization, a group of control animals is also immunized with an actual peptide composition emulsified in complete Freund's adjuvant.


CD4+ T cells, i.e. HTLs, are purified from splenocytes of immunized animals and stimulated with each of the respective compositions (peptides encoded in the minigene). The HTL response is measured using a 3H-thymidine incorporation proliferation assay, (see, e.g., Alexander et al., Immunity 1:751-761, 1994). the results indicate the magnitude of the HTL response, thus demonstrating the in vivo immunogenicity of the minigene.


DNA minigenes, constructed as described in Example 11, may also be evaluated as a vaccine in combination with a boosting agent using a prime boost protocol. The boosting agent may consist of recombinant protein (e.g., Barnett et al., Aids Res. and Human Reotroviruses 14, Supplement 3:S299-S309, 1998) or recombinant vaccinia, for example, expressing a minigene or DNA encoding the complete protein of interest (see, e.g., Hanke et al., Vaccine 16:439-445, 1998; Sedegah et al., Proc. Natl. Acad. Sci USA 95:7648-53, 1998; Hanke and McMichael, Immunol. Letters 66:177-181, 1999; and Robinson et al., Nature Med. 5:526-34, 1999).


For example, the efficacy of the DNA minigene may be evaluated in transgenic mice. In this example, A2.1/Kb transgenic mice are immunized IM with 100 μg of the DNA minigene encoding the immunogenic peptides. After an incubation period (ranging from 3-9 weeks), the mice are boosted IP with 107 pfu/mouse of a recombinant vaccinia virus expressing the same sequence encoded by the DNA minigene. Control mice are immunized with 100 μg of DNA or recombinant vaccinia without the minigene sequence, or with DNA encoding the minigene, but without the vaccinia boost. After an additional incubation period of two weeks, splenocytes from the mice are immediately assayed for peptide-specific activity in an ELISPOT assay. Additionally, splenocytes are stimulated in vitro with the A2-restricted peptide epitopes encoded in the minigene and recombinant vaccinia, then assayed for peptide-specific activity in an IFN-y ELISA. It is found that the minigene utilized in a prime-boost mode elicits greater immune responses toward the HLA-A2 supermotif peptides than with DNA alone. Such an analysis is also performed using other HLA-A11 and HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 and HLA-B7 motif or supermotif epitopes.


Example 13
Peptide Composition for Prophylactic Uses

Vaccine compositions of the present invention are used to prevent PF infection in persons who are at risk for such infection. For example, a polyepitopic peptide epitope composition (or a nucleic acid comprising the same) containing multiple CTL and HTL epitopes such as those selected in Examples 9 and/or 10, which are also selected to target greater than 80% of the population, is administered to individuals at risk for PF infection. The composition is provided as a single lipidated polypeptide that encompasses multiple epitopes. The vaccine is administered in an aqueous carrier comprised of Freunds Incomplete Adjuvant. The dose of peptide for the initial immunization is from about 1 to about 50,000 μg, generally 100-5,000 μg, for a 70 kg patient. The initial administration of vaccine is followed by booster dosages at 4 weeks followed by evaluation of the magnitude of the immune response in the patient, by techniques that determine the presence of epitope-specific CTL populations in a PBMC sample. Additional booster doses are administered as required. The composition is found to be both safe and efficacious as a prophylaxis against PF infection.


Alternatively, the polyepitopic peptide composition can be administered as a nucleic acid in accordance with methodologies known in the art and disclosed herein.


Example 14
Polyepitopic Vaccine Compositions Derived from Native PF Sequences

A native PF polyprotein sequence is screened, preferably using computer algorithms defined for each class I and/or class II supermotif or motif, to identify “relatively short” regions of the polyprotein that comprise multiple epitopes and is preferably less in length than an entire native antigen. This relatively short sequence that contains multiple distinct, even overlapping, epitopes is selected and used to generate a minigene construct. The construct is engineered to express the peptide, which corresponds to the native protein sequence. The “relatively short” peptide is generally less than 250 amino acids in length, often less than 100 amino acids in length, preferably less than 75 amino acids in length, and more preferably less than 50 amino acids in length. The protein sequence of the vaccine composition is selected because it has maximal number of epitopes contained within the sequence, i.e., it has a high concentration of epitopes. As noted herein, epitope motifs may be nested or overlapping (i.e., frame shifted relative to one another). For example, with frame shifted overlapping epitopes, two 9-mer epitopes and one 10-mer epitope can be present in a 10 amino acid peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes.


The vaccine composition will preferably include, for example, three CTL epitopes and at least one HTL epitope from PF. This polyepitopic native sequence is administered either as a peptide or as a nucleic acid sequence which encodes the peptide. Alternatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide.


The embodiment of this example provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic immune response-inducing vaccine compositions. Additionally such an embodiment provides for the possibility of motif-bearing epitopes for an HLA makeup that is presently unknown. Furthermore, this embodiment (absent analogs) directs the immune response to multiple peptide sequences that are actually present in native PF antigens thus avoiding the need to evaluate any junctional epitopes. Lastly, the embodiment provides an economy of scale when producing nucleic acid vaccine compositions.


Related to this embodiment, computer programs can be derived in accordance with principles in the art, which identify in a target sequence, the greatest number of epitopes per sequence length.


Example 15
Polyepitopic Vaccine Compositions Directed to Multiple Diseases

The PF peptide epitopes of the present invention are used in conjunction with peptide epitopes from target antigens related to one or more other diseases, to create a vaccine composition that is useful for the prevention or treatment of PF as well as the one or more other disease(s). Examples of the other diseases include, but are not limited to, HIV, HCV, and HBV.


For example, a polyepitopic peptide composition comprising multiple CTL and HTL epitopes that target greater than 98% of the population may be created for administration to individuals at risk for both PF and HIV infection. The composition can be provided as a single polypeptide that incorporates the multiple epitopes from the various disease-associated sources, or can be administered as a composition comprising one or more discrete epitopes.


Example 16
Use of Peptides to Evaluate an Immune Response

Peptides of the invention may be used to analyze an immune response for the presence of specific CTL or HTL populations directed to PF. Such an analysis may be performed in a manner as that described by Ogg et al., Science 279:2103-2106, 1998. In the following example, peptides in accordance with the invention are used as a reagent for diagnostic or prognostic purposes, not as an immunogen.


In this example highly sensitive human leukocyte antigen tetrameric complexes (“tetramers”) are used for a cross-sectional analysis of, for example, PF HLA-A*0201-specific CTL frequencies from HLA A*0201-positive individuals at different stages of infection or following immunization using an PF peptide containing an A*0201 motif. Tetrameric complexes are synthesized as described (Musey et al., N. Engl. J. Med. 337:1267, 1997). Briefly, purified HLA heavy chain (A*0201 in this example) and β2-microglobulin are synthesized by means of a prokaryotic expression system. The heavy chain is modified by deletion of the transmembrane-cytosolic tail and COOH-terminal addition of a sequence containing a BirA enzymatic biotinylation site. The heavy chain, β2-microglobulin, and peptide are refolded by dilution. The 45-kD refolded product is isolated by fast protein liquid chromatography and then biotinylated by BirA in the presence of biotin (Sigma, St. Louis, Mo.), adenosine 5′triphosphate and magnesium. Streptavidin-phycoerythrin conjugate is added in a 1:4 molar ratio, and the tetrameric product is concentrated to 1 mg/ml. The resulting product is referred to as tetramer-phycoerythrin.


For the analysis of patient blood samples, approximately one million PBMCs are centrifuged at 300 g for 5 minutes and resuspended in 50 μl of cold phosphate-buffered saline. Tri-color analysis is performed with the tetramer-phycoerythrin, along with anti-CD8-Tricolor, and anti-CD38. The PBMCs are incubated with tetramer and antibodies on ice for 30 to 60 min and then washed twice before formaldehyde fixation. Gates are applied to contain >99.98% of control samples. Controls for the tetramers include both A*0201-negative individuals and A*0201-positive uninfected donors. The percentage of cells stained with the tetramer is then determined by flow cytometry. The results indicate the number of cells in the PBMC sample that contain epitope-restricted CTLs, thereby readily indicating the extent of immune response to the PF epitope, and thus the stage of infection with PF, the status of exposure to PF, or exposure to a vaccine that elicits a protective or therapeutic response.


Example 17
Use of Peptide Epitopes to Evaluate Recall Responses

The peptide epitopes of the invention are used as reagents to evaluate T cell responses, such as acute or recall responses, in patients. Such an analysis may be performed on patients who have recovered from infection, who are chronically infected with PF, or who have been vaccinated with a PF vaccine.


For example, the class I restricted CTL response of persons who have been vaccinated may be analyzed. The vaccine may be any PF vaccine. PBMC are collected from vaccinated individuals and HLA typed. Appropriate peptide epitopes of the invention that are preferably highly conserved and, optimally, bear supermotifs to provide cross-reactivity with multiple HLA supertype family members, are then used for analysis of samples derived from individuals who bear that HLA type.


PBMC from vaccinated individuals are separated on Ficoll-Histopaque density gradients (Sigma Chemical Co., St. Louis, Mo.), washed three times in HBSS (GIBCO Laboratories), resuspended in RPMI-1640 (GIBCO Laboratories) supplemented with L-glutamine (2 mM), penicillin (50 U/ml), streptomycin (50 μg/ml), and Hepes (10 mM) containing 10% heat-inactivated human AB serum (complete RPMI) and plated using microculture formats. A synthetic peptide comprising an epitope of the invention is added at 10 μg/ml to each well and HBV core 128-140 epitope is added at 1 μg/ml to each well as a source of T cell help during the first week of stimulation.


In the microculture format, 4×105 PBMC are stimulated with peptide in 8 replicate cultures in 96-well round bottom plate in 100 μl/well of complete RPMI. On days 3 and 10, 100 ml of complete RPMI and 20 U/ml final concentration of rIL-2 are added to each well. On day 7 the cultures are transferred into a 96-well flat-bottom plate and restimulated with peptide, rIL-2 and 105 irradiated (3,000 rad) autologous feeder cells. The cultures are tested for cytotoxic activity on day 14. A positive CTL response requires two or more of the eight replicate cultures to display greater than 10% specific 51Cr release, based on comparison with uninfected control subjects as previously described (Rehermann, et al., Nature Med. 2:1104,1108, 1996; Rehermann et al., J. Clin. Invest. 97:1655-1665, 1996; and Rehermann et al. J. Clin. Invest. 98:1432-1440, 1996).


Target cell lines are autologous and allogeneic EBV-transformed B-LCL that are either purchased from the American Society for Histocompatibility and Immunogenetics (ASHI, Boston, Mass.) or established from the pool of patients as described (Guilhot, et al. J. Virol. 66:2670-2678, 1992).


Cytotoxicity assays are performed in the following manner. Target cells consist of either allogeneic HLA-matched or autologous EBV-transformed B lymphoblastoid cell line that are incubated overnight with the synthetic peptide epitope of the invention at 10 μM, and labeled with 100 μCi of 51Cr (Amersham Corp., Arlington Heights, Ill.) for 1 hour after which they are washed four times with HBSS.


Cytolytic activity is determined in a standard 4-h, split well 51Cr release assay using U-bottomed 96 well plates containing 3,000 targets/well. Stimulated PBMC are tested at effector/target (E/T) ratios of 20-50:1 on day 14. Percent cytotoxicity is determined from the formula: 100×[(experimental release−spontaneous release)/maximum release−spontaneous release)]. Maximum release is determined by lysis of targets by detergent (2% Triton X-100; Sigma Chemical Co., St. Louis, Mo.). Spontaneous release is <25% of maximum release for all experiments.


The results of such an analysis indicate the extent to which HLA-restricted CTL populations have been stimulated by previous exposure to PF or a PF vaccine.


The class II restricted HTL responses may also be analyzed. Purified PBMC are cultured in a 96-well flat bottom plate at a density of 1.5×105 cells/well and are stimulated with 10 μg/ml synthetic peptide, whole antigen, or PHA. Cells are routinely plated in replicates of 4-6 wells for each condition. After seven days of culture, the medium is removed and replaced with fresh medium containing 10 U/ml IL-2. Two days later, 1 3H-thymidine is added to each well and incubation is continued for an additional 18 hours. Cellular DNA is then harvested on glass fiber mats and analyzed for 3H-thymidine incorporation. Antigen-specific T cell proliferation is calculated as the ratio of 3H-thymidine incorporation in the presence of antigen divided by the 3H-thymidine incorporation in the absence of antigen.


Example 18
Induction of CTL Responses Using a Prime Boost Protocol

A prime boost protocol similar in its underlying principle to that used to evaluated the efficacy of a DNA vaccine in transgenic mice, which was described in Example 12, may also be used for the administration of the vaccine to humans. Such a vaccine regimen is includes an initial administration of, for example, naked DNA followed by a boost using recombinant virus encoding the vaccine, or recombinant protein/polypeptide or a peptides mixture administered in an adjuvant.


For example, the initial immunization may be performed using an expression vector, such as that constructed in Example 11, in the form of naked DNA administered IM (or SC or ID) in the amounts of 0.5-5, typically 100 g, at multiple sites. The DNA (0.1 to 1000 mg) can also be administered using a gene gun. Following an incubation period of 3-4 weeks, a booster dose is then administered. The booster can be recombinant fowlpox virus administered at a dose of 5-107 to 5×109 pfu. Alternative recombinant virus, such as MVA, canarypox, adenovirus, and adeno-associated viruses can also be used for the booster, or the polyepitopic protein or a mixture of the peptides can be administered. For evaluation of vaccine efficacy, patient blood samples will be obtained before immunization as well as at intervals following administration of the initial vaccine and booster doses of the vaccine. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.


Analysis of the results will indicate that a magnitude of sufficient response to achieve protective immunity against Pf is generated.


Example 19
Induction of Specific CTL Response in Humans

A human clinical trial to evaluate an immunogenic composition comprising CTL and HTL epitopes of the invention is set up as an IND Phase I, dose escalation study and carried out as a randomized, double-blind, placebo-controlled trial in patients are not infected with Pf. Such a trial is designed, for example, as follows:


A total of about 27 subjects are enrolled and divided into 3 groups:


Group I: 3 subjects are injected with placebo and 6 subjects are injected with 5 μg of peptide composition;


Group II: 3 subjects are injected with placebo and 6 subjects are injected with 50 μg peptide composition;


Group III: 3 subjects are injected with placebo and 6 subjects are injected with 500 μg of peptide composition.


After 4 weeks following the first injection, all subjects receive a booster inoculation at the same dosage.


The endpoints measured in this study relate to the safety and tolerability of the peptide composition as well as its immunogenicity. Cellular immune responses to the peptide composition are an index of the intrinsic activity of this the peptide composition, and can therefore be viewed as a measure of biological efficacy. The following summarize the clinical and laboratory data that relate to safety and efficacy endpoints.


Safety: The incidence of adverse events is monitored in the placebo and drug treatment group and assessed in terms of degree and reversibility.


Evaluation of Vaccine Efficacy: For evaluation of vaccine efficacy, subjects are bled before and after injection. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.


The vaccine is found to be both safe and efficacious.


A prophylactic field trial can also be conducted to evaluate a vaccine composition of the invention. In such a trial, issues of patient compliance are also considered in the determination of vaccine efficacy.


Example 20
Administration of Vaccine Compositions Using Dendritic Cells

Vaccines comprising peptide epitopes of the invention may be administered using dendritic cells. In this example, the immunogenic peptide epitopes are used to elicit a CTL and/or HTL response ex vivo.


Ex vivo CTL or HTL responses to a particular antigen (infectious or tumor-associated antigen) are induced by incubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of antigen-presenting cells (APC), such as dendritic cells, and the appropriate immunogenic peptides. After an appropriate incubation time (typically about 14 weeks), in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cells, i.e., PF-infected cells.


Example 21
Alternative Method of Identifying Motif-Bearing Peptides

Another way of identifying motif-bearing peptides is to elute them from cells bearing defined MHC molecules. For example, EBV transformed B cell lines used for tissue typing, have been extensively characterized to determine which HLA molecules they express. In certain cases these cells express only a single type of HLA molecule. These cells can then be infected with a pathogenic organism, e.g., PF, HIV, etc. or transfected with nucleic acids that express the antigen of interest. Thereafter, peptides produced by endogenous antigen processing of peptides produced consequent to infection (or as a result of transfection) will bind to HLA molecules within the cell and be transported and displayed on the cell surface.


The peptides are then eluted from the HLA molecules by exposure to mild acid conditions and their amino acid sequence determined, e.g., by mass spectral analysis (e.g., Kubo et al., J. Immunol. 152:3913, 1994). Because, as disclosed herein, the majority of peptides that bind a particular HLA molecule are motif-bearing, this is an alternative modality for obtaining the motif-bearing peptides correlated with the particular HLA molecule expressed on the cell.


Alternatively, cell lines that do not express any endogenous HLA molecules can be transfected with an expression construct encoding a single HLA allele. These cells may then be used as described, i.e., they may be infected with a pathogenic organism or transfected with nucleic acid encoding an antigen of interest to isolate peptides corresponding to the pathogen or antigen of interest that have been presented on the cell surface. Peptides obtained from such an analysis will bear motif(s) that correspond to binding to the single HLA allele that is expressed in the cell.


As appreciated by one in the art, one can perform a similar analysis on a cell bearing more than one HLA allele and subsequently determine peptides specific for each HLA allele expressed. Moreover, one of skill would also recognize that means other than infection or transfection, such as loading with a protein antigen, can be used to provide a source of antigen to the cell.


The above examples are provided to illustrate the invention but not to limit its scope. For example, the human terminology for the Major Histocompatibility Complex, namely HLA, is used throughout this document. It is to be appreciated that these principles can be extended to other species as well. Thus, other variants of the invention will be readily apparent to one of ordinary skill in the art and are encompassed by the appended claims. All publications, patents, and patent application cited herein are hereby incorporated by reference for all purposes.












TABLE I







SUPERMOTIFS
POSITION
POSITION
POSITION






2 
3 
C Terminus 



(Primary Anchor)
(Primary Anchor)
(Primary Anchor)





A1

TI
LVMS



FWY






A2

LIVM
ATQ



IV
MATL






A3

VSMA
TLI



RK






A24

YF
WIVLMT



FI
YWLM






B7

P



VILF
MWYA






B27

RHK



FYL
WMIVA






B44

ED



FWYLIMVA






B58

ATS



FWY
LIVMA






B62

QL
IVMP



FWYMIVLA






MOTIFS





A1

TSM



Y






A1


DE
AS


Y






A2.1

LM
VQIAT



V
LIMAT






A3

LMVISATF
CGD



KYR
HFA






A11

VTMLISAGN
CDF



K
RYH






A24

YFW
M



FLIW






A*3101

MVT
ALIS



R
K






A*3301

MVALF
IST



RK






A*6801

AVT
MSLI



RK






B*0702

P



LMFWYAIV






B*3501

P



LMFWY
IVA






B51

P



LIVF
WYAM






B*5301

P



IMFWY
ALV






B*5401

P



ATIV
LMFWY






Bolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearingif it has primary anchors at each primary anchor position for a motif or superrnotifas specified in the above table.
















TABLE Ia







SUPERMOTIFS
POSITION
POSITION
POSITION






2 
3 
C Terminus 



(Primary Anchor)
(Primary Anchor)
(Primary Anchor)





A1

TI
LVMS



FWY






A2

VQAT



V
LIMAT






A3

VSMA
TLI



RK






A24

YF
WIVLMT



FI
YWLM






B7

P



VILF
MWYA






B27

RHK



FYL
WMIVA






B58

ATS



FWY
LIVMA






B62

QL
IVMP



FWY
MIVLA






MOTIFS





A1

TSM



Y






A1


DE
AS


Y






A2.1

VQAT*



V
LIMAT






A3.2

LMVISATF
CGD



KYR
HFA






A11

VTMLISAGN
CDF



K
RHY






A24

YFW



FLIW






*If 2 is V, or Q, the C-term is not L


Bolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearingif it has primary anchors at each primary anchor position for a motif or supermotifas specified in the above table.














TABLE 11








Position












SUPERMOTIFS
1
2
3
4
5
















A1


1° Anchor








TILVMS








A2


1° Anchor








LIVMATQ








A3
preferred

1° Anchor 
YFW (4/5)







VSMATLI


RK



deleterious
DE (3/5); 

DE (4/5)






P (5/5)









A24


1° Anchor








YFWIVLMT








B7
preferred
FWY (5/5)
1° Anchor
FWY (4/5)






LIVM (3/5)
P






deleterious
DE (3/5); 








P(5/5);

















G(4/5); 







A(3/5);







QN (3/5)




















B27


1° Anchor








RHK








B44


1° Anchor








ED








B58


1° Anchor








ATS








B62


1° Anchor








QLIVMP














Position











SUPERMOTIFS
6
7
8
C-terminus















A1



1° Anchor







FWY






A2



1° Anchor







LIVMAT






A3
YFW (3/5) 
YFW (4/5)
P (4/5)
1° Anchor







RK






A24



1° Anchor







FIYWLM






B7


FWY (3/5) 
1° Anchor







VILFMWYA




/5)
QN (4/5)
DE (4/5)







B27



1° Anchor







FYLWMIVA






B44



1° Anchor







FWYLIMVA






B58



1° Anchor







FWYLIVMA






B62



1° Anchor







FWYMIVLA














Position












MOTIFS
1
2
3
4
5
















A1
preferred
GFYW
1° Anchor
DEA
YFW



9-mer


STM






deleterious
DE
RHKLIVM

A
G





P








A1
preferred
GRHK
ASTCLIV
1° Anchor
GSTC



9-mer


M
DEAS





deleterious
A
RHKDEPY

DE
PQN





FW














Position











MOTIFS
6
7
8
C-terminus















A1
P
DEQN
YFW
1° Anchor



9-mer



Y




A









A1
ASTC
LIVM
DE
1° Anchor



9-mer



Y




RHK
PG
GP














Position














1
2
3
4





A1
peferred
YFW
1° Anchor
DEAQN
A


10-


STM




mer
deleterious
GP

RHKGLIV
DE






M






A1
preferred
YFW
STCLIVM
1° Anchor
A


l0-



DEAS



mer
deleterious
RHK
RHKDEPY







FW







A2.1
preferred
YFW
1° Anchor
YFW
STC


9-mer


LMIVQAT





deleterious
DEP

DERKH






A2.1
preferred
AYFW
1° Anchor
LVIM
G


l0-


LMIVQAT




mer
deleterious
DEP

DE
RKHA





A3
preferred
RHK
1° Anchor
YFW
PRHKYFW





LMVISAT







FCGD





deleterious
DEP

DE






A11
preferred
A
1° Anchor
YFW
YFW





VTLMISA







GNCDF





deleterious
DEP








A24
preferred
YFWRHK
1° Anchor

STC


9-mer


YFWM





deleterious
DEG

DE
G





A24
preferred

1° Anchor

P


10-


YFWM




mer
deleterious


GDE
QN





A3101
preferred
RHK
1° Anchor
YFW
P





MVTALIS





deleterious
DEP

DE






A3301
preferred

1° Anchor
YFW






MVALFIS








T






deleterious
GP

DE






A6801
preferred
YFWSTC
1° Anchor







AVTMSLI





deleterious
GP

DEG






B0702
preferred
RHKFWY
1° Anchor
RHK






P





deleterious
DEQNP

DEP
DE





B3501
preferred
FWYLIVM
1° Anchor
FWY






P





deleterious
AGP








B51
preferred
LIVMFWY
1° Anchor
FWY
STC





P





deleterious 
AGPDERHKSTC








B5301
preferred
LIVMFWY
1° Anchor
FWY
STC





P





deleterious 
AGPQN








B5401
preferred
FWY
1° Anchor
FWYLIVM






P





deleterious 
GPQNDE

GDESTC














Position

















9







or C-




6
7
8
terminus





A1
peferred

PASTC
GDE
P


10-







mer
deleterious
QNA
RHKYFW
RHK
A





A1
preferred

PG
G
YFW


l0-







mer
deleterious
G

PRHK
QN





A2.1
preferred

A
P
1° Anchor


9-mer




VLIMAT



deleterious
RKH
DERKH







A2.1
preferred
G

FYWL



l0-



VIM



mer
deleterious

RKH
DERK
RKH





A3
preferred
A
YFW
P
1° Anchor







KYRHFA



deleterious









A11
preferred
YFW
YFW
P
1° Anchor







KRYH



deleterious

A
G






A24
preferred

YFW
YFW
1° Anchor


9-mer




FLIW



deleterious
DERHK
G
AQN






A24
preferred

P




10-







mer
deleterious
DE
A
QN
DEA





A3101
preferred
YFW
YFW
AP
1° Anchor







RK



deleterious
DE
DE
DE






A3301
preferred

AYFW

1° Anchor







RK



deleterious









A6801
preferred

YFW
P
1° Anchor







RK



deleterious


A






B0702
preferred
RHK
RHK
PA
1° Anchor







LMFWYAIV



deleterious
GDE
QN
DE






B3501
preferred

FWY

1° Anchor







LMFWYIVA



deleterious
G








B51
preferred

G
FWY
1° Anchor







LIVFWYAM



deleterious 
G
DEQN
GDE






B5301
preferred

LIVMFWY
FWY
1° Anchor







IMFWYALV



deleterious 
G
RHKQN
DE






B5401
preferred

ALIVM
FWYAP
1° Anchor







ATIVLMFW








Y




deleterious 
DE
QNDGE
DE





Italicized residues indicate less preferred or ″tolerated″ residues. The information in Table II is specific for 9-meRs unless otherwise specified.














TABLE III








POSITION

















SEQ ID












NO:
MOTIFS
anchor 1
2
3
4
5
anchor 6
7
8
9






















DR4
preferred
FMYLIYW
M
T

I
VSTCPALIM
MH

MEI




deleterious



W


R

WDE






DR1
preferred
MFLIVWY


PAMQ

VMATSPLIC
M

AVM




deleterious

C
CH
FD
CWD

GDE
D






3841
DR7
preferred
MFLIVWY
M
W
A

IVMSACTPL
M

IV


3842

deleterious

C

G


GRD
N
G


















DR Supermotif
MFLIVWY




VMSTACPLI





















DR3 MOTIFS
1° anchor 1
2
3
1° anchor 4
5
1° anchor 6






motif a
LIVMFY


D





preferred












motif b
LIVMFAY


DNQEST

KRH



preferred





Italicized residues indicate less preferred or ″tolerated″ residues.













TABLE IV







HLA Class I Standard Peptide Binding Affinity.














SEQ
STANDARD



STANDARD

ID
BINDING


ALLELE
PEPTIDE
SEQUENCE
NO:
AFFINITY (nM)





A*0101
 944.02
YLEPAIAKY
3575
25





A*0201
 941.01
FLPSDYFPSV
3576
 5.0





A*0202
 941.01
FLPSDYFPSV
3577
 4.3





A*0203
 941.01
FLPSDYFPSV
3578
10





A*0205
 941.01
FLPSDYFPSV
3579
 4.3





A*0206
 941.01
FLPSDYFPSV
3580
 3.7





A*0207
 941.01
FLPSDYFPSV
3581
23





A*6802
1072.34
YVIKVSARV
3582
 8.0





A*0301
 941.12
KVFPYALINK
3583
11





A*1101
 940.06
AVDLYHFLK
3584
 6.0





A*3101
 941.12
KVFPYALINK
3585
18





A*3301
1083.02
STLPETYVVRR
3586
29





A*6801
 941.12
KVFPYALINK
3587
 8.0





A*2402
 979.02
AYIDNYNKF
3588
12





B*0702
1075.23
APRTLVYLL
3589
 5.5





B*3501
1021.05
FPFKYAAAF
3590
 7.2





B51
1021.05
FPFKYAAAF
3591
 5.5





B*5301
1021.05
FPFKYAAAF
3592
 9.3





B*5401
1021.05
FPFKYAAAF
3593
10
















TABLE V







HLA Class II Standard Peptide Binding Affinity.

















Binding




Standard


Affinity


Allele
Nomenclature
Peptide
SEQ ID
Sequence
(nM)





DRB1*0101
DR1
 515.01
3594
PKYVKQNTLKLAT
   5.0





DRB1*0301
DR3
 829.02
3595
YKTIAFDEEARR
 300





DRB1*0401
DR4w4
 515.01
3596
PKYVKQNTLKLAT
  45





DRB1*0404
DR4w14
 717.01
3597
YARFQSQTTLKQKT
  50





DRB1*0405
DR4w15
 717.01
3598
YARFQSQTTLKQKT
  38





DRB1*0701
DR7
 553.01
3599
QYIKANSKFIGITE
  25





DRB1*0802
DR8w2
 553.01
3600
QYIKANSKFIGITE
  49





DRB1*0803
DR8w3
 553.01
3601
QYIKANSKFIGITE
1600





DRB1*0901
DR9
 553.01
3602
QYIKANSKFIGITE
  75





DRB1*1101
DR5w11
 553.01
3603
QYIKANSKFIGITE
  20





DRB1*1201
DR5w12
1200.05
3604
EALIHQLKINPYVLS
 298





DRB1*1302
DR6w19
 650.22
3605
QYIKANAKFIGITE
   3.5





DRB1*1501
DR2w2β1
 507.02
3606
GRTQDENPVVHFFK
   9.1






NIVTPRTPPP






DRB3*0101
DR52a
 511
3607
NGQIGNDPNRDIL
 470





DRB4*0101
DRw53
 717.01
3608
YARFQSQTTLKQKT
  58





DRB5*0101
DR2w2β2
 553.01
3609
QYIKANSKFIGITE
  20










The “Nomenclature” column lists the allelic designations used in Tables XIX and XX.










Table VI







HLA-
Allelle-specific HLA-supertype members









supertype
Verifieda
Predictedb





A1
A*0101, A*2501, A*2601, A*2602, A*3201
A*0102, A*2604, A*3601, A*4301, A*8001


A2
A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207,
A*0208, A*0210, A*0211, A*0212, A*0213



A*0209, A*0214, A*6802, A*6901



A3
A*0301, A*1101, A*3101, A*3301, A*6801
A*0302, A*1102, A*2603, A*3302, A*3303, A*3401,




A*3402, A*6601, A*6602, A*7401


A24
A*2301, A*2402, A*3001
A*2403, A*2404, A*3002, A*3003


B7
B*0702, B*0703, B*0704, B*0705, B*1508, B*3501, B*3502, B*3503,
B*1511, B*4201, B*5901



B*3503, B*3504, B*3505, B*3506, B*3507, B*3508, B*5101, B*5102,




B*5103, B*5104, B*5105, B*5301, B*5401, B*5501, B*5502, B*5601,




B*5602, B*6701, B*7801



B27
B*1401, B*1402, B*1509, B*2702, B*2703, B*2704, B*2705,
B*2701, B*2707, B*2708, B*3802, B*3903, B*3904,



B*2706, B*3801, B*3901, B*3902, B*7301
B*3905, B*4801, B*4802, B*1510, B*1518, B*1503


B44
B*1801, B*1802, B*3701, B*4402, B*4403, B*4404, B*4001,
B*4101, B*4501, B*4701, B*4901, B*5001



B*4002, B*4006



B58
B*5701, B*5702, B*5801, B*5802, B*1516, B*1517



B62
B*1501, B*1502, B*1513, B*5201
B*1301, B*1302, B*1504, B*1505, B*1506, B*1507,




B*1515, B*1520, B*1521, B*1512, B*1514, B*1510






aVerified alleles include alleles whose specificity has been determined by pool sequencing analysis, peptide binding assays, or by analysis of the sequences of CTL epitopes.




bPredicted alleles are alleles whose specificity is predicted on the basis of B and F pocket structure to overlap with the supertype specificity.














TABLE VII







Malaria A01 Super Motif Peptides With Binding Data

















No. of
Sequence
Conservancy




Protein
Sequence
Position
Amino Acids
Frequency
(%)
A*010I
Seq. Id.

















CSP
AILSVSSF
6
8
19
100

1





CSP
AILSVSSFLF
6
10
19
100

2





CSP
ALFQEYQCY
18
9
19
100

3





CSP
EMNYYGKQENW
52
11
19
100

4





CSP
FLFVEALF
13
8
19
100

5





CSP
FLFVEALFQEY
13
11
19
100

6





CSP
FVEALFQEY
15
9
19
100
3.4000
7





CSP
GLIMVLSF
421
8
19
100

8





CSP
GLIMVLSFLF
421
10
19
100

9





CSP
ILSVSSFLF
7
9
19
100

10





CSP
IMVLSFLF
423
8
19
100

11





CSP
KIQNSLSTEW
357
10
19
79

12





CSP
KLAILSVSSF
4
10
19
100

13





CSP
KMEKCSSVF
405
9
19
100

14





CSP
LIMVLSFLF
422
9
19
100

15





CSP
LSVSSFLF
8
8
19
100

16





CSP
NLYNELEMNY
46
10
19
100

17





CSP
NLYNELEMNYY
46
11
19
100

18





CSP
NTRVLNELNY
31
10
19
100
0.0096
19





CSP
PSDKHIEQY
346
9
19
79

20





CSP
RVLELNY
33
8
19
100

21





CSP
SIGLIMVLSF
419
10
19
100

22





CSP
SSFLFVEALF
11
10
19
100

23





CSP
SSIGLIMVLSF
418
11
19
100

24





CSP
VSSFLFVEALF
10
11
19
100

25





CSP
EVNKRKSKY
66
9
1
100

26





EXP
FLALFFIIF
8
9
1
100

27





EXP
ILSVFFLALF
3
10
1
100

28





EXP
ILSVFFLALFF
3
11
1
100

29





EXP
KILSVFFLALF
2
11
1
100

30





EXP
LLGGVGLVLY
92
10
1
100

31





EXP
LSVFFLALF
4
9
1
100

32





EXP
LSVFFLALFF
4
10
1
100

33





EXP
LVEVNKRKSKY
64
11
1
100

34





EXP
NTEKGRHPF
102
9
1
100

35





EXP
SVFFLALF
5
8
1
100

36





EXP
SVFFLALFF
5
9
1
100

37





EXP
VLLGGVGLVLY
91
11
1
100

38





LSA
DLDEFKPIVQY
1781
11
1
100

39





LSA
DVLQEDLY
1646
8
1
100

40





LSA
DVNDFQISKY
1751
10
1
100

41





LSA
ELPSENERGY
1662
10
1
100

42





LSA
ELPSENERGYY
1662
11
1
100

43





LSA
ELSEDITTKY
1897
9
1
100

44





LSA
ELSEDITKYF
1897
10
1
100

45





LSA
ETVNISDVNDF
1745
11
1
100

46





LSA
FIKSLFHIF
1877
9
1
100

47





LSA
FILVNLLIF
11
9
1
100

48





LSA
HILYISFY
3
8
1
100

49





LSA
HILYISFYF
3
9
1
100

50





LSA
HVLSHNSY
59
8
1
100

51





LSA
IINDDDDKKKY
127
11
1
100

52





LSA
ILVNLLIF
12
8
1
100

53





LSA
ILYISFYF
4
8
1
100

54





LSA
KIKKGKKY
1834
8
1
100

55





LSA
KSLYDEHIKKY
1854
11
1
100

56





LSA
KTKNNENNKF
68
10
1
100

57





ISA
KTKNNENNKFF
68
11
1
100

58





LSA
LSEDITKY
1898
8
1
100

59





LSA
LSEDITKYF
1898
9
1
100

60





LSA
NISDVNDF
1748
8
1
100

61





LSA
NLGVSENIF
103
9
1
100

62





ISA
NVKNVSQTNF
88
10
1
100

63





ISA
PIVQYDNF
1787
8
1
100

64





LSA
PSENERGY
1664
8
1
100

65





LSA
PSENERGYY
1664
9
1
100
0.0790
66





LSA
QVNKEKEKF
1869
9
1
100

67





LSA
SLYDEHIKKY
1855
10
1
100

68





LSA
TVNISDVNDF
1746
10
1
100

69





SSP2
ALLACAGLAY
509
10
10
100

70





SSP2
ASCGVWDEW
242
9
10
100

71





SSP2
ATPYAGEPAPF
526
11
8
80

72





SSP2
CSGSIRRHNW
55
10
10
100

73





SSP2
DLDEPEQF
546
8
10
100

74





SSP2
EVCNDEVDLY
41
10
8
80

75





SSP2
EVEKTASCGVW
237
11
10
100

76





SSP2
FLIFFDLF
14
8
10
100

77





SSP2
FVVPGAATPY
520
10
8
80

78





SSP2
GIGQGINVAF
189
10
10
100

79





SSP2
GINVAFNRF
193
9
10
100

80





SSP2
GSIRRHNW
57
8
10
100

81





SSP2
IVFLIFFDLF
12
10
10
100

82





SSP2
KTASCGVW
240
8
10
100

83





SSP2
KTASCGVWDEW
240
11
10
100

84





SSP2
LLACAGLAY
510
9
10
100

85





SSP2
LLACAGLAYKF
510
11
10
100

86





SSP2
LLSTNLPY
121
8
9
90

87





SSP2
LVIVFLIF
10
8
10
100

88





SSP2
LVIVFLIFF
10
9
10
100

89





SSP2
NIVDEIKY
31
8
10
100

90





SSP2
NLYADSAW
213
8
10
100

91





SSP2
NVKNVIGPF
222
9
10
100

92





SSP2
NVKYLVIVF
6
9
10
100

93





SSP2
PSDGKCNLY
207
9
10
100
0.5400
94





SSP2
RLPEENEW
554
8
10
100

95





SSP2
SLLSTNLPY
120
9
9
90

96





SSP2
VIVFLIFF
11
8
10
100

97





SSP2
VIVFLIFFDLF
11
11
10
100

98





SSP2
VVPGAATPY
521
9
8
80

99





SSP2
YLVIVFLIF
9
9
10
100

100





SSP2
YLVIVFLIFF
9
10
10
100

101
















TABLE VIII 





Malaria A02 Motif Peptides With Binding Information
























No. of
Sequence
Conservancy



Protein
Sequence
Position
Amino Acids
Frequency
(%)
A*0201





CSP
HIEQYLKKI
350
9
15
79






CSP
KIQNSLST
361
8
15
79






CSP
YLKKIQNSL
358
9
15
79






CSP
YLKKIQNSLST
358
11
15
79






CSP
NANANNAV
335
8
16
84






CSP
NVDENANANNA
331
11
16
84






CSP
ELNYDNAGI
37
9
18
95






CSP
ELNYDNAGINL
37
11
18
95






CSP
GINLYNEL
44
8
18
95






CSP
GINLYNELEM
44
10
18
95






CSP
NAGINLYNEL
42
10
18
95






CSP
SLSTEWSPCSV
365
11
18
95






CSP
AILSVSSFL
6
9
19
100
0.0220





CSP
AILSVSSFLFV
6
11
19
100






CSP
DIEKKICKM
402
9
19
100






CSP
GIQVRIKPGSA
380
11
19
100






CSP
GLIMVLSFL
425
9
19
100
0.0630





CSP
GLIMVLSFLFL
425
11
19
100






CSP
ILSVSSFL
7
8
19
100






CSP
ILSVSSFLFV
7
10
19
100
0.0300





CSP
IMVLSFLFL
427
9
19
100
0.0007





CSP
IQVRIKPGSA
381
10
19
100






CSP
KICKMEKCSSV
406
11
19
100






CSP
KLAILSVSSFL
4
11
19
100






CSP
KLRICPICHKKL
104
10
19
100
0.0001





CSP
KMEKCSSV
409
8
19
100






CSP
KMEKCSSVFNV
409
11
19
100






CSP
KQENWYSL
58
8
19
100






CSP
LAILSVSSFL
5
10
19
100






CSP
LIMVLSFL
426
8
19
100






CSP
LIMVLSFLFL
426
10
19
100
0.0019





CSP
MMRKLAIL
1
8
19
100






CSP
MMRKLAILSV
1
10
19
100
0.0012





CSP
MVLSFLFL
428
8
19
100






CSP
NVDPNANPNA
300
10
19
100






CSP
NANPNVDPNA
196
10
19
100






CSP
NLYNELEM
46
8
19
100






CSP
NMPNDPNRNV
323
10
19
100
0.0007





CSP
NQGNGQGHNM
315
10
19
100






CSP
NTRVLNEL
31
8
19
100






CSP
NVDENANA
331
8
19
100






CSP
NVDPNANPNA
200
10
19
100






CSP
NVDPNANPNV
128
10
19
100






CSP
NVVNSSIGL
418
9
19
100






CSP
NVVNSSIGLI
418
10
19
100






CSP
NVVNSSIGLIM
418
11
19
100






CSP
QVRIKPGSA
382
9
19
100






CSP
RVLNELNYDNA
33
11
19
100






CSP
SIGLIMVL
423
8
19
100






CSP
SIGLIMVLSFL
423
11
19
100






CSP
SLKKNSRSL
64
9
19
100
0.0001





CSP
STEWSPCSV
367
9
19
100






CSP
STEWSPCSVT
367
10
19
100






CSP
SVFNVVNSSI
415
10
19
100
0.0005





CSP
SVSSFLFV
9
8
19
100






CSP
SVSSFLFVEA
9
10
19
100






CSP
SVSSFLFVEAL
9
11
19
100






CSP
SVTCQNGI
374
8
19
100






CSP
SVTCQNGIQV
374
10
19
100






CSP
VLNELNYDNA
34
10
19
100






CSP
VTCGNGIQV
375
9
19
100
0.0011





CSP
VTCGNGIQVRI
375
11
19
100






CSP
VVNSSIGL
419
8
19
100






CSP
VVNSSIGLI
419
9
19
100






CSP
VVNSSIGL1M
419
10
19
100






CSP
VVNSSIGLIMV
419
11
19
100






CSP
YQCYGSSSNT
23
10
19
100






EXP
ATSVLAGL
77
8
1
100






Exp
ATSVLAGLL
77
9
1
100






EXP
DMIKKEEEL
56
9
1
100






EXP
DNMUCEEELV
56
10
1
100






EXP
DVHDLISDM
49
9
1
100






EXP
DVHDLISDMI
49
10
1
100






EXP
EQPQGDDNINIL
147
10
1
100






EXP
EQPQGDDNNLV
147
11
1
100






EXP
EVNKRKSKYKL
66
11
1
100






EXP
FIIFNICESL
13
9
1
100






EXP
FIIFNKESLA
13
10
1
100






EXP
FLALFFII
8
8
1
100






EXP
GLLGNVST
83
8
1
100






EXP
GLLGNVSTV
83
9
1
100
0.0160





EXP
GLLGNVSTVL
83
10
1
100
0.0380





EXP
GLLGNVSTVLL
83
11
1
100






EXP
GVGLVLYNT
95
9
1
100






EXP
IIFNKESL
14
8
1
100






EXP
IIFNKESLA
14
9
1
100






EXP
ILSVFFLA
3
8
1
100






EXP
ILSVFFLAL
3
9
1
100
0.0058





EXP
KIGSSDPA
111
8
1
100






EXP
KIGSSDPADNA
111
11
1
100






EXP
KILSVFFL
2
8
1
100






EXP
KILSVFFLA
2
9
1
100
0.8500





EXP
KILSVFFLAL
2
10
1
100






EXP
KLATSVLA
75
8
1
100






EXP
KLATSVLAGL
75
10
1
100
0.0047





EXP
KLATSVLAGLL
75
11
1
100






EXP
KTNKGTGSGV
24
10
1
100






EXP
LABCTNKGT
21
9
1
100






EXP
LAGLLGNV
81
8
1
100






EXP
LAGLLGNVST
81
10
1
100






EXP
LAGLLGNVSTV
81
11
1
100






EXP
LATSVLAGL
76
9
1
100






EXP
LATSVLAGLL
76
10
1
100






EXP
LIDVHDLI
47
8
1
100






EXP
LIDVHDLISDM
47
11
1
100






EXP
LLGGVCLV
92
8
1
100






EXP
LLGGVCLVL
92
9
1
100
0.0038





EXP
LLGNVSTV
84
8
1
100






EXP
LLGNVSTVL
84
9
1
100
0.0350





EXP
LLGNVSTVLL
84
10
1
100
0.0059





EXP
MIKKEEEL
37
8
1
100






EXP
MIKKEEELV
57
9
1
100






EXP
MIKKEEELVEV
37
11
1
100






EXP
NADPQVTA
134
8
1
100






EXP
NADPQVTAQDV
134
11
1
100






EXP
NTEKGRHPFKI
102
11
1
100






EXP
NVSTVLLGGV
87
10
1
100






EXP
PADNANPDA
117
9
1
100






EXP
PLIDVHDL
46
8
1
100






EXP
PLIDVHDLI
46
9
1
100






EXP
PQGDDNNL
149
8
1
100






EXP
PQGDDNNLV
149
9
1
100






EXP
PQVTAQDV
137
8
1
100






EXP
PQVTAQDVT
137
9
1
100






EXP
QVTAQDVT
138
8
1
100






EXP
SLAEKTNKGT
20
10
1
100






EXP
STVLLGGV
89
8
1
100






EXP
STVLLGQVGL
89
10
1
100






EXP
STVLLGGVGLV
89
11
1
100






EXP
SVFFLALFFI
5
10
1
100
0.0017





EXP
SVPFLALFFH
5
11
1
100






EXP
SVLACLLGNV
79
10
1
100
0.0022





EXP
TVLLGGVGL
90
9
1
100






EXP
TVLLGGVCLV
90
10
1
100






EXP
TVLLGGVGLVL
90
11
1
100






EXP
VLAGLLGNV
80
9
1
100
0.0210





EXP
VLAGLLGNVST
80
11
1
100






EXP
VLLGGVCL
91
8
1
100






EXP
VLLGOVGLV
91
9
1
100
0.0290





EXP
VLLGGVCLVL
91
10
1
100
0.0290





LSA
DIQNHILET
1138
9
1
100






LSA
DIQNHTLETV
1738
10
1
100






LSA
DITKYFMKL
1901
9
1
100






LSA
DUDEFKPI
1781
8
1
100






LSA
DLDEFKPIV
1781
9
1
100
0.0001





LSA
DLEEKAAKET
148
10
1
100






LSA
DLEEKAAKETL
148
11
1
100






LSA
DLEQDRLA
1388
8
1
100






LSA
DLEQERLA
1609
8
1
100






LSA
DLEQERRA
1575
8
1
100






LSA
DLEMADT
1626
9
1
100






LSA
DUERTXASKET
1184
11
1
100






LSA
DLYGRLEI
1651
8
1
100






LSA
DLYGRLEIPA
1651
10
1
100






LSA
DLYGRLEIPAI
1651
11
1
100






LSA
DVLAEDLYGRL
1646
11
1
100






LSA
EILQIVDEL
1890
9
1
100






LSA
EISAEYDDSL
1763
10
1
100






LSA
EISAEYDDSLI
1763
11
1
100






LSA
EISIIEKT
1692
8
1
100






LSA
ELSEDITKYFM
1897
11
1
100






LSA
ELTMSNVKNV
83
10
1
100






LSA
EQDRLWEKL
1390
10
1
100






LSA
EQERLAKEKL
1611
10
1
100






LSA
EQERLANEKL
1526
10
1
100






LSA
EQERRAKEKL
1577
10
1
100






LSA
EQKEDKSA
1730
8
1
100






LSA
EQKEDKSADI
1730
10
1
100






LSA
EQQRDLEQERL
1605
11
1
100






LSA
EQQRDLEQRKA
1622
11
1
100






LSA
EQQSDLEQDRL
1384
11
1
100






LSA
EQQSDLEQERL
1588
11
1
100






LSA
EQQSDLERT
1180
9
1
100






LSA
EQQSDLERTKA
1180
11
1
100






LSA
EQQSDSEQERL
517
11
1
100






LSA
EQRKADTKKNL
1628
11
1
100






LSA
ETLQEQQSDL
1193
10
1
100






LSA
ETLWQQSDL
156
10
1
100






LSA
ETVNISDV
1745
8
1
100






LSA
FIKSLFHI
1877
8
1
100






LSA
FILVNLLI
11
8
1
100






LSA
FILVNLLIFIT
11
11
1
100






LSA
FQDEENIGI
1794
9
1
100






LSA
FQISKYEDE1
1755
10
1
100






LSA
GIOCSSEEL
1822
9
1
100






LSA
GIYKELEDL
1801
9
1
100






LSA
GIYKELEDLI
1801
10
1
100






LSA
GQDENRQEDL
140
10
1
100






LSA
GQQSDIEQISRL
1129
11
1
100






LSA
GVSENTFL
105
8
1
100






LSA
HIFDGDNEI
1883
9
1
100






LSA
HIFDGDNEIL
1883
10
1
100






LSA
HIKKYKNDKQV
1860
11
1
100






LSA
HILYISFYFI
3
10
1
100
0.0033





LSA
HILYISFYFIL
3
11
1
100






LSA
HLEEKKDGSI
1718
10
1
100






LSA
HTLETVNI
1742
8
1
100






LSA
HTLETVNISDV
1742
11
1
100






LSA
HVLSHNSYEKT
59
11
1
100






LSA
IIDONRESI
1695
10
1
100






LSA
IIEKTNRESIT
1695
11
1
100






LSA
IIKNSEKDEI
25
10
1
100






LSA
IIKNSEKDEII
25
11
1
100






LSA
ILQIVDEL
1891
8
1
100






LSA
ILVNLLIFHI
12
10
1
100
0.0076





LSA
ILYISFYFI
4
9
1
100
0.0023





LSA
ILYISFYFIL
4
10
1
100
0.0035





LSA
ILYISFYFILV
4
11
1
100






LSA
IQNHTLET
1739
8
1
100






LSA
IQNHTLETV
1739
9
1
100






LSA
IQNHTLETVN1
1739
11
1
100






LSA
IKYFMKL
1902
8
1
100






LSA
ITTNVEGRRDI
1704
11
1
100






LSA
IVDELSEDI
1894
9
1
100






LSA
IVDELSEDIT
1894
10
1
100






LSA
KADTICKNI
1631
8
1
100






LSA
KIIKNSEKDEI
24
11
1
100






LSA
KIKKGKKYEICT
1834
11
1
100






LSA
KLNKEGKL
116
8
1
100






LSA
KLNKEGKLI
116
9
1
100






LSA
KLQEQQRDL
1619
9
1
100






LSA
KLQGQQSDL
1585
9
1
100
0.0019





LSA
KLQGQQSDL
1126
9
1
100






LSA
KQVNKEKEKFI
1868
11
1
100






LSA
KTNRESIT
1698
8
1
100






LSA
KTINIRESITT
1698
9
1
100






LSA
KTNRESITNV
1698
11
1
100






LSA
LAEDLYGRL
1648
9
1
100






LSA
LAEDLYGRLEI
1648
11
1
100






LSA
LIDEEEDDEDL
1772
11
1
100






LSA
LIEICNENL
1809
8
1
100






LSA
LIEKNENLDDL
1809
11
1
100






LSA
LIFHJNGKI
17
9
1
100






LSA
LIFHINGKII
17
10
1
100
0.0002





LSA
LLIFHINGKI
16
10
1
100






LSA
LLIFHINGKII
16
11
1
100






LSA
LLRNLGVSENI
100
11
1
100






LSA
LQEQQRDL
1620
8
1
100






LSA
LQEQQSDL
1586
8
1
100






LSA
LQEQQSDLERT
1178
11
1
100






LSA
LQOQQSDL
1127
8
1
100






LSA
LQIVDELSEDI
1892
11
1
100






LSA
LTMSNVKNV
84
9
1
100
0.0010





LSA
LVNLLIFHI
13
9
1
100
0.0006





LSA
N1FLKENKL
109
9
1
100






LSA
NIGIYKEL
1799
8
1
100






LSA
NIGIYKELEDL
1799
11
1
100






LSA
NISDVNDFQI
1748
10
1
100






LSA
NLDDLDEGI
1815
9
1
100






LSA
NLERKKEHGDY
1637
11
1
100






LSA
NLGVSEN1
103
8
1
100






LSA
NLOVSENIFL
103
10
1
100






LSA
NLLIFHINGKI
15
11
1
100






LSA
NVEGRRDI
1707
8
1
100






LSA
NVKNVSQT
88
8
1
100






LSA
NVSQTNFKSL
91
10
1
100






LSA
NVSQTNFKSLL
91
11
1
100






LSA
QISKYEDEI
1756
9
1
100






LSA
QISKYEDEISA
1756
11
1
100






LSA
QIVDELSEDI
1893
10
1
100






LSA
QIVDELSEDIT
1893
11
1
100






LSA
QQRDLEQERL
1606
10
1
100






LSA
QQRDLEQERLA
1606
11
1
100






LSA
QQRDLEQERRA
1538
11
1
100






LSA
QQRDLEQRKA
1623
10
1
100






LSA
QQSDLEQDRL
1385
10
1
100






LSA
QQSDLEQDRLA
1385
11
1
100






LSA
QQSDLEQERL
1589
10
1
100






LSA
QQSDLEQDRLA
1589
11
1
100






LSA
QQSDLEQERRA
1572
11
1
100






LSA
QQSDLERT
1181
8
1
100






LSA
QQ6DLERTKA
1181
10
1
100






LSA
QQSDSEQERL
518
10
1
100






LSA
QQSDSEQERLA
518
11
1
100






LSA
QINFKSLL
94
8
1
100






LSA
QTNFKSLLRNL
94
11
1
100






LSA
QVNKEKEKFI
1869
10
1
100






LSA
RLEIPA1EL
1655
9
1
100






LSA
RQEDLEEKA
145
9
1
100






LSA
RQEDLEEKAA
145
10
1
100






LSA
RTKASKET
1187
8
1
100






LSA
RTKASKETL
1187
9
1
100






LSA
SADIQNHT
1736
8
1
100






LSA
SADIQNHTL
1736
9
1
100






LSA
SADIONITTLET
1736
11
1
100






LSA
SAEYDDSL
1765
8
1
100






LSA
SAEYDDSLI
1765
9
1
100






LSA
SIIEKTNRESI
I694
11
1
100






LSA
SLLRNLGV
99
8
1
100






LSA
SQTNFKSL
93
8
1
100






LSA
SQTNFKSLL
93
9
1
100






LSA
TLETVRISOV
1743
10
1
100






LSA
TLQEQQSDL
1194
9
1
100






LSA
TLQGQQSDL
157
9
1
100






LSA
TMSNVKNV
85
8
1
100






LSA
TMSNVICNVSQT
85
11
1
100






LSA
TTNVEGRRDI
1705
10
1
100






LSA
VLAEDLYGRL
1647
10
1
100






LSA
VLSHNSYEKT
60
10
1
100






LSA
YIPHQSSL
1672
8
1
100






LSA
YISFYFIL
6
8
1
100






LSA
YISFYFILV
6
9
1
100
0.0016





LSA
YISFYFILVNL
6
11
1
100






SSP2
AATPYAGEPA
525
10
8
80






SSP2
ATPYAGEPA
526
9
8
80






SSP2
EILHEGCTSEL
267
11
8
80






SSP2
EVCNDEVDL
41
9
8
80






SSP2
EVCNDEVDLVL
41
11
8
80






SSP2
EVDLYLLM
46
8
8
80






SSP2
FVVPGAATPYA
520
11
8
80






SSP2
GAATPYAGEPA
524
11
8
80






SSP2
ILHEGCTSEL
268
10
8
80






SSP2
LLSTNLPYGRT
121
11
8
80






SSP2
NLPYGRTNL
125
9
8
80






SSP2
SIRRHNWVNHA
58
11
8
80






SSP2
STNLPYGRT
123
9
8
80






SSP2
STNLPYQRTNI
123
11
8
80






SSP2
VVPGAATPYA
521
10
8
80






SSP2
WVNHAVPL
64
8
8
80






SSP2
WVNHAVPLA
64
9
8
80
0.0008





SSP2
WVNHAVPLAM
64
10
8
80






SSP2
YAGEPAPFDET
529
11
8
80






SSP2
ALLQVRKHL
136
9
9
90
0.0010





SSP2
DALLQVRKHL
135
10
9
90






SSP2
DAWNKEKALI
106
11
9
90






SSP2
DQPRPRGDNFA
302
11
9
90






SSP2
EIKYREEV
35
8
9
90






SSP2
IQDSLKESRKL
168
11
9
90






SSP2
IVDEIKYREEV
32
11
9
90






SSP2
LLQVRKHL
137
8
9
90






SSP2
LQVRKHLNDRI
138
11
9
90






SSP2
QVRKHLNDRI
139
10
9
90
0.0001





SSP2
SLICESRKL
171
8
9
90






SSP2
ALLACAGL
509
8
10
100






SSP2
ALLACAGLA
509
9
10
100
0.0006





SSP2
AMICLIQQL
72
8
10
100






SSP2
AMICLIQQLNL
72
10
10
100
0.0006





SSP2
AVCVEVEKT
233
9
10
100






SSP2
AVCVEVEKTA
233
10
10
100






SSP2
AVFGIGQGI
186
9
10
100
0.0001





SSP2
AVFGIGQGINV
186
11
10
100






SSP2
AVPLAMKL
68
8
10
100






SSP2
AVPLAMKLI
68
9
10
100
0.0001





SSP2
CAGLAYKFV
513
9
10
100






SSP2
CAGLAYKFVV
513
10
10
100
0.0015





SSP2
CVEVEKTA
235
8
10
100






SSP2
DASKNKEKA
106
9
10
100






SSP2
DASKNKD(AL
106
10
10
100






SSP2
DLDEPEQFRL
546
10
10
100
0.0001





SSP2
DLFLVNGRDV
19
10
10
100






SSP2
DVQNNIVDEI
27
10
10
100






SSP2
EIIRLHSDA
99
9
10
100






SSP2
ELHEGCT
267
8
10
100






SSP2
ETLGEEDKDL
538
10
10
100






SSP2
EVEKTASCGV
237
10
10
100






SSP2
FLIFFDLFL
14
9
10
100
1.2000





SSP2
FLIFFDLFLV
14
10
10
100
0.8000





SSP2
FLVNGRDV
21
8
10
100






SSP2
FMKAVCVEV
230
9
10
100
0.0290





SSP2
FVVPQAAT
520
8
10
100






SSP2
GIAGGLAL
503
8
10
100






SSP2
GIAGGLALL
503
9
10
100
0.0022





SSP2
GIAGGLALLA
503
10
10
100






SSP2
GIGQGTNV
189
8
10
100






SSP2
GIGQGINVA
189
9
10
100






SSP2
GINVAFNRFL
193
10
10
100






SSP2
GINVAFNRFLV
193
11
10
100






SSP2
GIPDSIQDSL
163
10
10
100






SSP2
GLALLACA
507
8
10
100






SSP2
GLALLACAGL
507
10
10
100
0.0170





SSP2
GLALLACAGLA
507
11
10
100






SSP2
GLAYKFVV
515
8
10
100






SSP2
GLAYKFVVPGA
515
11
10
100






SSP2
GTRSRKREI
260
9
10
100






SSP2
GTRSRKREIL
260
10
10
100






SSP2
GVKIAVFGI
182
9
10
100






SSP2
GVWDEWSPCSV
245
11
10
100






SSP2
HAVPLAMKL
67
9
10
100






SSP2
HAVPLAMKLI
67
10
10
100






SSP2
HLGNVKYL
3
8
10
100






SSP2
HLGNVKYLV
3
9
10
100
0.0017





SSP2
HLGNVKYLVI
3
10
10
100






SSP2
HLGNVKYLVIV
3
11
10
100






SSP2
HLNDRINRENA
143
11
10
100






SSP2
HVPNSEDRET
445
10
10
100






SSP2
LAGGIAGGL
500
9
10
100






SSP2
IAGGIAGGLA
500
10
10
100






SSP2
IAGGIAGGLAL
500
11
10
100






SSP2
LAGGLALL
504
8
10
100






SSP2
LAGGLALLA
504
9
10
100
0.0001





SSP2
IACTGLALLACA
504
11
10
100






SSP2
IAVFGIGQGI
185
10
10
100






SSP2
IIRLHSDA
100
8
10
100






SSP2
ILTDGIPDSI
159
10
10
100






SSP2
IVFLIFFDL
12
9
10
100
0.0024





SSP2
IVFLIFFDLFL
12
11
10
100






SSP2
KAVCVEVEKT
232
10
10
100






SSP2
KAVCVEVEKTA
232
11
10
100






SSP2
KIAGGIAGGL
499
10
10
100






SSP2
KIAGGIAGGLA
499
11
10
100






SSP2
KIAVFGIGQI
184
11
10
100






SSP2
KLIQQLNL
74
8
10
100






SSP2
LACAGLAYKFV
511
11
10
100






SSP2
LALLACAGL
508
9
10
100






SSP2
LALLACAGLA
508
10
10
100






SSP2
LAMKLIQQL
71
9
10
100






SSP2
LAMKLIQQLNL
71
11
10
100






SSP2
LAYKFVVPGA
516
10
10
100






SSP2
LAYICFVVPGAA
516
11
10
100






SSP2
LIFFDLFL
I5
8
10
100






SSP2
LIFFDLFLV
15
9
10
100
0.0890





SSP2
LLACAGLA
510
8
10
100






SSP2
LLMDCSGSI
51
9
10
100
0.0460





SSP2
LMDCSGSI
52
8
10
100






SSP2
LTDGIPDSI
160
9
10
100






SSP2
LVIVFLIFFDL
10
11
10
100






SSP2
LVNGRDVQNNI
22
11
10
100






SSP2
LVVILTDGI
156
9
10
100






SSP2
NANQLVVI
152
8
10
100






SSP2
NANQLVVIL
152
9
10
100






SSP2
NANQLVVILT
152
10
10
100






SSP2
NIPEDSEKEV
366
10
10
100






SSP2
NLYADSAWENV
213
11
10
100






SSP2
NQLVVILT
154
8
10
100






SSP2
NQLVVILTDGI
154
11
10
100






SSP2
NVAFNRFL
195
8
10
100






SSP2
NVAFNRFLV
195
9
10
100
0.0001





SSP2
NVIGPFMKA
225
9
I0
100
0.0002





SSP2
NVIGPFMKAV
225
10
10
100
0.0008





SSP2
NVKNVIGPFM
222
10
10
100






SSP2
NVKYLVIV
6
8
10
100






SSP2
NVKYLVIVFL
6
10
10
100






SSP2
NVKYLVIVFLI
6
11
10
100






SSP2
PAPFDETL
533
8
10
100






SSP2
PLANIKLIQQL
70
10
10
100






SSP2
QLVVILIDGI
155
10
10
100
0.0002





SSP2
RINRENANQL
147
10
10
100






SSP2
RINRENANQLV
147
11
10
100






SSP2
SAWENVKNV
218
9
10
100
0.0019





SSP2
SAWENVKNVI
218
10
10
100






SSP2
SIRRHNWV
58
8
10
100






SSP2
SQDNNGNRHV
437
10
10
100






SSP2
SVTCGKGT
254
8
10
100






SSP2
TLGEEDKDL
539
9
10
100
0.0001





SSP2
VAFNRFLV
196
8
10
100






SSP2
VIGPFMKA
226
8
10
100






SSP2
VIGPFMKAV
226
9
10
100
0.0004





SSP2
VIGPFMKAVCV
226
11
10
100






SSP2
VILTDGIPDSI
158
11
10
100






SSP2
VIVFLIFFDL
11
10
10
100
0.0038





SSP2
VQNNIVDEI
28
9
10
100






SSP2
VVILTDGI
157
8
10
100






SSP2
YADSAWENV
215
9
10
100






SSP2
YLLMDCSGSI
50
10
10
100
0.1700





SSP2
YLVIVFLI
9
8
10
100















Protein
A*0202
A*0203
A*0206
A*6802
Seq. Id





CSP




102





CSP




103





CSP




104





CSP




105





CSP




106





CSP




107





CSP




108





CSP




109





CSP




110





CSP




111





CSP




112





CSP




113





CSP




114





CSP




115





CSP




116





CSP




117





CSP




118





CSP




119





CSP




120





CSP




121





CSP




122





CSP




123





CSP




124





CSP




125





CSP




126





CSP




127





CSP




128





CSP




129





CSP




130





CSP




131





CSP




132





CSP




133





CSP




134





CSP




135





CSP




136





CSP




137





CSP




138





CSP




139





CSP




140





CSP




141





CSP




142





CSP




143





CSP




144





CSP




145





CSP




146





CSP




147





CSP




148





CSP




149





CSP




150





CSP




151





CSP




152





CSP




153





CSP




154





CSP




155





CSP




156





CSP




157





CSP




158





CSP




159





CSP




160





CSP




161





CSP




162





CSP




163





CSP




164





CSP




165





CSP




166





CSP




167





CSP




168





EXP




169





EXP




170





EXP




171





EXP




172





EXP




173





EXP




174





EXP




175





EXP




176





EXP




177





EXP




178





EXP




179





EXP




180





EXP




181





EXP




182





EXP




183





EXP




184





EXP




185





EXP




186





EXP




187





EXP




188





EXP




189





EXP




190





EXP




191





EXP




192





EXP




193





EXP




194





EXP




195





EXP




196





EXP




197





EXP




198





EXP




199





EXP




200





EXP




201





EXP




202





EXP




203





EXP




204





EXP




205





EXP




206





EXP




207





EXP




208





EXP




209





EXP




210





EXP




211





EXP




212





EXP




213





EXP




214





EXP




215





EXP




216





EXP




217





EXP




218





EXP




219





EXP




220





EXP




221





EXP




222





EXP




223





EXP




224





EXP




225





EXP




226





EXP




227





EXP




228





EXP




229





EXP




230





EXP




231





EXP




232





EXP




233





EXP




234





DT




235





EXP




236





EXP




237





EXP




238





EXP




239





EXP




240





EXP




241





LSA




242





LSA




243





LSA




244





LSA




245





LSA




246





LSA




247





LSA




248





LSA




249





LSA




250





LSA




251





LSA




252





LSA




253





LSA




255





LSA




256





LSA




257





LSA




258





LSA




259





LSA




260





LSA




261





LSA




262





LSA




263





LSA




264





LSA




265





LSA




266





LSA




267





LSA




268





LSA




269





LSA




270





LSA




271





LSA




272





LSA




273





LSA




274





LSA




275





LSA




276





LSA




277





LSA




278





LSA




279





LSA




280





LSA




281





LSA




282





LSA




283





LSA




284





LSA




285





LSA




286





LSA




287





LSA




288





LSA




289





LSA




290





LSA




291





LSA




292





LSA




293





LSA




294





LSA




295





LSA




296





LSA




297





LSA




298





LSA




299





LSA




300





LSA




301





LSA




302





LSA




303





LSA




304





LSA




305





LSA




306





LSA




307





LSA




308





LSA




309





LSA




310





LSA




311





LSA




312





LSA




313





LSA




314





LSA




315





LSA




316





LSA




317





LSA




318





LSA




319





LSA




320





LSA




321





LSA




322





LSA




323





LSA




324





LSA




325





LSA




326





LSA




327





LSA




328





LSA




329





LSA




330





LSA




331





LSA




332





LSA




333





LSA




334





LSA




335





LSA




336





LSA




337





LSA




338





LSA




339





LSA




340





LSA




341





LSA




342





LSA




343





LSA




344





LSA




345





LSA




346





LSA




347





LSA




348





LSA




349





LSA




350





LSA




351





LSA




352





LSA




353





LSA




354





LSA




355





LSA




356





LSA




357





LSA




258





LSA




359





LSA




360





LSA




361





LSA




362





LSA




363





LSA




364





LSA




365





LSA




366





LSA




367





LSA




368





LSA




369





LSA




370





LSA




371





LSA




372





LSA




373





LSA




374





LSA




375





LSA




376





LSA




377





LSA




378





LSA




379





LSA




380





LSA




381





LSA




382





LSA




383





LSA




384





LSA




385





LSA




386





LSA




387





LSA




388





LSA




389





LSA




390





LSA




391





LSA




392





LSA




393





LSA




394





LSA




395





LSA




396





LSA




397





LSA




398





LSA




399





LSA




400





LSA




401





LSA




402





LSA




403





LSA




404





LSA




405





SSP2




406





SSP2




407





SSP2




408





SSP2




409





SSP2




410





SSP2




411





SSP2




412





SSP2




413





SSP2




414





SSP2




415





SSP2




416





SSP2




417





SSP2




418





SSP2




419





SSP2




420





SSP2




421





SSP2




422





SSP2




423





SSP2




424





SSP2




425





SSP2




426





SSP2




427





SSP2




428





SSP2




429





SSP2




430





SSP2




431





SSP2




432





SSP2




433





SSP2




434





SSP2




435





SSP2




436





SSP2




437





SSP2




438





SSP2




439





SSP2




440





SSP2




441





SSP2




442





SSP2




443





SSP2




444





SSP2




445





SSP2




446





SSP2




447





SSP2




448





SSP2




449





SSP2




450





SSP2




451





SSP2




452





SSP2




453





SSP2




454





SSP2




455





SSP2




456





SSP2




457





SSP2




458





SSP2




459





SSP2




460





SSP2




461





SSP2




462





SSP2




463





SSP2




464





SSP2




465





SSP2




466





SSP2




467





SSP2




468





SSP2




469





SSP2




470





SSP2




471





SSP2




472





SSP2




473





SSP2




474





SSP2




475





SSP2




476





SSP2




477





SSP2




478





SSP2




479





SSP2




480





SSP2




481





SSP2




482





SSP2




483





SSP2




484





SSP2




485





SSP2




486





SSP2




487





SSP2




488





SSP2




489





SSP2




490





SSP2




491





SSP2




492





SSP2




493





SSP2




494





SSP2




495





SSP2




496





SSP2




497





SSP2




498





SSP2




499





SSP2




500





SSP2




501





SSP2




502





SSP2




503





SSP2




504





SSP2




505





SSP2




506





SSP2




507





SSP2




508





SSP2




509





SSP2




510





SSP2




511





SSP2




512





SSP2




513





SSP2




514





SSP2




515





SSP2




516





SSP2




517





SSP2




518





SSP2




519





SSP2




520





SSP2




521





SSP2




522





SSP2




523





SSP2




524





SSP2




525





SSP2




526





SSP2




327





SSP2




528





SSP2




529





SSP2




530





SSP2




531





SSP2




532





SSP2




533





SSP2




534





SSP2




535





SSP2




536





SSP2




337





SSP2




538





SSP2




339





SSP2




540





SSP2




541





SSP2




542





SSP2




543





SSP2




544





SSP2




545





SSP2




546





SSP2




547





SSP2




548





SSP2




549





SSP2




550





SSP2




551





SSP2




552





SSP2




553





SSP2




554





SSP2




555





SSP2




556





SSP2




557
















TABLE IX





Malaria A03 Super Motif Peptides With Binding Data
























No. of
Sequence
Conservancy



Protein
Sequence
Position
Amino Acids
Frequency
(%)
A*301





CSP
DIEKKICK
402
8
19
100






CSP
DIEKKICKMEK
402
11
19
100






CSP
ELEMNYYGK
50
9
19
100
0.0001





CSP
KLRKPKHK
104
8
19
100






CSP
KLRKPKHKK
104
9
19
100
0.1300





CSP
KLRKPKHKKLK
104
11
19
100






CSP
NANANNAVK
335
9
16
84
0.0001





CSP
NANPNANPNK
304
10
19
100
0.0005





CSP
NMPNDPNR
323
8
19
100






CSP
SVTCGNGIQVR
374
11
19
100






CSP
VTCGNGIQVR
375
10
19
100
0.0005





CSP
YSLKKNSR
63
8
19
100






EXP
ALFFIIFNK
10
9
1
100
1.1000





EXP
DLISDMIK
52
8
1
100






EXP
DLISDMIKK
52
9
1
100
0.0001





EXP
DVHDLISDMIK
49
11
1
100






EXP
ELVEVNKR
63
8
1
100






EXP
ELVEVNKRK
63
9
1
100
0.0001





EXP
ELVEVNKRKSK
63
11
1
100






EXP
ESLAEKTNK
19
9
1
100
0.0001





EXP
EVNKRKSK
66
8
1
100






EXP
EVNKRKSKYK
66
10
1
100
0.0005





EXP
FLALFFIIFNK
8
11
1
100






EXP
GLVLYNTEK
97
9
1
100
0.0069





EXP
GLVLYNTEKGR
97
11
1
100






EXP
GSGVSSKK
30
8
1
100






EXP
GSGVSSKKK
30
9
1
100
0.0003





EXP
GSGVSSKKKNK
30
11
1
100






EXP
GTGSGVSSK
28
9
1
100
0.0039





EXP
GTGSGVSSKK
28
10
1
100
0.0071





EXP
GTGSGVSSKKK
28
11
1
100






EXP
GVGLVLYNTEK
95
11
1
100






EXP
GVSSKKKNK
32
9
1
100
0.0001





EXP
GVSSKKKNKK
32
10
1
100
0.0011





EXP
IIFNKESLAEK
14
11
1
100






EXP
LALFFTIIFNK
9
10
1
100
0.014





EXP
LISDMIKK
53
8
1
100






EXP
LVEVNKRK
64
8
1
100






EXP
LVEVNKRKSK
64
10
1
100
0.0005





EXP
LVLYNTEK
98
8
1
100






EXP
LVLYNTEKGR
98
10
1
100
0.0005





EXP
NTEKGRHPFK
102
10
1
100
0.0047





EXP
SLAEKTNK
20
8
1
100






EXP
SSKKKNKK
34
8
1
100






EXP
VLYNTEKGRS
99
9
1
100
0.0110





EXP
VSSKKKNK
33
8
1
100






EXP
VSSKKKNKK
33
9
1
100
0.0001





LSA
AIELPSENER
1660
10
1
100
0.0001





LSA
DIHKGHLEEK
1713
10
1
100
0.0004





LSA
DIHKGHLEEKK
1713
11
1
100






LSA
DITKYFMK
1901
8
1
100






LSA
DLDEGIEK
1818
8
1
100






LSA
DLEEKAAK
148
8
1
100






LSA
DLEQDRLAK
1388
9
1
100
0.0001





LSA
DLEQDRLAKEK
1388
11
1
100






LSA
DLEQERLAK
1609
9
1
100
0.0001





LSA
DLEQERLAKEK
1609
11
1
100






LSA
DLEQERLANEK
1524
11
1
100

















LSA
DLEQERRAK
1575
9
1
100
0.0001





LSA
DLEQERRAIUEK
1575
11
1
100






LSA
DLEQRKADTK
1626
10
1
100
0.0001





LSA
DLEQRKADTKK
1626
11
1
100






LSA
DLERTICASK
1184
9
1
100
0.0001





LSA
DSEQERLAK
521
9
1
100
0.0001





LSA
CGEQERLAKEK
521
11
1
100






LSA
DSKEISIIEK
1689
10
1
100
0.0001





LSA
DTKKNLER
1633
8
1
100






LSA
DTKKNLERK
1633
9
1
100
0.0001





LSA
DTKKKNLERKK
1633
10
1
100
0.0001





LSA
DVLAEDLYGR
1646
10
1
100
0.0001





LSA
DVNDFQISK
1751
9
1
100
0.0001





LSA
EIIKSNLR
33
8
1
100






LSA
EISIIEKTNR
1692
10
1
100
0.0001





LSA
ELEDLIEK
1805
8
1
100






LSA
ELPSENER
1662
8
1
100






LSA
ELSEDITK
1897
8
1
100






LSA
ELSEEKIK
1829
8
1
100






LSA
ELSEEKIKK
1829
9
1
100
0.0002





LSA
ELSEEKIKKGK
1829
11
1
100






LSA
ELTMSNVK
83
8
1
100






LSA
ESITTNVEGR
1702
10
1
100
0.0001





LSA
ESITTNVEGRR
1702
11
1
100






LSA
FLKENKLNK
111
9
1
100
0.0260





LSA
GSIKPEQK
1725
8
1
100






LSA
GSIKPEQKEDK
1725
11
1
100






LSA
GSSNSRNR
42
8
1
100






LSA
GVSENIFLK
105
9
1
100
0.2700





LSA
HIINDDDDK
126
9
1
100
0.0002





LSA
HIINDDDDKK
126
10
1
100
0.0001





LSA
HIINDDDDKKK
126
11
1
100






LSA
HIKKYKNDK
1860
9
1
100
0.0002





LSA
HINGKIIK
20
8
1
100






LSA
HLEEKICDGSIK
1718
11
1
100






LSA
HVLSHNSYEK
59
10
1
100
0.0170





LSA
QNDDDDK
127
8
1
100






LSA
IINDDDDKK
127
9
1
100
0.0002





LSA
IINDDDDIUCK
127
10
1
100
0.0001





LSA
ISDVNDFQISK
1749
11
1
100






LSA
ISIIEKTNR
1693
9
1
100
0.0001





LSA
ITTNVEGR
1704
8
1
100






LSA
ITINVEGRR
1704
9
1
100
0.0002





LSA
IVDELSEDMC
1894
11
1
100






LSA
ICADIKKNLER
1631
10
1
100
0.0001





LSA
KADTKKNLERK
1631
11
1
100






LSA
KIIKNSEK
24
8
1
100






LSA
ICQUCGKKYEK
1834
10
1
100
0.0081





LSA
KLQEQQSDLER
1177
11
1
100






LSA
KSLYDEHIK
1854
9
1
100
0.0005





LSA
KSLYDEHIKIC
1854
10
1
100
0.0094





LSA
KSSEELSEEK
1825
10
1
100
0.0001





LSA
KTKDNNFK
1843
8
1
100






LSA
KTKNNENNK
68
9
1
100
0.0028





LSA
LAEDLYGR
1648
8
1
100






LSA
LAKEKLQEQQR
1615
11
1
100






LSA
LANEKLQEQQR
1530
11
1
100






LSA
LIFHINGK
17
8
1
100






LSA
LIGHINKKIIK
17
11
1
100






LSA
LLIFHINKGK
16
9
1
100
0.0260





LSA
LSEDITKYFMK
1898
11
1
100






LSA
LSEEKIKK
1830
8
1
100






LSA
LSEEKIKKGK
1830
10
1
100
0.0004





LSA
LSEEKIKKGKK
1830
11
1
100






LSA
LSHNSYEK
61
8
1
100






LSA
LSHNSYEKTK
61
10
1
100
0.0004





LSA
NIFLKENK
109
8
1
100






LSA
NKFLKENKLNK
109
11
1
100






LSA
LNDDLDEGIEK
1815
11
1
100






LSA
NLGVSENTFLK
103
11
1
100






LSA
NLLIGHINGK
15
10
1
100
0.0049





LSA
NLRSGSSNSR
38
10
1
100
0.0004





LSA
NSEKDETIK
28
9
1
100
0.0002





LSA
NSRNRINEEK
45
10
1
100
0.0004





LSA
NVEGRRDIHK
1707
10
1
100
0.0004





LSA
NVKNVSQTNFK
88
11
1
100






LSA
NVSQTNFK
91
8
1
100






LSA
PAIELPSENER
1659
11
1
100






LSA
QSDLEQDR
1386
8
1
100






LSA
QSDLEQDRLAK
1386
11
1
100






LSA
QSKLEQER
1590
8
1
100






LSA
QSDLEQERLAK
1590
11
1
100






LSA
QSKLEQERR
1573
9
1
100
0.0002





LSA
QSDLEQERRAK
1573
11
1
100






LSA
QSDLERTK
1182
8
1
100






LSA
QSDLERTKASK
1182
11
1
100






LSA
QSDSEQER
519
8
1
100






LSA
QSDSEQERLAK
519
11
1
100






LSA
QSSLPQDNR
1676
9
1
100
0.0002





LSA
QTNFKSLLR
94
9
1
100
0.0320





LSA
QVNKEKEK
1869
8
1
100






LSA
QVNKEKEKFIK
1869
11
1
100






LSA
RINEEKHEK
49
9
1
100
0.0033





LSA
RINEEKHEKK
49
10
1
100
0.0024





LSA
RSGSSNSR
40
8
1
100






LSA
RSGSSNSRNR
40
10
1
100
0.0011





LSA
SIIEKTNR
1694
8
1
100






LSA
SIKPEQKEDK
1726
10
1
100
0.0002





LSA
SITTNVEGR
1703
9
1
100
0.0002





LSA
SITTNVEGRR
1703
10
1
100
0.0002





LSA
SLPQDNRDNSR
1678
11
1
100






LSA
SLYDEHIK
1855
8
1
100






LSA
SLYDEHIKK
1855
9
1
100
0.0460





LSA
SLYDEHIKKYK
1855
11
1
100






LSA
SSEELSEEK
1826
9
1
100
0.0002





LSA
SSEELSEEKIK
1826
11
1
100






LSA
SSLPQDNR
1677
8
1
100






LSA
TTNVEGRR
1705
8
1
100






LSA
VLAEDLYGR
1647
9
1
100
0.0013





LSA
VLSHNSYEK
60
9
1
100
0.0280





LSA
VLSHNSYEKTK
60
11
1
100






LSA
VSENTIFLK
106
8
1
100






LSA
VSENIFLKENK
106
11
1
100






LSA
VSQTNFKSLLR
92
11
1
100






LSA
YIKGQDENR
137
9
1
100
0.0025





SSP2
ALLACAGLAYK
509
11
10
100






SSP2
AVCVEVEK
233
8
10
100






SSP2
CSVTCGKGTR
253
10
10
100
0.0002





SSP2
DALLQVRK
135
8
9
90






SSP2
DASKNKEK
106
8
10
100






SSP2
DIPKKPENK
392
9
10
100
0.0004





SSP2
DLDEPEQFR
546
9
10
100
0.0002





SSP2
DLFLVNGR
19
8
10
100






SSP2
DSAWENVK
217
8
10
100






SSP2
DSIQDSLK
166
8
10
100






SSP2
DSIQDSLKESR
166
11
10
100






SSP2
DSLKESRK
170
8
9
90






SSP2
DVPKNPEDDR
378
10
10
100
0.0002





SSP2
DVQNNIVDEIK
27
11
10
100






SSP2
EIIRLHSDASK
99
11
10
100






SSP2
ELQEQCEEER
276
10
8
80
0.0002





SSP2
ETLGEEDK
538
8
10
100






SSP2
EVPSDVPK
374
8
10
100






SSP2
FLVGCHPSDCK
201
11
10
100






SSP2
FMKAVCVEVEK
230
11
10
100






SSP2
GINVAFNR
193
8
10
100






SSP2
GIPDSIQDSLK
163
11
10
100






SSP2
HAVPLAMK
67
8
10
100






SSP2
HLNDRINR
143
8
10
100






SSP2
HSDASKNK
104
8
10
100






SSP2
HSDASKNKEK
104
10
10
100
0.0004





SSP2
HVPNSEDR
445
8
10
100






SSP2
HVPNSEDRETR
445
11
9
90






SSP2
IIRLHSDASK
100
10
10
100
0.0230





SSP2
1VDEIKYR
32
8
9
90






SSP2
KAVCVEVEK
232
9
10
100
0.0004





SSP2
KVLDNERK
421
8
8
80






SSP2
LACAGLAYK
511
9
10
100
0.0240





SSP2
LLACAGLAYK
510
10
10
100
0.9500





SSP2
LLMDCSGSIR
51
10
10
100
0.0004





SSP2
LLMDCSGSIRR
51
11
10
100






SSP2
LLQVRKHLNDR
137
11
9
90






SSP2
LLSTNLPYGR
121
10
8
80
0.0017





SSP2
LMDCSGSIR
52
9
10
100
0.0004





SSP2
LMDCSGSIRR
52
10
10
100
0.0015





SSP2
LSTNLPYGR
122
9
8
80
0.0004





SSP2
LVGCHPSDGK
202
10
10
100
0.0004





SSP2
NIPEDSEK
366
8
10
100






SSP2
NIVDEIKYR
31
9
9
90
0.0005





SSP2
NLPNDKSDR
406
9
10
100
0.0005





SSP2
NSEDRETFT
448
8
9
90






SSP2
NVIGPFMK
225
8
10
100






SSP2
NVICNVIGPFMK
222
11
10
100






SSP2
PSPNPEEGK
328
9
10
100
0.0005





SSP2
QSQDNNGNR
436
9
10
100
0.0005





SSP2
QVRKHLNDR
139
9
9
90
0.0005





SSP2
RLHSDASK
102
8
10
100






SSP2
RLHSDASKNK
102
10
10
100
0.0240





SSP2
SIQDSLKESR
167
10
10
100
0.0004





SSP2
SIQDSLKESRK
167
11
9
90






SSP2
SLLSTNLPYGR
120
11
8
80






SSP2
STNLPYGR
123
8
8
80






SSP2
SVTCGKGTR
254
9
10
100
0.0005





SSP2
SVTCGKGTRSR
254
11
10
100






SSP2
VTCGKGTR
255
8
10
100






SSP2
VPCGKGTISR
255
10
10
100
0.0004





SSP2
VTCGKGTRSRK
255
11
10
100






SSP2
WSPCSVTCGK
250
10
10
100
0.0004





SSP2
WVNHAVPLAMK
64
11
8
80






SSP2
YADSAWENVK
215
10
10
100
0.0004





SSP2
YLLMDCSGSIR
50
11
10
100















Protein
A*1101
A*3101
A*3301
A*6801
Seq id.





CSP




558





CSP




559





CSP
0.0003



560





CSP




561





CSP
0.0037



562





CSP




563





CSP
0.0002
0.0006
0.0096
0.0210
564





CSP
0.0021
0.0009
0.0009
0.0054
565





CSP




566





CSP




567





CSP
0.0340



568





CSP




569





EXP
1.2000



570





EXP




571





EXP
0.0003



572





EXP




573





EXP




574





EXP
0.0002



575





EXP




576





EXP
0.0002
0.0004
0.0110
0.0260
577





EXP




578





EXP
0.0002



579





EXP




580





EXP
0.0055



581





EXP




582





EXP




583





EXP
0.0065
0.0004
0.0010
0.0002
584





EXP




585





EXP
0.0180



586





EXP
0.0340



587





EXP




588





EXP




589





EXP
0.0002



590





EXP
0.0002



591





EXP




592





EXP
0.0530
0.0072
0.0076
0.0039
593





EXP




594





EXP




595





EXP
0.0002



596





EXP




597





EXP
0.0002



598





EXP
0.0080



599





EXP




600





EXP




601





EXP
0.0007
0.0039
0.0055
0.0022
602





EXP




603





EXP
0.0002
0.0004
0.0010
0.0002
604





LSA
0.0002
0.0009
0.0008
0.0029
605





LSA
0.0002
0.0009
0.0055
0.0046
606





LSA




607





LSA




608





LSA




609





LSA




610





LSA
0.0002



611





LSA




612





LSA
0.0002



613





LSA




614





LSA




615





LSA
0.0002



616





LSA




617





LSA
0.0002



618





LSA




619





LSA
0.0002



620





LSA
0.0002
0.0004
0.0010
0.0002
621





LSA




622





LSA
0.0002



623





LSA




624





LSA
0.0002



625





LSA
0.0002



626





LSA
0.0002



627





LSA
0.0018



628





LSA




629





LSA
0.0002



630





LSA




631





LSA




632





LSA




633





LSA




634





LSA
0.0002



635





LSA




636





LSA




637





LSA
0.0002



638





LSA




639





LSA
0.0005



640





LSA




641





LSA




642





LSA




643





LSA
0.6600



644





LSA
0.0002



645





LSA
0.0002
0.0009
0.0009
0.0003
646





LSA




647





LSA
0.0002



648





LSA




649





LSA




650





LSA
0.0140



651





LSA




652





LSA
0.0002



653





LSA
0.0002



654





LSA




655





LSA
0.0008
0.0320
0.0150
0.0054
656





LSA




657





LSA
0.0007
0.0025
0.0043
0.3200
658





LSA




659





LSA
0.0002
0.0086
0.0011
0.0003
660





LSA




661





LSA




662





LSA
0.0007
0.0042
0.0009
0.0003
663





LSA




664





LSA
0.0340
0.0004
0.0010
0.0002
665





LSA
0.0490



666





LSA
0.0009



667





LSA




668





LSA
0.0038



669





LSA




670





LSA




671





LSA




672





LSA




673





LSA




674





LSA
0.0100



675





LSA




676





LSA




677





LSA
0.0002



678





LSA




679





LSA




680





LSA
0.0002



681





LSA




682





LSA




683





LSA




684





LSA




685





LSA
0.0008



686





LSA
0.0002



687





LSA
0.0002
0.0004
0.0010
0.0002
688





LSA
0.0002



689





LSA
0.0002



690





LSA




691





LSA




692





LSA




692





LSA




694





LSA




695





LSA




696





LSA




697





LSA
0.0002
0.0006
0.0005
0.0005
698





LSA




699





LSA




700





LSA




701





LSA




702





LSA




703





LSA
0.0013
0.0150
0.014
0.0480
704





LSA
0.0440
0.0820
0.0180
0.1300
705





LSA




706





LSA




707





LSA
0.0370



708





LSA
0.0018
0.0009
0.0009
0.0003
709





LSA




710





LSA
0.0002



711





LSA




712





LSA
0.0002
0.0009
0.0009
0.0003
713





LSA
0.0027



714





LSA
0.0002



715





LSA




716





LSA




717





LSA
0.4100



718





LSA




719





LSA
0.0017
0.0004
0.0010
0.0002
720





LSA




721





LSA




722





LSA




723





LSA
0.0004
0.0083
0.0220
0.0032
724





LSA
0.0280



725





LSA




726





LSA




727





LSA




728





LSA




729





LSA
0.0002



730





SSP2




731





SSP2




732





SSP2
0.0002



733





SSP2




734





SSP2




735





SSP2
0.0002



736





SSP2
0.0002
0.0004
0.0170
0.0002
737





SSP2




738





SSP2




739





SSP2




740





SSP2




741





SSP2




742





SSP2
0.0002



743





SSP2




744





SSP2




745





SSP2
0.0002



746





SSP2




747





SSP2




748





SSP2




749





SSP2




750





SSP2




751





SSP2




752





SSP2




753





SSP2




754





SSP2




755





SSP2
0.0002



756





SSP2




757





SSP2




758





SSP2
0.0002
0.0009
0.0009
0.0013
759





SSP2




760





SSP2
0.0076
0.0009
0.0005
0.0029
761





SSP2




762





SSP2
0.0290
0.0150
0.3200
0.1100
763





SSP2
0.0870



764





SSP2
0.0005



765





SSP2




766





SSP2




767





SSP2
0.0025



768





SSP2
0.0002
0.0370
0.0430
0.0010
769





SSP2
0.0002



770





SSP2
0.0100
0.2900
0.0760
0.2700
771





SSP2
0.0002



772





SSP2




773





SSP2
0.0002



774





SSP2
0.0002



775





SSP2




776





SSP2




777





SSP2




778





SSP2
0.0002
0.0004
0.0010
0.0002
779





SSP2
0.0002
0.0020
0.0093
0.0018
780





SSP2
0.0002
0.0041
0.0570
0.0002
781





SSP2




782





SSP2
0.0002



783





SSP2
0.0009



784





SSP2




785





SSP2




786





SSP2




787





SSP2
0.0009
0.0031
0.0039
0.0310
788





SSP2




789





SSP2




790





SSP2
0.0017



791





SSP2




792





SSP2
0.0002



793





SSP2




794





SSP2
0.0002
0.0009
0.0009
0.0077
795





SSP2




796
















TABLE X







Malaria A24 Super Motif Peptides With Binding Information

















No. of
Sequence
Conservancy




Protein
Sequence
Position
Amino Acids
Frequency
(%)
A*201
Seq Id.

















CSP
AILSVSSF
6
8
18
95

797





CSP
AILSVSSFL
6
9
19
100

798





CSP
AILSVSSFLF
6
10
19
100

799





CSP
ALFQEYQCY
18
9
19
100

800





CSP
CYGSSSNTRVL
25
11
19
100

801





CSP
DIEKKICKM
402
9
19
100

802





CSP
DYENDIEKKI
398
10
18
95

803





CSP
ELNYDNAGI
37
9
18
95

804





CSP
ELNYDNAGINL
37
11
18
95

805





CSP
EMNYYGKQENW
52
11
19
100

806





CSP
FLFVEALF
13
8
19
100

807





CSP
FLFVEALFQEY
13
11
19
100

808





CSP
FVEALFQEY
15
9
19
100

809





CSP
GINLYNEL
44
8
18
95

810





CSP
GINLYNELEM
44
10
18
95

811





CSP
GLIMVLSF
425
8
19
100

812





CSP
GLIMVLSFL
425
9
19
100

813





CSP
GLIMVLSFLF
425
10
19
100

814





CSP
GLIMVLSFLFL
425
11
19
100

815





CSP
HIEQYLKKI
350
9
15
79

816





CSP
ILSVSSFL
7
8
19
100

817





CSP
ILSVSSFLF
7
9
19
100

818





CSP
IMVLSFLF
427
8
19
100

819





CSP
IMVLSFLFL
427
9
19
100
0.0008
820





CSP
KIQNSLSTEW
361
10
15
79

821





CSP
KLAILSVSSF
4
10
19
100

822





CSP
KLAILSVSSFL
4
11
19
100

823





CSP
KLRKPICHICKL
104
10
19
100

824





CSP
KMEKCSSVF
409
9
19
100

825





CSP
LFQEYQCY
19
8
19
100

826





CSP
LFVEALFQEY
14
10
19
100

827





CSP
LIMVLSFL
426
8
19
100

828





CSP
LIMVLSFLF
426
9
19
100

829





CSP
LIMVLSFLFL
426
10
19
100

830





CSP
LYNELEMNY
47
9
19
100

831





CSP
LYNELEMNYY
47
10
19
100

832





CSP
MMRKLAIL
1
8
19
100

833





CSP
MVLSFLFL
428
8
19
100

834





CSP
NLYNELEM
46
8
19
100

835





CSP
NLYNELEIINY
46
10
19
100

836





CSP
NLYNELINNYY
46
11
19
100

837





CSP
NTRVLNEL
31
8
19
100

838





CSP
NTRYLNELNY
31
10
19
100

839





CSP
NVVNSSIGL
418
9
19
100

840





CSP
NVVNSSIGLI
418
10
19
100

841





CSP
NVVNSSIGLIM
418
11
19
100

842





CSP
NYDNAGINL
39
9
18
95
0.0004
843





CSP
NYDNAGINLY
39
10
18
95

844





CSP
NYYGKQENW
54
9
19
100

845





CSP
NYYGKQENWY
54
10
19
100

846





CSP
RVLNELNY
33
8
19
100

847





CSP
SFLFVEAL
12
8
19
100

848





CSP
SFLFVEALF
12
9
19
100

849





CSP
SIGLIMVL
423
8
19
100

850





CSP
SIGLIMVLSF
423
10
19
100

851





CSP
SIGLIMVLSFL
423
11
19
100

852





CSP
SLKKNSRSL
64
9
19
100

853





CSP
SVFNVVNSSI
415
10
19
100

854





CSP
SVSSFLFVEAL
9
11
19
100

855





CSP
SVTCGNGI
374
8
19
100

856





CSP
VFNVVNSSI
416
9
19
100

857





CSP
VFNVVNSSIGL
416
11
19
100

858





CSP
VTCGNGIQVRI
375
11
19
100

859





CSP
VVNSSIGL
419
8
19
100

860





CSP
VVNSSIGLI
419
9
19
100

861





CSP
VVNSSIGL1M
419
10
19
100

862





CSP
WYSLKKNSRSL
62
11
19
100

863





CSP
YLKKIQNSL
358
9
15
79

864





CSP
YYGKQENW
55
8
19
100

865





CSP
YYGKQENWY
55
9
19
100

866





CSP
YYGKQENWYSL
55
11
19
100

867





EXP
ATSVLAGL
77
8
1
100

868





EXP
ATSVLAGLL
77
9
1
100

869





EXP
DMIKKEEEL
56
9
1
100

870





EXP
DVHDLISDM
49
9
1
100

871





EXP
DVHDLISDMI
49
10
1
100

872





EXP
EVNKRKSKY
66
9
1
100

873





EXP
EVNKRICSKYKL
66
11
1
100

874





EXP
FFIIFNKESL
12
10
1
100

875





EXP
FFLALFFI
7
8
1
100

876





EXP
FFLALFFII
7
9
1
100

877





EXP
FFLALFFIIF
7
10
1
100

878





EXP
FITFNKESL
13
9
1
100

879





EXP
FLALFFII
8
8
1
100

880





EXP
FLALFFIIF
8
9
1
100

881





EXP
GLLGNVSTVL
83
10
1
100

882





EXP
GLLGNVSTVLL
83
11
1
100

883





EXP
IIFNKESL
14
8
1
100

884





EXP
ILSVFFLAL
3
9
1
100

885





EXP
ILSVFFLALF
3
10
1
100

886





EXP
ILSVFFLALFF
3
11
1
100

887





EXP
KILSVFFL
2
8
1
100

888





EXP
KILSVFFLAL
2
10
1
100

889





EXP
KILSVFFLALF
2
11
1
100

890





EXP
KLATSVLAGL
75
10
1
100

891





EXP
KLATSVLAGLL
75
11
1
100

892





EXP
KYKLATSVL
73
9
1
100
0.0960
893





EXP
LFFIIFNICESL
11
11
1
100

894





EXP
LIDVHDLI
47
8
1
100

895





EXP
LIDVHDLISDM
47
11
1
100

896





EXP
LLGGVGLVL
92
9
1
100

897





EXP
LLGGVGLVLY
92
10
1
100

898





EXP
LLGNVSTVL
84
9
1
100

899





EXP
LLGNVSTVLL
84
10
1
100

900





EXP
LVEVNICRICSKY
64
11
1
100

901





EXP
LYNTEKGRHPF
100
11
1
100

902





EXP
MIKKEEEL
57
8
1
100

903





EXP
NTEKGRHPF
102
9
1
100

904





EXP
NTEKGRHPFKI
102
11
1
100

905





EXP
PLIDVHDL
46
8
1
100

906





EXP
PLIDVHDLI
46
9
1
100

907





EXP
STVLLGGVGL
89
10
1
100

908





EXP
SVFFLALF
5
8
1
100

909





EXP
SVFFLALFF
5
9
1
100

910





EXP
SVFFLALFFI
5
10
1
100

911





EXP
SVFFLALFFII
5
11
1
100

912





EXP
TVLLGGVGL
90
9
1
100

913





EXP
TVLLGGVQLVL
90
11
1
100

914





EXP
VFFLALFF
6
8
1
100

915





EXP
VFFLALFFI
6
9
1
100

916





EXP
VFFLALFFII
6
10
1
100

917





EXP
VFFLALFFIIF
6
11
1
100

918





EXP
VLLCrGVGL
91
8
1
100

919





EXP
VLLGGVGLVL
91
10
1
100

920





EXP
VLLGGVGLVLY
91
11
1
100

921





LSA
DFQISKYEDEI
1754
11
1
100

922





LSA
DITKYFMKI
1901
9
1
100

923





LSA
DLDEFKPI
1781
8
1
100

924





LSA
DLDEFKFIVQY
1781
11
1
100

925





LSA
DLEEXAAKETL
148
11
1
100

926





LSA
DLIEXNENL
1808
9
1
100

927





LSA
DLYGRLEI
1651
8
1
100

928





LSA
DLYGRLEIPAI
1651
11
1
100

929





LSA
DVLAEDLY
1646
8
1
100

930





LSA
DVLAEDLYGRL
1646
11
1
100

931





LSA
DVNDFQISKY
1751
10
1
100

932





LSA
EFXPIVQY
1784
8
1
100

933





LSA
EFKPIVQYDNF
1784
11
1
100

934





LSA
ERQIVDEL
1890
9
1
100

935





LSA
EISAEYDDSL
1763
10
1
100

936





LSA
EISAEYDDSLI
1763
11
1
100

937





LSA
ELPSENERGY
1662
10
1
100

938





LSA
ELPSENERGYY
1662
11
1
100

939





LSA
ELSEDTIKY
1897
9
1
100

940





LSA
ELSEDTIKYF
1897
10
1
100

941





LSA
ELSEDIDCYFM
1897
11
1
100

942





LSA
ETLQBQQSDL
1193
10
1
100

943





LSA
ETLQGQQSDL
156
10
1
100

944





LSA
ETVNISDVNDF
1745
11
1
100

945





LSA
FFDKDKEL
77
8
1
100

946





LSA
FFDKDKELTM
77
10
1
100

947





LSA
FIKSLFHI
1877
8
1
100

948





LSA
FIKSLFH1F
1877
9
1
100

949





LSA
FILVNLLI
11
8
1
100

950





LSA
FILVNLLIF
11
9
1
100

951





LSA
FILVNLLIFHI
11
11
1
100

952





LSA
FYF1LVNL
9
8
1
100

953





LSA
FYFILVNLL
9
9
1
100
7.5000
954





LSA
FYFILVNLLI
9
10
1
100

955





LSA
FYFILVNLLIF
9
11
1
100

956





LSA
GIEKSSEEL
1822
9
1
100

957





LSA
GIYKELEDL
1801
9
1
100

958





LSA
GIYKELEDL1
1801
10
1
100

959





LSA
GVSEN1FL
105
8
1
100

960





LSA
GYYIPHQSSL
1670
10
1
100
0.0074
961





LSA
HIFDGDNEI
1883
9
1
100

962





LSA
HIFDGDNEIL
1883
10
1
100

963





LSA
HILYISFY
3
8
1
100

964





LSA
HILYISFYF
3
9
1
100

965





LSA
NILYISFYFI
3
10
1
100

966





LSA
LIILYISFYFIL
3
11
1
100

967





LSA
HLEEKKDOS1
1718
10
1
100

968





LSA
FITLETVNI
1742
8
1
100

969





LSA
HVLSHNSY
59
8
1
100

970





LSA
IFDGDNEI
1884
8
1
100

971





LSA
IFDGDNEIL
1884
9
1
100

972





LSA
IFDODNEILQI
1884
11
1
100

973





LSA
IFHINGKI
18
8
1
100

974





LSA
IFHINGKII
18
9
1
100

975





LSA
IFLKENKL
110
8
1
100

976





LSA
IIEKTNRESI
1695
10
1
100

977





LSA
IIKNSEKDEI
25
10
1
100

978





LSA
IIKNSEKDEII
25
11
1
100

979





LSA
IINDDDDYKKY
127
11
1
100

980





LSA
ILQIVDEL
1891
8
1
100

981





LSA
ILVNLLIF
12
8
1
100

982





LSA
ILVNLLIFHI
12
10
1
100

983





LSA
ILYISFYF
4
8
1
100

984





LSA
ILYISFYFI
4
9
1
100

985





LSA
ILYISFYFIL
4
10
1
100

986





LSA
IIKYFMKL
1902
8
1
100

987





LSA
ITINVEGRRDI
1704
11
1
100

988





LSA
IVDELSEDI
1894
9
1
100

989





LSA
IYKELEDL
1802
8
1
100

990





LSA
IYKELEDLI
1802
9
1
100

991





LSA
KFFDKDKEL
76
9
1
100

992





LSA
KFFDKDKELTM
76
11
1
100

993





LSA
KFIKSLFHI
1876
9
1
100

994





LSA
KFIKSLFHIF
1876
10
1
100

995





LSA
KIIKNSEKDEI
24
11
1
100

996





LSA
KIKKGKKY
1834
8
1
100

997





LSA
KLNKEGKL
116
8
1
100

998





LSA
KLNKEGKLI
116
9
1
100

999





LSA
KLQEQQRDL
1619
9
1
100

1000





LSA
KLQEQQSDL
1585
9
1
100

1001





LSA
KLQGQQSDL
1126
9
1
100

1002





LSA
KTKNNENNKF
68
10
1
100

1003





LSA
KTKNNENNKFF
68
11
1
100

1004





LSA
KYEDEISAEY
1759
10
1
100

1005





LSA
KYEKTKDNNF
1140
10
1
100
0.0004
1006





LSA
LFHTFDODNEI
1881
11
1
100

1007





LSA
LIDEEEDDEDL
1772
11
1
100

1008





LSA
LISCNENL
1809
8
1
100

1009





LSA
LIEKNENLDDL
1809
11
1
100

1010





LSA
LIFHINGKI
17
9
1
100

1011





LSA
LIFHINGKII
17
10
1
100

1012





LSA
LLIFHINGKI
16
10
1
100

1013





LSA
LLIFHINGKII
16
11
1
100

1014





LSA
LLRNLGVSENI
100
11
1
100

1015





LSA
LVNLLIFHI
13
9
1
100

1016





LSA
LYDEHIKKY
1856
9
1
100

1017





LSA
LYGRLEIPAI
1652
10
1
100

1018





LSA
LYISFYFI
5
8
1
100

1019





LSA
LYISFYFIL
5
9
1
100
0.0088
1020





LSA
NFIONDKSL
1848
9
1
100

1021





LSA
NFKPNDKSLY
1848
10
1
100

1022





LSA
NFKSLLRNL
96
9
1
100

1023





LSA
NFQDEENI
1793
8
1
100

1024





LSA
NFQDEENIGI
1793
10
1
100

1025





LSA
NFQDEENIG1Y
1793
11
1
100

1026





LSA
NIFLKENKL
109
9
1
100

1027





LSA
MGIYKEL
1799
8
1
100

1028





LSA
MGIYKELEDL
1799
11
1
100

1029





LSA
MSDVNDF
1748
8
1
loo

1030





LSA
NISDVNDFQI
1748
10
1
100

1031





LSA
NLDDLDEGI
1815
9
1
100

1032





LSA
NLGVSENI
103
8
1
100

1033





LSA
NLGVSENIF
103
9
1
100

1034





LSA
NLGVSEN1FL
103
10
1
100

1035





LSA
NLLIFHINGKI
15
11
1
100

1036





LSA
NVEGRRDI
1707
8
1
100

1037





LSA
NVKNVSQTNF
88
10
1
100

1038





LSA
NVSQTNFKSL
91
10
1
100

1039





LSA
NVSQTNFKSLL
91
11
1
100

1040





LSA
PIVQYDNF
1787
8
1
100

1041





LSA
QISKYEDEI
1756
9
1
100

1042





LSA
QtVDELSEDI
1893
10
1
100

1043





LSA
QTNFKSLL
94
8
1
100

1044





LSA
QTNFKSLLFINL
94
11
1
100

1045





LSA
QVNKEKEKF
1869
9
1
100

1046





LSA
QVNKEKEKF1
1869
10
1
100

1047





LSA
QYDNFQDEENI
1790
11
1
100

1048





LSA
RLEIPAIEL
1655
9
1
100

1049





LSA
RIKASKETL
1187
9
1
100

1050





LSA
SFYFILVNL
8
9
1
100

1051





LSA
SFYFILVNLL
8
10
1
100

1052





LSA
SFYFILVNLLI
8
11
1
100

1053





LSA
SIIEKTNRESI
1694
11
1
100

1054





LSA
SLYDEHIKKY
1855
10
1
100

1055





LSA
TLQEQQSDL
1194
9
1
100

1056





LSA
TLQGQQSDL
157
9
1
100

1057





LSA
TTNVEGRRDI
1705
10
1
100

1058





LSA
TVNISDVNDF
1746
10
1
100

1059





LSA
VLAEDLYGRL
1647
10
1
100

1060





LSA
YFILVNLL
10
8
1
100

1061





LSA
YFILVNLLI
10
9
1
100

1062





LSA
YFILVNLLIF
10
10
1
100

1063





LSA
YIPHQSSL
1672
8
1
100

1064





LSA
YISFYFIL
6
8
1
100

1065





LSA
YISFYFILVNL
6
11
1
100

1066





LSA
YYIPHQSSL
1671
9
1
100
4.3000
1067





SSP2
ALLACAGL
509
8
10
100

1068





SSP2
ALLACAGLAY
509
10
10
100

1069





SSP2
ALLQVRKHL
136
9
9
90

1070





SSP2
AMKLIQQL
72
8
10
100

1071





SSP2
AMKLIQQLNL
72
10
10
100
0.0006
1072





SSP2
ATPYAGEPAPF
526
11
8
80

1073





SSP2
AVFGIGQI
186
9
10
100

1074





SSP2
AVPLAMKL
68
8
10
100

1075





SSP2
AVPLAMKLI
68
9
10
100

1076





SSP2
AWENVKNVI
219
9
10
100

1077





SSP2
DLDEPEQF
546
8
10
100

1078





SSP2
DLDEPEQFRL
546
10
10
100

1079





SSP2
DVQNNIVDEI
27
10
10
100

1080





SSP2
EILHEGCTSEL
267
11
8
80

1081





SSP2
ETLGEEDKDL
538
10
10
100

1082





SSP2
EVCNDEVDL
41
9
8
80

1083





SSP2
EVCNDEVDLY
41
10
8
80

1084





SSP2
EVCNDEVDLYL
41
11
8
80

1085





SSP2
EVDLYLLM
46
8
8
80

1086





SSP2
EVEKTASCGVW
237
11
10
100

1087





SSP2
FLIFFDLF
14
8
10
100

1088





SSP2
FLIFFDLFL
14
9
10
100

1089





SSP2
FVVPGAATPY
520
10
8
80

1090





SSP2
GIAGGLAL
503
8
10
100

1091





SSP2
GIAGGLALL
503
9
10
100

1092





SSP2
GIGQGINVAF
189
10
10
100

1093





SSP2
GINVAFNRF
193
9
10
100

1094





SSP2
GNVAFNRFL
193
10
10
100

1095





SSP2
GIPDSIQDSL
163
10
10
100

1096





SSP2
GLALLACAGL
507
10
10
100

1097





SSP2
GTRSRXREI
260
9
10
100

1098





SSP2
GTRSRKREIL
260
10
10
100

1099





SSP2
GVKIAVFGI
182
9
10
100

1100





SSP2
HLGNVKYL
3
8
10
100

1101





SSP2
HLGNVKYLVI
3
10
10
100

1102





SSP2
ILHEOCTSEL
268
10
8
80

1103





SSP2
ILTDGIPDSI
159
10
10
100

1104





SSP2
IVFLWFDL
12
9
10
100

1105





SSP2
IVFLIFFDLF
12
10
10
100

1106





SSP2
IVFLIFFDLFL
12
11
10
100

1107





SSP2
KFVVPGAATPY
519
11
8
80

1108





SSP2
KIAGGIAGOL
499
10
10
100

1109





SSP2
KIAVFGIGQGI
184
11
10
100

1110





SSP2
KLIQQLNL
74
8
10
100

1111





SSP2
KTASCGVW
240
8
10
100

1112





SSP2
KTASCGVWDEW
240
11
10
100

1113





SSP2
KYKIAGGI
497
8
9
90

1114





SSP2
KYLVIVFL
8
8
10
100

1115





SSP2
KYLVIVFLI
8
9
10
100
4.6000
1116





SSP2
KYLVIVFLIF
8
10
10
100
0.0003
1117





SSP2
KYLVIVFLIFF
8
11
10
100

1118





SSP2
LIFFDLFL
15
8
10
100

1119





SSP2
LLACAGLAY
510
9
10
100

1120





SSP2
LLACAGLAYKF
510
11
10
100

1121





SSP2
LLMDCSGSI
51
9
10
100

1122





SSP2
LLQVRKHL
137
8
9
90

1123





SSP2
LLSTNLPY
121
8
9
90

1124





SSP2
LMDCSGSI
52
8
10
100

1125





SSP2
LIDGIPDSI
160
9
10
100

1126





SSP2
LVTVFLIF
10
8
10
100

1127





SSP2
LVIVFLIFF
10
9
10
100

1128





SSP2
LVIVFLIFFDL
10
11
10
100

1129





SSP2
LVNGRDVQNNI
22
11
10
100

1130





SSP2
LVVILTDQI
156
9
10
100

1131





SSP2
LYLLMDCSGSI
49
11
9
90

1132





SSP2
NIVDEIKY
31
8
10
100

1133





SSP2
NLPYGRTNL
125
9
8
80

1134





SSP2
NLYADSAW
213
8
10
100

1135





SSP2
NVAFNRFL
195
8
10
100

1136





SSP2
NVKNVIGPF
222
9
10
100

1137





SSP2
NVKNVIGPFM
222
10
10
100

1138





SSP2
NVKYLVIVF
6
9
10
100

1139





SSP2
NVKYLVIIVFL
6
10
10
100

1140





SSP2
NVKYLVIVFLI
6
11
10
100

1141





SSP2
NWVNHAVPL
63
9
8
80

1142





SSP2
NWVNHAVPLAM
63
11
8
80

1143





SSP2
PLAMKLIQQL
70
10
10
100

1144





SSP2
PYAQEPAPF
528
9
8
80
0.0370
1145





SSP2
QFRLPEENEW
552
10
10
100

1146





SSP2
QLVVILIDGI
155
10
10
100

1147





SSP2
QVRKHLNDFTI
139
10
9
90

1148





SSP2
RINRENANQL
147
10
10
100

1149





SSP2
RLPEENEW
554
8
10
100

1150





SSP2
SLKESRKL
171
8
9
90

1151





SSP2
SLLSTNLPY
120
9
9
90

1152





SSP2
STNLPYGRTNL
123
11
8
80

1153





SSP2
TLGEEDKDL
539
9
10
100

1154





SSP2
VFGIGQGI
187
8
10
100

1155





SSP2
VFLIFFDL
13
8
10
100

1156





SSP2
VFLIFFDLF
13
9
10
100

1157





SSP2
VFLIFFDLFL
13
10
10
100

1158





SSP2
VILTDGIPDSI
158
11
10
100

1159





SSP2
VIVFLIFF
11
8
10
100

1160





SSP2
VIVFLIFFDL
11
10
10
100

1161





SSP2
VIVFLIFFDLF
11
11
10
100

1162





SSP2
VVILTDGI
157
8
10
100

1163





SSP2
VVPGAATPY
521
9
8
80

1164





SSP2
WVNHAVPL
64
8
8
80

1165





SSP2
WVNHAVPLAM
64
10
8
80

1166





SSP2
YLLMDCSGSI
50
10
10
100

1167





SSP2
YLVIVFLI
9
8
10
100

1168





SSP2
YLVIVFLIF
9
9
10
100

1169





SSP2
YLVIVFLIFF
9
10
10
100

1170
















TABLE XI







Malaria B07 Super Motif Peptides With Binding Information

















No. of
Sequence
Conservancy




Protein
Sequence
Position
Amino Acids
Frequency
(%)
B*0702
Seq. Id.

















CSP
EPSDKHIEQY
345
10
15
79

171





CSP
EPSDKHIEQYL
345
11
15
79

172





CSP
DPNANPNA
202
8
19
100

173





CSP
DPNANPNV
130
8
19
100

174





CSP
DPNRNVDBIA
327
10
19
100
0.0002
175





CSP
MPNDPNRNV
324
9
19
100
0.0001
176





CSP
NPDPNANPNV
120
10
19
100
0.0001
177





CSP
NPNANPNA
302
8
19
100
0.0001
178





CSP
NPNVDPNA
198
8
19
100
0.0001
179





CSP
QPGDGNPDPNA
115
11
19
100

180





CSP
SPCSVTCGNGI
371
11
19
100

181





EXP
DPADNANPDA
116
10
1
100
0.0002
182





EXP
DPQVTAQDV
136
9
1
100
0.0001
183





EXP
EPLIDVHDL
45
9
1
100
0.0001
184





EXP
EPLIDVHDLI
45
10
1
100
0.0002
185





EXP
EPNADPQV
132
8
1
100
0.0001
186





EXP
EPNADPQVTA
132
10
1
100
0.0002
187





EXP
HPFKIGSSDPA
108
11
1
100

188





EXP
QPQGDDNNL
148
9
1
100
0.0001
189





EXP
QPQGDDNNLV
148
10
1
100
0.0002
190





LSA
KPEQKEDKSA
1728
10
1
100
0.0002
191





LSA
KPIVQYDNF
1786
9
1
100
0.0001
192





LSA
KPNDKSLY
1850
8
1
100
0.0004
193





LSA
LPSENERGY
1663
9
1
100
0,0001
194





LSA
LPSENERGYY
1663
10
1
100
0.0001
195





LSA
LPSENERGYYI
1663
11
1
100

196





SSP2
EPAPFDETL
532.
9
10
100
0.0001
197





SSP2
GPFMKAVCV
228
9
10
100
0.0023
198





SSP2
GFFMKAVCVEV
228
11
10
100

199





SSP2
HPSDGKCNL
206
9
10
100
0.0220
200





SSP2
HPSDGKCNLY
206
10
10
100
0.0001
201





SSP2
HPSDGKCNLYA
206
11
10
100

202





SSP2
IPDSIQDSL
164
9
10
100
0.0022
203





SSP2
IPEDSEKEV
367
9
10
100
0.0001
204





SSP2
LPYGRTNL
126
8
8
80
0.1100
205





SSP2
NPEDDREENF
382
10
10
100
0.0001
206





SSP2
QPRPRGDNF
303
9
9
90
0.0160
207





SSP2
QPRPRGDNFA
303
10
9
90
0.0009
208





SSP2
QPRPRGDNFAV
303
11
9
90

209





SSP2
RPRGDNFA
305
8
9
90
0.0110
210





SSP2
RPRGDNFAV
305
9
9
90
0.4800
211





SSP2
TPYAGEPA
527
8
8
80

212





SSP2
TPYAGEPAPF
527
10
8
80
0.0990
213





SSP2
VPGAATPY
522
8
8
80

214





SSP2
VPGAAIPYA
522
9
8
80
0.0001
215





SSP2
VPLAMKLI
69
8
10
100
0.0001
216





SSP2
VPLAMKLIQQL
69
11
10
100

217
















TABLE XII







Malaria B27 Super Motif Peptides
















No. of
Sequence
Conservancy
Seq.


Protein
Sequence
Position
Amino Acids
Frequency
(%)
Id
















CSP
CKMEKCSSVF
408
10
19
100
1218





CSP
DKHIEQYL
348
8
15
79
1219





CSP
DKHIEQYLKKI
348
11
15
79
1220





CSP
EKLRKPKHKKL
103
11
19
100
1221





CSP
GKQENWYSL
57
9
19
100
1222





CSP
KHIEQYLKKI
349
10
15
79
1223





CSP
KKIQNSLSTEW
360
11
15
79
1224





CSP
LKKIQNSL
359
8
15
79
1225





CSP
LKICNSRSL
65
8
19
100
1226





CSP
LRKPKHKKL
105
9
19
100
1227





CSP
RKLAILSVSSF
3
11
19
100
1228





CSP
RKPKHKKL
106
8
19
100
1229





CSP
TRVLNELNY
32
9
19
100
1230





EXP
EKGRHPFKI
104
9
1
100
1231





EXP
KKGSGEPL
40
8
1
100
1232





EXP
KKGSGEPLI
40
9
1
100
1233





EXP
KKNKKGSGEPL
37
11
1
100
1234





EXP
KRKSKYKL
69
8
1
100
1235





EXP
MKILSVFF
1
8
1
100
1236





EXP
MKILSVFFL
1
9
1
100
1237





EXP
MK1LSVFFLAL
1
11
1
100
1238





EXP
NKKGSGEPL
39
9
1
100
1239





EXP
NKKGSGEPLI
39
10
1
100
1240





EXP
NKRKSKYKL
68
9
1
100
1241





EXP
SKYKLATSVL
72
10
1
100
1242





EXP
VHDLISDM
50
8
1
100
1243





EXP
VHDLISDMI
50
9
1
100
1244





EXP
YKLATSVL
74
8
1
100
1245





EXP
YKLATSVLAGL
74
11
1
100
1246





LSA
DKDKELIM
79
8
1
100
1247





LSA
DKQVNKEKEICF
1867
11
1
100
1248





LSA
DKSADIQNHIL
1734
11
1
100
1249





LSA
DKSLYDEHI
1853
9
1
100
1250





LSA
DRLAKEKL
1392
8
1
100
1251





LSA
EHGDVLAEDL
1643
10
1
100
1252





LSA
EHODVIAEDLY
1643
11
1
100
1253





LSA
EKAAKEIL
151
8
1
100
1254





LSA
EKDEIIKSNL
30
10
1
100
1255





LSA
EKEKFIKSL
873
9
1
100
1256





LSA
EKEXFIKSLF
873
10
1
100
1257





LSA
EKFIKSLF
875
8
1
100
1258





LSA
EKFIKSLFHI
875
10
1
100
1259





LSA
EKFIKSLFHIF
875
11
1
100
1260





LSA
EXHECKHVL
53
9
1
100
1261





LSA
EKIKKGKKY
833
9
1
100
1262





LSA
DUCHVLSHNSY
56
11
1
100
1263





LSA
EKLQEQQRDL
618
10
1
100
1264





LSA
EKLQEQQSDL
584
10
1
100
1265





LSA
SCLQGQQSDL
125
10
1
100
1266





LSA
EISNENLDDL
811
9
1
100
1267





LSA
EKTICDNNF
842
8
1
100
1268





LSA
EKTKNNENNKF
67
11
1
100
1269





LSA
EXINRESI
697
8
1
100
1270





LSA
ERKKEHGDVL
639
10
1
100
1271





LSA
ERLAICEKL
613
8
1
100
1272





LSA
ERLANEKL
528
8
1
100
1273





LSA
ERRAKEKL
1579
8
1
100
1274





LSA
ERTKASKETL
1186
10
1
100
1275





LSA
FHIFDGDNEI
1882
10
1
100
1276





LSA
FHTFDGDNEIL
1882
11
1
100
1277





LSA
FHINGKII
19
8
1
100
1278





LSA
FKPIVQYDNF
1785
10
1
100
1279





LSA
FKPNDKSL
1849
8
1
100
1280





LSA
FIQNDKSLY
1849
9
1
100
1281





LSA
FKSLLRNL
97
8
1
100
1282





LSA
GHLEEKKDGSI
1717
11
1
100
1283





LSA
GKLIEHII
121
8
1
100
1284





LSA
GRLEIPAI
1654
8
1
100
1285





LSA
GRLEIPAIEL
1654
10
1
100
1286





LSA
GRRDIHKGHL
1710
10
1
100
1287





LSA
IKNSEKDEI
26
9
1
100
1288





LSA
IKNSEKDEII
26
10
1
100
1289





LSA
IKSLFHIF
1878
8
1
100
1290





LSA
KHEKKHVL
54
8
1
100
1291





LSA
KHILYISF
2
8
1
100
1292





LSA
KHILYISFY
2
9
1
100
1293





LSA
KHILYISFYF
2
10
1
100
1294
















LSA
KHILYISFYFI
2
11
1
100
1295
















LSA
KHVLSHNSY
58
9
1
100
1296





LSA
KKEHGDVL
1641
8
1
100
1297





LSA
KKHVLSHNSY
57
10
1
100
1298





LSA
KKYEKIKDNNF
1839
11
1
100
1299





LSA
LRNLGVSENI
101
10
1
100
1300





LSA
LRNLGVSENIF
101
11
1
100
1301





LSA
MKHILYISF
1
9
1
100
1302





LSA
MKHILYISFY
1
10
1
100
1303





LSA
MKHILYISFYF
1
11
1
100
1304





LSA
NHTLETVNi
1741
9
1
100
1305





LSA
NKEGKLIEH1
118
10
1
100
1306





LSA
NKEGKLIEHII
118
11
1
100
1307





LSA
NICEKEKSI
1871
8
1
100
1308





LSA
NKEKEKFRSL
1871
11
1
100
1309





LSA
NKFFDKDKEL
75
10
1
100
1310





LSA
NKLNKEGKL
115
9
1
100
1311





LSA
NKLNKEGKU
115
10
1
100
1312





LSA
NRGNSRDSKEI
1683
11
1
100
1313





LSA
QKEDILSADI
1731
9
1
100
1314





LSA
QRDLEQERL
1607
9
1
100
1315





LSA
QRKADTKKNL
1629
10
1
100
1316





LSA
RKADTKKNL
1630
9
1
100
1317





LSA
RKKEHGDVL
1640
9
1
100
1318





LSA
RRDIHKGHL
1711
9
1
100
1319





LSA
SKYEDEISAEY
1758
11
1
100
1320





LSA
SRDSKEISI
1687
9
1
100
1321





LSA
SRDSKEISII
1687
10
1
100
1322





LSA
TKASKEIL
1188
8
1
100
1323





LSA
TICNNENNKF
69
9
1
100
1324





LSA
TKNNENNKFF
69
10
1
100
1325





LSA
VKNVSQTNF
89
9
1
100
1326





LSA
YKELEDLI
1803
8
1
100
1327





SSP2
CHPSDGKCNL
205
10
10
100
1328





SSP2
CHPSDGKCNLY
205
11
10
100
1329





SSP2
DKDLDEPEQF
544
10
10
100
1330





SSP2
DREENFDI
386
8
10
100
1331





SSP2
DRGVKIAVF
180
9
9
90
1332





SSP2
DRGVKIAVEGI
180
11
9
90
1333





SSP2
DRINRENANQL
146
11
10
100
1334





SSP2
EKTASCGVW
239
9
10
100
1335





SSP2
FRLPEENEW
333
9
10
100
1336





SSP2
GKCNLYADSAW
210
11
10
100
1337





SSP2
GKGTRSRKREI
258
11
10
100
1338





SSP2
GRDVQNNI
25
8
10
100
1339





SSP2
GRNNENRSY
458
9
10
100
1340





SSP2
KHDNQNNL
400
8
10
100
1341





SSP2
LHEGCTSEL
269
9
8
80
1342





SSP2
MKLIQQLNL
73
9
10
100
1343





SSP2
NHAVPLAM
66
8
8
80
1344





SSP2
NHAVPLAMKL
66
10
8
80
1345





SSP2
NHAVPLAMKLI
66
11
8
80
1346





SSP2
NHLGNVKY
2
8
10
100
1347





SSP2
NHLGNVKYL
2
9
10
100
1348





SSP2
NHLGNVKYLVI
2
11
10
100
1349





SSP2
NKEKALII
110
8
9
90
1350





SSP2
NKEKALIII
110
9
9
90
1351





SSP2
NKHDNQNNL
399
9
10
100
1352





SSP2
NKYKIAGGI
496
9
9
90
1353





SSP2
NRENANQL
149
8
10
100
1354





SSP2
NRENANQLVVI
149
11
10
100
1355





SSP2
PHGRNNENRSY
456
11
10
100
1356





SSP2
PRPRGDNF
304
8
9
90
1357





SSP2
RHNWVNHAVPL
61
11
8
80
1358





SSP2
RKHLNDRI
141
8
10
100
1359





SSP2
SKNKEKAL
108
8
10
100
1360





SSP2
SKNKSCALI
108
9
9
90
1361





SSP2
SKNKEKALII
108
10
9
90
1362





SSP2
SKNKEKALIII
108
11
9
90
1363





SSP2
TRSRKREI
261
8
10
100
1364





SSP2
TRSRKREIL
261
9
10
100
1365





SSP2
VKIAVFGI
183
8
10
100
1366





SSP2
VKNVIGPF
223
8
10
100
1367





SSP2
VKNVIGPFM
223
9
10
100
1368





SSP2
VKYLVIVF
7
8
10
100
1369





SSP2
VKYLVIVFL
7
9
10
100
1370





SSP2
VKYLVIVFLI
7
10
10
100
1371





SSP2
VKYLVIVFLIF
7
11
10
100
1372





SSP2
VRKHLNDRI
140
9
10
100
1373





SSP2
YKIAGGIAGGL
498
11
10
100
1374
















TABLE XIII







Malaria B58 Super Motif Peptides
















No. of
Sequence
Conservancy
Seq.


Protein
Sequence
Position
Amino Acids
Frequency
(%)
Id
















CSP
CSSVFNVV
413
8
19
100
1375





CSP
CSVTCGNGI
373
9
19
100
1376





CSP
CSVTCGNGIQV
373
11
19
100
1377





CSP
EALFQEYQCY
17
10
19
100
1378





CSP
GSSSNTRV
27
8
19
100
1379





CSP
GSSSNTRVL
27
9
19
100
1380





CSP
LAILSVSSF
5
9
19
100
1381





CSP
LAILSVSSFL
5
10
19
100
1382





CSP
LAILSVSSFLF
5
11
19
100
1383





CSP
LSTEWSPCSV
366
10
18
95
1384





CSP
LSVSSFLF
8
8
19
100
1385





CSP
LSVSSFLFV
8
9
19
100
1386





CSP
NAGINLYNEL
42
10
18
95
1387





CSP
NANANNAV
335
8
16
84
1388





CSP
NSSIGLIM
421
8
19
100
1389





CSP
NSSIGLIMV
421
9
19
100
1390





CSP
NSSIGLIMVL
421
10
19
100
1391





CSP
NTRVLNEL
31
8
19
100
1392





CSP
NTRVLNELNY
31
10
19
100
1393





CSP
PSDKHIEQY
346
9
15
79
1394





CSP
PSDKHIEQYL
346
10
15
100
1395





CSP
SSFLFVEAL
11
9
19
100
1396





CSP
SSFLFVEALF
11
10
19
100
1397





CSP
SSIGLIMV
422
8
19
100
1398





CSP
SSIGLIMVL
422
9
19
100
1399





CSP
SSIGLIMVLSF
422
11
19
100
1400





CSP
SSNTRVLNEL
29
10
19
100
1401





CSP
SSSNTRVL
28
8
19
100
1402





CSP
SSSNTRVLNEL
28
11
19
100
1403





CSP
SSVFNVVNSSI
414
11
19
100
1404





CSP
STEWSPCSV
367
9
19
100
1405





CSP
VSSFLFVEAL
10
10
19
100
1406





CSP
VSSFLFVEALF
10
11
19
100
1407





CSP
VTCGNGIQV
375
9
19
100
1408





CSP
VTCGNGIQVRI
375
11
19
100
1409





CSP
YSLKKNSRSL
63
10
19
100
1410





EXP
ATSVLAGL
77
8
1
100
1411





EXP
ATSVLAGLL
77
9
1
100
1412





EXP
GSGEPLIDV
42
9
1
100
1413





EXP
ISDMIKKEEEL
54
11
1
100
1414





EXP
KSKYKLATSV
71
10
1
100
1415





EXP
KSKYKLATSVL
71
11
1
100
1416





EXP
KTNKGTGSGV
24
10
1
100
1417





EXP
LAGLLGNV
81
8
1
100
1418





EXP
LAGLLGNVSTV
81
11
1
100
1419





EXP
LALFFIIF
9
8
1
100
1420





EXP
LATSVLAGL
76
9
1
100
1421





EXP
LATSVLAGLL
76
10
1
100
1422





EXP
LSVFFLAL
4
8
1
100
1423





EXP
LSVFFLALF
4
9
1
100
1424





EXP
LSVFFLALFF
4
10
1
100
1425





EXP
LSVFFLALFFI
4
11
1
100
1426





EXP
NADPQVTAQDV
134
11
1
100
1427





EXP
NTEKGRHPF
102
9
1
100
1428





EXP
NTEKGRHPFKI
102
11
1
100
1429





EXP
STVLLGGV
89
8
1
100
1430





EXP
STVLIGGVGL
89
10
1
100
1431





EXP
STVLLGGVGLV
89
11
1
100
1432





EXP
TSVLAGLL
78
8
1
100
1433





EXP
TSVLAGLLGNV
78
11
1
100
1434





EXP
VSTVLLGGV
88
9
1
100
1435





EXP
VSTVLLGGVGL
88
11
1
100
1436





LSA
DSKEISII
1689
8
1
100
1437





LSA
ETLQEQQSDL
1193
10
1
100
1438





LSA
ETLQGQQSDL
156
10
1
100
1439





LSA
ETVNISDV
1745
8
1
100
1440





LSA
EIVNISDVNDF
1745
11
1
100
1441





LSA
GSSNSRNRI
42
9
1
100
1442





LSA
HTLETVNI
1742
8
1
100
1443





LSA
HTLETVNISDV
1742
11
1
100
1444





LSA
ISAEYDDSL
1764
9
1
100
1445





LSA
ISAEYDDSLI
1764
10
1
100
1446





LSA
ISDVNDFQI
1749
9
1
100
1447





LSA
ISFYFILV
7
8
1
100
1448





LSA
ISFYFILVNL
7
10
1
100
1449





LSA
ISFYFILVNLL
7
11
1
100
1450





LSA
ISKYEDEI
1757
8
1
100
1451





LSA
ITKYFMKL
1902
8
1
100
1452





LSA
ITTNVEGRRDI
1704
11
1
100
1453





LSA
KADTKKNL
1631
8
1
100
1454





LSA
KSADIQNHTL
1735
10
1
100
1455





LSA
KSLLRNLGV
98
9
1
100
1456





LSA
KSLYDEHI
1854
8
1
100
1457





LSA
KSLYDEHIKKY
1854
11
1
100
1458





LSA
KSSEELSEEKI
1825
11
1
100
1459





LSA
KTKNNENNKF
68
10
1
100
1460





LSA
KTKNNENNKFF
68
11
1
100
1461





LSA
KTNRESITTNV
1698
11
1
100
1462





LSA
LAEDLYGRL
1648
9
1
100
1463





LSA
LAEDLYGRLEI
1648
11
1
100
1464





LSA
LSEDITKY
1898
8
1
100
1465





LSA
LSEDITKYF
1898
9
1
100
1466





LSA
LSEDITKYFM
1898
10
1
100
1467





LSA
LTMSNVKNV
84
9
1
100
1468





LSA
NSEKDEII
28
8
1
100
1469





LSA
NSRDSKEI
1686
8
1
100
1470





LSA
NSRDSKEISI
1686
10
1
100
1471





LSA
NSRDSKEISII
1686
11
1
100
1472





LSA
PSENERGY
1664
8
1
100
1473





LSA
PSENERGYY
1664
9
1
100
1474





LSA
PSENERGYYI
1664
10
1
100
1475





LSA
QSDLEQDRL
1386
9
1
100
1476





LSA
QSDLEQERL
1590
9
1
100
1477





LSA
QSDSEQERL
519
9
1
100
1478





LSA
QTNFKSLL
94
8
1
100
1479





LSA
QTNFKSLLRNL
94
11
1
100
1480





LSA
RSGSSNSRNRI
40
11
1
100
1481





LSA
RTKASKETL
1187
9
1
100
1482





LSA
SADIQNHTL
1736
9
1
100
1483





LSA
SAEYDDSL
1765
8
1
100
1484





LSA
SAEYDDSLI
1765
9
1
100
1485





LSA
SSEELSEEKI
1826
10
1
100
1486





LSA
SSNSRNRI
43
8
1
100
487





LSA
TTNVEGRRDI
1705
10
1
100
488





LSA
VSQTNFKSL
92
9
1
100
489





LSA
VSQTNFKSLL
92
10
1
100
490





SSP2
ASCGVWDEW
242
9
10
100
491





SSP2
ASKNKEKAL
107
9
10
100
492





SSP2
ASKNKEKALI
107
10
9
90
493





SSP2
ASKNKEKALII
107
11
9
90
494





SSP2
AIPYAGEPAPF
526
11
8
80
495





SSP2
CAGLAYKF
513
8
10
100
496





SSP2
CAGLAYKFV
513
9
10
100
497





SSP2
CAGLAYKFVV
513
10
10
100
498





SSP2
CSGSIRRHNW
55
10
10
100
499





SSP2
CSGSIRRHNWV
55
11
10
100
500





SSP2
DALLQVRKHL
135
10
9
90
501





SSP2
DASKNKEKAL
106
10
10
100
502





SSP2
DASKNKEKALI
106
11
9
90
503





SSP2
DSAWENVKNV
217
10
10
100
504





SSP2
DSAWENVKNVI
217
11
10
100
505





SSP2
DSEKEVPSDV
370
10
10
100
506





SSP2
DSLKESRKL
170
9
9
90
507





SSP2
ETLGEEDKDL
538
10
10
100
508





SSP2
GSIRRHNW
57
8
10
100
509





SSP2
GSIRRHNWV
57
9
10
100
510





SSP2
GTRSRKREI
260
9
10
100
511





SSP2
GTRSRKREIL
260
10
10
100
512





SSP2
HAVPLAMKL
67
9
10
100
513





SSP2
HAVPLAMKLI
67
10
10
100
514





SSP2
IAGGIAGGL
500
9
10
100
515





SSP2
IAGGIAGGLAL
500
11
10
100
516





SSP2
IAGGLALL
504
8
10
100
517





SSP2
IAVFGIGQGI
185
10
10
100
518





SSP2
KTASCGVW
240
8
10
100
519





SSP2
KTASCGVWDEW
240
11
10
100
520





SSP2
LACAGLAY
511
8
10
100
521





SSP2
LACAGLAYKF
511
10
10
100
522





SSP2
LACAGLAYKFV
511
11
10
100
523





SSP2
LALLACAGL
508
9
10
100
524





SSP2
LALLACAGLAY
508
11
10
100
525





SSP2
LAMKLIQQL
71
9
10
100
526





SSP2
LAMKLIQQLNL
71
11
10
100
527





SSP2
LTDGIPDSI
160
9
10
100
528





SSP2
NANQLVVI
152
8
10
100
529





SSP2
NANQLVVIL
152
9
10
100
530





SSP2
PAPFDETL
533
8
10
100
531





SSP2
PSCGKCNL
207
8
10
100
532





SSP2
PSDGKCNLY
207
9
10
100
533





SSP2
QSQDNNGNRHV
436
11
10
100
534





SSP2
RSRKREIL
262
8
10
100
535





SSP2
SAWENVKNV
218
9
10
100
536





SSP2
SAWENVKNVI
218
10
10
100
537





SSP2
STNLPYGRTNL
123
11
8
80
538





SSP2
TASCGVWDEW
241
10
10
100
539





SSP2
VAFNRFLV
196
8
10
100
540





SSP2
YADSAWENV
215
9
10
100
541





SSP2
YAGEPAPF
529
8
8
80
1542
















TABLE XIV







Malaria B62 Super Motif Peptides
















No. of
Sequence
Conservancy
Seq.


Protein
Sequence
Position
Amino Acids
Frequency
(%)
Id.
















CSP
AILSVSSF
6
8
9
100
1543





CSP
AILSVSSFLF
6
10
9
100
1544





CSP
AILSVSSFLFV
6
11
9
100
1545





CSP
ALFQEYQCY
18
9
9
100
1546





CSP
DIEKKICKM
402
9
9
100
1547





CSP
DPNANPNV
130
8
9
100
1548





CSP
ELNYDNAGI
37
9
8
95
1549





CSP
EMNYYGKQENW
52
11
9
100
1550





CSP
EPSDKHIEQY
345
10
5
79
1551





CSP
FLFVEALF
13
8
9
100
1552





CSP
FLFVEALFQEY
13
11
9
100
1553





CSP
FVEALFQEY
1S
9
9
100
1554





CSP
GINLYNELEM
44
10
8
95
1555





CSP
GLIMVLSF
425
8
9
100
1556





CSP
GLIMVLSFLF
425
10
9
100
1557





CSP
HIEQYLKKI
350
9
5
79
1558





CSP
ILSVSSFLF
7
9
9
100
1559





CSP
ILSVSSFLFV
7
10
9
100
1560





CSP
IMVLSFLF
427
8
9
100
1561





CSP
IQNSLSTEW
362
9
5
79
1562





CSP
KICKMEKCSSV
406
11
9
100
1563





CSP
KIQNSLSTEW
361
10
5
79
1564





CSP
KLAILSVSSF
4
10
9
100
1565





CSP
KMEKCSSV
409
8
9
100
1566





CSP
KMEKCSSVF
409
9
9
100
1567





CSP
KMEKCSSVFNV
409
11
9
100
1568





CSP
LIMVLSFLF
426
9
9
100
1569





CSP
MMRKLAILSV
1
10
9
100
1570





CSP
MPNDPNRNV
324
9
9
100
1571





CSP
NLYNELEM
46
8
9
100
1572





CSP
NLYNELEMNY
46
10
9
100
1573





CSP
NLYNELEMNYY
46
11
9
100
1574





CSP
NMPNDPNRNV
323
10
9
100
1575





CSP
NPDPNANPNV
120
10
9
100
1576





CSP
NQGNGQGHNM
315
10
9
100
1577





CSP
NVDPNANPNV
128
10
9
100
1578





CSP
NVVNSSIGLI
418
10
9
100
1579





CSP
NVVNSSIGLIM
418
11
9
100
1580





CSP
RVLNELNY
33
8
9
100
1581





CSP
SIGLIMVLSF
423
10
9
100
1582





CSP
SLSTEWSPCSV
365
11
8
95
1583





CSP
SPCSVTCGNGI
371
11
9
100
1584





CSP
SVFNVVNSSI
415
10
9
100
1585





CSP
SVSSFLFV
9
8
9
100
1586





CSP
SVTCGNGI
374
8
9
100
1587





CSP
SVTCGNGIQV
374
10
9
100
1588





CSP
VVNSSIGLI
419
9
9
100
1589





CSP
VVNSSIGLIM
419
10
9
100
1590





CSP
VVNSSIGLIMV
419
11
9
100
1591





EXP
DMIKKEEELV
56
10
1
100
1592





EXP
DPQVTAQDV
136
9
1
100
1593





EXP
DVHDLISDM
49
9
1
100
1594





EXP
DVHDLISDMI
49
10
1
100
1595





EXP
EPLIDVHDLI
45
10
1
100
1596





EXP
EPNADPQV
132
8
1
100
1597





EXP
EQPQGDDNNLV
147
11
1
100
1598





EXP
EVNKRKSKY
66
9
1
100
1599





EXP
FLALFFII
8
8
1
100
1600





EXP
FLALFFIIF
8
9
1
100
1601





EXP
GLLGNVSTV
83
9
1
100
1602





EXP
ILSVFFLALF
3
10
1
100
1603





EXP
ILSVFFLALFF
3
11
1
100
1604





EXP
KILSVFFLALF
2
11
1
100
1605





EXP
LIDVHDLI
47
8
1
100
1606





EXP
LIDVHDLISDM
47
11
1
100
1607





EXP
LLGGVGLV
92
8
1
100
1608





EXP
LLGGVGLVLY
92
10
1
100
1609





EXP
LLGNVSTV
84
8
1
100
1610





EXP
LVEVNKRKSKY
64
11
1
100
1611





EXP
MIKKEEELV
57
9
1
100
1612





EXP
MIKKEEELVEV
57
11
1
100
1613





EXP
NVSTVLLGGV
87
10
1
100
1614





EXP
PLIDVHDLI
46
9
1
100
1615





EXP
PQGDDNNLV
149
9
1
100
1616





EXP
PQVTAQDV
137
8
1
100
1617





EXP
QPQGDDNNLV
148
10
1
100
1618





EXP
SVFFLALF
5
8
1
100
1619





EXP
SVFFLALFF
5
9
1
100
1620





EXP
SVFFLALFFI
5
10
1
100
1621





EXP
SVFFLALFFII
5
11
1
100
1622





EXP
SVLAGLLGNV
79
10
1
100
1623





EXP
TVLLGGVGLV
90
10
1
100
1624





EXP
VLAGLLGNV
80
9
1
100
1625





EXP
VLLGGVGLV
91
9
1
100
1626





EXP
VLLGGVGLVLY
91
11
1
100
1627





LSA
DIQNHTLETV
1738
10
1
100
1628





LSA
DLDEFKPI
1781
8
1
100
1629





LSA
DLDEFKPIV
1781
9
1
100
1630





LSA
DLDEFKPIVQY
1781
11
1
100
1631





LSA
DLYGRLEI
1651
8
1
100
1632





LSA
DLYGRLEIPAI
1651
11
1
100
1633





LSA
DVLAEDLY
1646
8
1
100
1634





LSA
DVNDFQISKY
1751
10
1
100
1635





LSA
EISAEYDDSLI
1763
11
1
100
1636





LSA
ELPSENERGY
1662
10
1
100
1637





LSA
ELPSENERGYY
1662
11
1
100
1638





LSA
ELSEDITKY
1897
9
1
100
1639





LSA
ELSEDITKYF
1897
10
1
100
1640





LSA
ELSEDRKYFM
1897
11
1
100
1641





LSA
ELTMSNVKNV
83
10
1
100
1642





LSA
EQKEDKSADI
1730
10
1
100
1643





LSA
FIKSLFHI
1877
8
1
100
1644





LSA
FIKSLFHIF
1877
9
1
100
1645





LSA
FILVNLLI
11
8
1
100
1646





LSA
FILVNLLIF
11
9
1
100
1647





LSA
FILVNLLIFFII
11
11
1
100
1648





LSA
FQDEENIGI
1794
9
1
100
1649





LSA
FQDEENIGIY
1794
10
1
100
1650





LSA
FQISKYEDE1
1755
10
1
100
1651





LSA
GIYKELEDLI
1801
10
1
100
1652





LSA
HIFDGDNEI
1883
9
1
100
1653





LSA
HIKKYKNDKQV
1860
11
1
100
1654





LSA
HILYISFY
3
8
1
100
1655





LSA
HILYISFYF
3
9
1
100
1656





LSA
HILYISFYFI
3
10
1
100
1657





LSA
HLEEKKDGSI
1718
10
1
100
1658





LSA
HVLSHNSY
59
8
1
100
1659





LSA
IIEKTNRESI
1695
10
1
100
1660





LSA
IIKNSEKDEI
25
10
1
100
1661





LSA
IIKNSEKDEII
25
11
1
100
1662





LSA
IINDDDDKKKY
127
11
1
100
1663





LSA
RILVNLLIF
12
8
1
100
1664





LSA
ILVNLLIFHI
12
10
1
100
1665





LSA
ILYYISFYF
4
8
1
100
1666





LSA
ILYISFYFI
4
9
1
100
1667





LSA
ILYISFYFILV
4
11
1
100
1668





LSA
IQNHTLETV
1739
9
1
100
1669





LSA
IQNHTLETVNI
1739
11
1
100
1670





LSA
IVDELSEDI
1894
9
1
100
1671





LSA
KIIKNSEKDEI
24
11
1
100
1672





LSA
KIKKGKKY
1834
8
1
100
1673





LSA
KLNKEGKLI
116
9
1
100
1674





LSA
KPIVQYDNF
1786
9
1
100
1675





LSA
KPNDKSLY
1850
8
1
100
1676





LSA
KQVNKEKEKF
1868
10
1
100
1677





LSA
KQVNKEKEKFI
1868
11
1
100
1678





LSA
LIFHINGKI
17
9
1
100
1679





LSA
LIFHINGKII
17
10
1
100
1680





LSA
LLIFHINGKI
16
10
1
100
1681





LSA
LLIFHINGKII
16
11
1
300
1682





LSA
LLRNLGVSENI
100
11
1
100
1683





LSA
LPSENERGY
1663
9
1
100
1684





LSA
LPSENERGYY
1663
10
1
100
1685





LSA
LPSENERGYYI
1663
11
1
100
1686





LSA
LQIVDELSEDI
1892
11
1
100
1687





LSA
LVNLLIFHI
13
9
1
100
1688





LSA
NISDVNDF
1748
8
1
100
1689





LSA
NISDVNDFQI
1748
10
1
100
1690





LSA
NLDDLDEGI
1815
9
1
100
1691





LSA
NLERKKEHGDV
1637
11
1
100
1692





LSA
NLGVSENI
103
8
1
100
1693





LSA
NLGVSENIF
103
9
1
100
1694





LSA
NLLIFHTNGKI
15
11
1
100
1695





LSA
NVEGRRDI
707
8
1
100
1696





LSA
NVKNVSQTNF
88
10
1
100
1697





LSA
PIVQYDNF
787
8
1
100
1698





LSA
QISKYEDEI
756
9
1
100
1699





LSA
QIVDELSEDI
893
10
1
100
1700





LSA
QVNKEKEKF
869
9
1
100
1701





LSA
QVINIKEKEKFI
869
10
1
100
1702





LSA
SIIEKTNRESI
694
11
1
100
1703





LSA
SLLRNLGV
99
8
1
100
1704





LSA
SLYDEHIKKY
855
10
1
100
1705





LSA
TLETVNISDV
743
10
1
100
1706





LSA
TMSNVKNV
85
8
1
100
1707





LSA
TVNISDVNDF
746
10
1
100
1708





LSA
YISFYFILV
6
9
1
100
1709





SSP2
ALLACAGLAY
509
10
10
100
1710





SSP2
AVFGIGQGI
186
9
10
100
1711





SSP2
AVFGIGQGINV
186
11
10
100
1712





SSP2
AVPLAMKLI
68
9
10
100
1713





SSP2
DLDEPDQF
546
8
10
100
1714





SSP2
DLFLVNGRDV
19
10
10
100
1715





SSP2
DQPRPRGDNF
302
10
9
90
1716





SSP2
DVQNNIVDEI
27
10
10
100
1717





SSP2
EIKYREEV
35
8
9
90
1718





SSP2
EQFRLPEENEW
551
11
10
100
1719





SSP2
EVCNDEVDLY
41
10
8
80
1720





SSP2
EVDLYLLM
46
8
8
80
1721





SSP2
EVEKTASCGV
237
10
10
100
1722





SSP2
EVEXTASCGVW
237
11
10
100
1723





SSP2
FLIFFDLF
14
8
10
100
1724





SSP2
FLIFFDLFLV
14
10
10
100
1725





SSP2
FLVNGRDV
21
8
10
100
1726





SSP2
FMKAVCVEV
230
9
10
100
1727





SSP2
FVVPGAATPY
520
10
8
80
1728





SSP2
GIGQGINV
189
8
10
100
1729





SSP2
GIGQGINVAF
189
10
10
100
1730





SSP2
GINVAFNRF
193
9
10
100
1731





SSP2
GINVAFNRFLV
193
11
10
100
1732





SSP2
GLAYKFVV
515
8
10
100
1733





SSP2
GPFMKAVCV
228
9
10
100
1734





SSP2
GPFMKAVCVEV
228
11
10
100
1735





SSP2
GQGINVAF
191
8
10
100
1736





SSP2
GQGINVAFNRF
191
11
10
100
1737





SSP2
GVKIAVFGI
182
9
10
100
1738





SSP2
GVWDEWSPCSV
245
11
10
100
1739





SSP2
HLGNVKYLV
3
9
10
100
1740





SSP2
HLGNVKYLVI
3
10
10
100
1741





SSP2
HLGNVKYLVIV
3
11
10
100
1742





SSP2
HPSDGKCNLY
206
10
10
100
1743





SSP2
ILTDGIPDSI
159
10
10
100
1744





SSP2
IPEDSEKEV
367
9
10
100
1745





SSP2
IVDEIKYREEV
32
11
9
90
1746





SSP2
IVFLIFFDLF
12
10
10
100
1747





SSP2
KIAVFGIGQGI
184
11
10
100
1748





SSP2
LIFFDLFLV
15
9
10
100
1749





SSP2
LLACAGLAY
510
9
10
100
1750





SSP2
LLACAGLAYKF
510
11
10
100
1751





SSP2
LLMDCSGSI
51
9
10
100
1752





SSP2
LLSTNLPY
121
8
9
90
1753





SSP2
LMDCSGSI
52
8
10
100
1754





SSP2
LQVRKHLNDRI
138
11
9
90
1755





SSP2
LVIVFLIF
10
8
10
100
1756





SSP2
LVIVFLIFF
10
9
10
100
1757





SSP2
LVNGRDVQNNI
22
11
10
100
1758





SSP2
LVVILTDGI
156
9
10
100
1759





SSP2
NIPEDSEKEV
366
10
10
100
1760





SSP2
NIVDEIKY
31
8
10
100
1761





SSP2
NLYADSAW
213
8
10
100
1762





SSP2
NLYADSAWENV
213
11
10
100
1763





SSP2
NPEDDREENF
382
10
10
100
1764





SSP2
NQLVVILTDGI
154
11
10
100
1765





SSP2
NVARAFIN
195
9
10
100
1766





SSP2
NVIGPFMKAV
225
10
10
100
1767





SSP2
NVKNVIGPF
222
9
10
100
1768





SSP2
NVKNVIGPFM
222
10
10
100
1769





SSP2
NVKYLVIV
6
8
10
100
1770





SSP2
NVKYLVIVF
6
9
10
100
1771





SSP2
NVKYLVIVFLI
6
11
10
100
1772





SSP2
QLVVILTDGI
155
10
10
100
1773





SSP2
QPRPRGDNF
303
9
9
90
1774





SSP2
QPRPRGDNFAV
303
11
9
90
1775





SSP2
QVRKHLNDR1
139
10
9
90
1776





SSP2
RINRENANQLV
147
11
10
100
1777





SSP2
RLPEENEW
554
8
10
100
1778





SSP2
RPRGDNFAV
305
9
9
90
1779





SSP2
SIRRHNWV
58
8
10
100
1780





SSP2
SLLSTNLPY
120
9
9
90
1781





SSP2
SQDNNGNRHV
437
10
10
100
1782





SSP2
TPYAGEPAPF
527
10
8
80
1783





SSP2
VIGPFMKAV
226
9
10
100
1784





SSP2
VIGPFMKAVCV
226
11
10
100
1785





SSP2
VILIDGIPDSI
158
11
10
100
1786





SSP2
VIVFLIFF
11
8
10
100
1787





SSP2
VIVFLIFFDLF
11
11
10
100
1788





SSP2
VPGAATPY
522
8
8
80
1789





SSP2
VPLAMKLI
69
8
10
100
1790





SSP2
VQNNIVDEI
28
9
10
100
1791





SSP2
VQNNIVDE1KY
28
11
10
100
1792





SSP2
VVILTDM
157
8
10
100
1793





SSP2
VVPGAATPY
521
9
8
80
1794





SSP2
WVNHAVPLAM
64
10
8
80
1795





SSP2
YLLMDCSGS1
50
10
10
100
1796





SSP2
YLVIVFLI
9
8
10
100
1797





SSP2
YLV1VFLIF
9
9
10
100
1798





SSP2
YLVIVFLIFF
9
10
10
100
1799
















TABLE XV







Malaria A01 Motif Peptides With Binding Information

















No. of
Sequence
Conservancy

Seq.


Protein
Sequence
Pos
Amino Acids
Freq.
(%)
A*0101
Id.

















CSP
DNAGINLY
41
8
19
100

1800





CSP
EPSDKHIEQY
345
10
15
79

1801





CSP
FVEALFQEY
15
9
19
100
3.4000
1802





CSP
NTRVLNELNY
31
10
19
100
0.0096
1803





CSP
NYDNAGINLY
39
10
18
95
0.0012
1804





CSP
PSDKHIEQY
346
9
15
79

1805





CSP
VEALFQEY
16
8
19
100

1806





CSP
VEALFQEYQCY
16
11
19
100

1807





CSP
YNELEMNY
48
8
19
100

1808





CSP
YNELEMNYY
48
9
19
100

1809





EXP
LVEVNKRKSKY
64
11
1
100

1810





LSA
DDDDKKKY
130
8
1
100

1811





LSA
DEENIGIY
1796
8
1
100

1812





LSA
DLDEFKPIVQY
1781
11
1
100

1813





LSA
EDEISAEY
1761
8
1
100

1814





LSA
ELSEDIAY
1897
9
1
100

1815





LSA
FQDEENIGIY
1794
10
1
100
1.1000
1816





LSA
HGDVLAEDLY
1644
10
1
100
0.0012
1817





LSA
INDDDDKKKY
128
10
1
100

1818





LSA
KSLYDEHIKKY
1854
11
1
100

1819





LSA
KYEDEISAEY
1759
10
1
100
0.0011
1820





LSA
LDEFKPIVQY
1782
10
1
100

1821





LSA
LPSENERGY
1663
9
1
100
0.6700
1822





LSA
LPSENERGYY
1663
10
1
100
0.0011
1823





LSA
LSEDIMY
1898
8
1
100

1824





LSA
LYDEHIKKY
1856
9
1
100
0.0011
1825





LSA
NDDDDKKKY
129
9
1
100

1826





LSA
PSENERGY
1664
8
1
100

1827





LSA
PSENERGYY
1664
9
1
100
0.0790
1828





LSA
QDEENIGIY
1795
9
1
100

1829





LSA
SEEKIKKGKKY
1831
11
1
100

1830





LSA
VDELSEDITKY
1895
11
1
100

1831





LSA
VNDFQISKY
1752
9
1
100

1832





LSA
YDEHGCY
1857
8
1
100

1833





LSA
YEDEISAEY
1760
9
1
100
0.0012
1834





SSP2
CNDEVDLY
43
8
8
80

1835





SSP2
HPSDGKCNLY
206
10
10
100
0.0260
1836





SSP2
LLACAGLAY
510
9
10
100

1837





SSP2
LLSTNLPY
121
8
9
90

1838





SSP2
PSDGKCNLY
207
9
10
100
0.5400
1839
















TABLE XVI







Malaria A3 Motif Peptides With Binding Information

















No. of
Sequence
Conservancy

SEQ.


Protein
Sequence
Position
Amino Acids
Frequency
(%)
A*0301
Id.

















CSP
NMPNDPNR
323
8
19
100

1897





CSP
NIRVLNELNY
31
10
19
100
0.0005
1898





CSP
NVDENANA
331
8
19
100

1899





CSP
NVDENANANNA
331
11
16
84

1900





CSP
NVDPNANPNA
200
10
19
100

1901





CSP
PGDGNPDPNA
116
10
19
100

1902





CSP
PSDKHIEQY
346
9
15
79

1903





CSP
PSDICHIEQYLK
346
11
15
79

1904





CSP
QCYGSSSNTR
24
10
19
100

1905





CSP
QGHNMPNDPNR
320
11
19
100

1906





CSP
QVRIKPGSA
382
9
19
100

1907





CSP
RDGNNEDNEK
95
10
19
100
0.0005
1908





CSP
RVLNEHNY
33
8
19
100

1909





CSP
RVLNELNYDNA
33
11
19
100

1910





CSP
SDKHIEQY
347
8
15
79

1911





CSP
SDKHIEQYLK
347
10
15
79

1912





CSP
SDKHIEQYLKK
347
11
15
79

1913





CSP
SFLFVEALF
12
9
19
100

1914





CSP
StGLIMVLSF
423
10
19
100

1915





CSP
SSFLFVEA
11
8
19
100

1916





CSP
SSFLFVEALF
11
10
19
100

1917





CSP
SSIGLIMVLSF
422
11
19
100

1918





CSP
SVSSFLFVEA
9
10
19
100

1919





CSP
SVTCGNGIQVR
374
11
19
100

1920





CSP
TCGNGIQVR
376
9
19
100

1921





CSP
TCGNGIQVRIK
376
11
19
100

1922





CSP
VDENANANNA
332
10
16
84

1923





CSP
VDPNANPNA
201
9
19
100

1914





CSP
VLNEINYDNA
34
10
19
100

1925





CSP
VSSFLFVEA
10
9
19
100

1926





CSP
VSSFLFVEALF
10
11
19
100

1927





CSP
VTCGNGIQVR
375
10
19
100
0.0005
1928





CSP
YDNAGINLY
40
9
18
95

1929





CSP
YGKQENWY
56
8
19
100

1930





CSP
YGKQENWYSLK
56
11
19
100

1931





CSP
YGSSSNTR
26
8
19
100

1932





CSP
YSLKKNSR
63
8
19
100

1933





EXP
ADNANPDA
118
8
1
100

1934





EXP
ADSESNGEPNA
125
11
1
100

1935





EXP
ALFFITFNIC
10
9
1
100
1.1000
1936





EXP
DDNNLVSGPEH
152
11
1
100

1937





EXP
DLISDMIK
52
8
1
100

1938





EXP
DLISDMIKK
52
9
1
100
0.0001
1939





EXP
DSESNGEPNA
126
10
1
100

1940





EXP
DVHDLISDMIK
49
11
1
100

1941





EXP
ELYEVNKR
63
8
1
100

1942





EXP
ELVEVNKRK
63
9
1
100
0.0001
1943





EXP
ELVEVNKRKSK
63
11
1
100

1944





EXP
ESLAEKTNIC
19
9
1
100
0.0001
1945





EXP
ESNGEPNA
128
8
1
100

1946





EXP
EVNKRKSK
66
8
1
100

1947





EXP
EVNKRKSKY
66
9
1
100
0.0001
1948





EXP
EVNKRKSKYK
66
10
1
100
0.0005
1949





EXP
FFIIFNKESLA
12
11
1
100

1950





EXP
FFLALFFIIF
7
10
1
100

1951





EXP
FFIFNKESLA
13
10
1
100

1952





EXP
FLALFFIIF
8
9
1
100

1953





EXP
FLALFFIIFNK
8
11
1
100

1954





EXP
GGVGLVLY
94
8
1
100

1955





EXP
GLVLYNTEK
97
9
1
100
0.0069
1956





EXP
GLVLYNTEKGR
97
11
1
100

1957





EXP
GSGEPLIDVH
42
10
1
100
0.0005
1958





EXP
GSGVSSKK
30
8
1
100

1959





EXP
GSGVSSKKK
30
9
1
100
0.0003
1960





EXP
GSGVSSKKKNK
30
11
1
100

1961





EXP
GSSDPADNA
113
9
1
100

1962





EXP
GTGSGVSSK
28
9
1
100
0.0039
1963





EXP
GTGSGVSSKX
28
10
1
100
0.0071
1964





EXP
GTGSGVSSKKK
28
11
1
100

1965





EXP
GVGLVLYNTEK
95
11
1
100

1966





EXP
GVSSKKKNK
32
9
1
100
0.0001
1967





EXP
GVSSKKKNKK
32
10
1
100
0.0011
1968





EXP
HDLISDMIK
51
9
1
100
0.0001
1969





EXP
HDLISDMIKK
51
10
1
100
0.0009
1970





EXP
IFNKESLA
15
8
1
100

1971





EXP
IFNKESLAEK
15
10
1
100
0.0005
1972





EXP
IGSSDPADNA
112
10
1
100

1973





EXP
IIFNKESLA
14
9
1
100

1974





EXP
IIFNKESLAEK
14
11
1
100

1975





EXP
ILSVFFLA
3
8
1
100

1976





EXP
ILSVFFLALF
3
10
1
100

1977





EXP
ILSVFFLALFF
3
11
1
100

1978





EXP
KGSGEPLIDVH
41
11
1
100

1979





EXP
KGTGSGVSSK
27
10
1
100
0.0005
1980





EXP
KGTGSOVSSKK
27
11
1
100

1981





EXP
KIGSSDPA
111
8
1
100

1982





EXP
KIGSSDPADNA
111
11
1
100

1983





EXP
KILSVFFLA
2
9
1
100
0.1400
1984





EXP
KILSVFFLALF
2
11
1
100

1985





EXP
KLATSVLA
75
8
1
100

1986





EXP
LALFFIIF
9
8
1
100

1987





EXP
LALFFIIFNK
9
10
1
100
0.0140
1988





EXP
LFFIIFNK
11
8
1
100

1989





EXP
LGGVGLVLY
93
9
1
100
0.0001
1990





EXP
LISDMIKK
53
8
1
100

1991





EXP
LLGGVGLVLY
92
10
1
100
0.0034
1992





EXP
LSVFFLALF
4
9
1
100

1993





EXP
LSVFFLALFF
4
10
1
100

1994





EXP
LVEVNKRK
64
8
1
100

1995





EXP
LVEVNKRKSK
64
10
1
100
0.0005
1996





EXP
LVEVNKRKSKY
64
11
1
100

1997





EXP
LVLYNIEK
98
8
1
100

1998





EXP
LVLYNTEKGR
98
10
1
100
0.0005
1999





EXP
LVLYNTEKGRH
98
11
1
100

2000





EXP
NADPQVTA
134
8
1
100

2001





EXP
NLVSGPEH
155
8
1
100

2002





EXP
NTEKGRHPF
102
9
1
100

2003





EXP
NTEKGFHPFK
102
10
1
100
0.0047
2004





EXP
PADNANPDA
117
9
1
100

2005





EXP
PFKIGSSDPA
109
10
1
100

2006





EXP
SDPADNANPDA
115
11
1.
100

2007





EXP
SGEPLIDVH
43
9
1
100
0.0001
2008





EXP
SGVSSKKK
31
8
1
100

2009





EXP
SGVSSKKKNK
31
10
1
100
0.0005
2010





EXP
SGVSSKKKNKK
31
11
1
100

2011





EXP
SLAEKTINIK
20
8
1
100

2012





EXP
SSDPADNA
114
8
1
100

2013





EXP
SSKKKNKK
34
8
1
100

2014





EXP
SVFFLALF
S
8
1
100

2015





EXP
SVFFLALFF
5
9
1
100

2016





EXP
TGSGVSSK
29
8
1
100

2017





EXP
TGSGVSSKK
29
9
1
100
0.0001
2018





EXP
TGSGVSSKKK
29
10
1
100
0.0005
2019





EXP
VFFLALFF
6
8
1
100

2020





EXP
VFFLALFFIIF
6
11
1
100

2021





EXP
VGLVLYNIEK
96
10
1
100
0.0005
2022





EXP
VLLGGVGLVLY
91
11
1
100

2023





EXP
VLYNTEKGR
99
9
1
100
0.0110
2024





EXP
VLYNIEKGRH
99
10
1
100
0.0029
2025





EXP
VSSKKKNK
33
8
1
100

2026





EXP
VSSKKKNKK
33
9
1
100
0.0001
2027





LSA
ADTKKNLER
1632
9
1
100

2028





LSA
ADTKKNLERK
1632
10
1
100
0.0001
2029





LSA
ADTKKNLERKK
1632
11
1
100

2030





LSA
AIELPSENER
1660
10
1
100
0.0001
2031





LSA
DDDDKKKY
130
8
1
100

2032





LSA
DDDDKKKYIK
130
10
1
100
0.0001
2033





LSA
DDDKKKYIK
131
9
1
100
0.0001
2034





LSA
DDEDLDEF
1778
8
1
100

2035





LSA
DDEDLDEFK
1778
9
1
100
0.0001
2036





LSA
DDKKKYIK
132
8
1
100

2037





LSA
DDIDEGIEK
1817
9
1
100
0.0001
2038





LSA
DGSIKPEQK
1724
9
1
100
0.0001
2039





LSA
DIHKGHLEEK
1713
10
1
100
0.0004
2040





LSA
DIHKGHLEEKK
1713
11
1
100

2041





LSA
DITKYFMK
1901
8
1
100

2042





LSA
DLDEFKPIVQY
1781
11
1
100

2043





LSA
DLDEGIEK
1818
8
1
100

2044





LSA
DLEEKAAK
148
8
1
100

2045





LSA
DLEQDRLA
1388
8
1
100

2046





LSA
DLEQDRLAK
1388
9
1
100
0.0001
2047





LSA
DLEQDRLAKEK
1388
11
1
100

2048





LSA
DLEQERLA
1609
8
1
100

2049





LSA
DLEQERLAK
1609
9
1
100
0.0001
2050





LSA
DLEQERLAKEK
1609
11
1
100

2051





LSA
DLEQERLANEK
1524
11
1
100

2052





LSA
DLEpERRA
1575
8
1
100

2053





LSA
DLEQERRAK
1575
9
1
100
0.0001
2054





LSA
DLEQERRAKEK
1575
11
1
100

2055





LSA
DLEQRKADTK
1626
10
1
100
0.0001
2056





LSA
DLEQRKADIKK
1626
11
1
100

2057





LSA
DLERTKASK
1184
9
1
100
0.0001
2058





LSA
DLYGRLEIPA
1651
10
1
100

2059





LSA
DSEQERLA
521
8
1
100

2060





LSA
DSEQERLAK
521
9
1
100
0.0001
2061





LSA
DSEQERLAKEK
521
11
1
100

2062





LSA
DSKEISIIEK
1689
10
1
100
0.0001
2063





LSA
DTKKNLER
1633
8
1
100

2064





LSA
DTKIMERK
1633
9
1
100
0.0001
2065





LSA
DTKKNLERKK
1633
10
1
100
0.0001
2066





LSA
DVLAEDLY
1646
8
1
100

2067





LSA
DVLAEDLYGR
1646
10
1
100
0.0001
2068





LSA
DVNDFQISK
1751
9
1
100
0.0001
2069





LSA
DVNDFQISKY
1751
10
1
100
0.0003
2070





LSA
EDDEDLDEF
1777
9
1
100

2071





LSA
EDDEDLDEFK
1777
10
1
100
0.0001
2072





LSA
EDEISAEY
1761
8
1
100

2073





LSA
EDITKYFMK
1900
9
1
100
0.0001
2074





LSA
EDKSADIQNH
1733
10
1
100

2075





LSA
EDLEEKAA
147
8
1
100

2076





LSA
EDLEEKAAK
147
9
1
100
0.0002
2077





LSA
EDLYGRLEIPA
1650
11
1
100

2078





LSA
EFKPIVQY
1784
8
1
100

2079





LSA
EFPIVQYDNF
1784
11
1
100

2080





LSA
EGRRDIHK
709
8
1
100

2081





LSA
EGRRDIHKGH
1709
10
1
100
0.0001
2082





LSA
EIIKSNLR
33
8
1
100

2083





LSA
EISIIEKTNR
1692
10
1
100
0.0001
2084





LSA
ELEDLIEK
1805
8
1
100

2085





LSA
ELPSENER
1662
8
1
100

2086





LSA
ELPSENERGY
1662
10
1
100
0.0001
2087





LSA
ELPSENERGYY
1662
11
1
100

2088





LSA
ELSEDITK
1897
8
1
100

2089





LSA
ESLSEDITKY
1897
9
1
100
0.0002
2090





LSA
ELSEDITKYF
1897
10
1
100

2091





LSA
ELSEEKIK
1829
8
1
100

2092





LSA
ELSEEKIKK
1829
9
1
100
0.0002
2093





LSA
ELSEEKIKKGK
1829
11
1
100

2094





LSA
ELTMSNVK
83
8
1
100

2095





LSA
ESITTNVEGR
1702
10
1
100
0.0001
2096





LSA
ESITTNVEGRR
1702
11
1
100

2097





LSA
ETVNISDVNDF
1745
11
1
100

2098





LSA
FIKSLFHIF
1877
9
1
100

2099





LSA
FILVNLLIF
11
9
1
100

2100





LSA
FILVNLLIFH
11
10
1
100
0.0310
2101





LSA
FLKENKLNK
111
9
1
100
0.0260
2102





LSA
GDVLAEDLY
1645
9
1
100

2103





LSA
GDVLAEDLYGR
1645
11
1
100

2104





LSA
GSIKPEQK
1725
8
1
100

2105





LSA
GSIKPEQKEDK
1725
11
1
100

2106





LSA
GSSNSRNR
42
8
1
100

2107





LSA
GVSENIFLK
105
9
1
100
0.2700
2108





LSA
HGDVLAEDLY
1644
10
1
100
0.0001
2109





LSA
HIINDDDDK
126
9
1
100
0.0002
2110





LSA
HIINDDDDKK
126
10
1
100
0.0001
2111





LSA
HIINDDDDKKK
126
11
1
100

2112





LSA
HIKKYKNDK
1860
9
1
100
0.0002
2113





LSA
HILYISFY
3
8
1
100

2114





LSA
HILYISFYF
3
9
1
100

2115





LSA
HINGKIIK
20
8
1
100

2116





LSA
HLEEKKDGSIK
1718
11
1
100

2117





LSA
HVLSHNSY
59
8
1
100

2118





LSA
HVLSHNSYEK
59
10
1
100
0.0170
2119





LSA
IFHINGKIIK
18
10
1
100
0.0001
2120





LSA
IFLKENKLNK
110
10
1
100
0.0001
2121





LSA
IINDDDDK
127
8
1
100

2122





LSA
IINDDDDKK
127
9
1
100
0.0002
2123





LSA
IINDDDDKKK
127
10
1
100
0.0001
2124





LSA
IINDDDDKKKY
127
11
1
100

2125





LSA
ILVNLLIF
12
12
8
100

2126





LSA
ILVNLLIFH
12
9
1
100
0.0150
2127





LSA
ILYISFYF
4
8
1
100

2128





LSA
ISDVNDMISK
749
11
1
100

2129





LSA
ISHEKTNR
693
9
1
100
0.0001
2130





LSA
ISKYEDEISA
757
10
1
100

2131





LSA
ITTNVEGR
704
8
1
100

2132





LSA
ITTNVEGRR
704
9
1
100
0.0002
2133





LSA
DAMESEDITK
894
11
1
100

2134





LSA
KADTKKNLER
631
10
1
100
0.0001
2135





LSA
KADTKKNLERK
631
11
1
100

2136





LSA
KDEGIKSNIR
31
10
1
100

2137





LSA
KDGSIKPEQK
723
10
1
100
0.0004
2138





LSA
KDKELTMSNVK
80
11
1
100

2139





LSA
KDNNFKPNDK
845
10
1
100
0.0001
2140





LSA
KFIKSLFH
876
8
1
100

2141





LSA
KFIKSLFHIF
876
10
1
100

2142





LSA
KGHLEEKK
716
8
1
100

2143





LSA
KGKKYEKIK
837
9
1
100
0.0002
2144





LSA
KIIKNSEK
24
8
1
100

2145





LSA
KKKKGKKY
834
8
1
100

2146





LSA
KIKKGKKYEK
834
10
1
100
0.0081
2147





LSA
KLNKEGKLIEN
116
1t
1
100

2148





LSA
KLQEQQSDLER
177
11
1
100

2149





LSA
KSADIQNH
735
8
1
100

2150





LSA
KSLYDEIHK
854
9
1
100
0.0005
2151





LSA
KSLYDMIKK
854
10
1
100
0.0094
2152





LSA
KSLYDEHIKKY
854
11
1
100

2153





LSA
KSSEELSEEK
825
10
1
100
0.0001
2154





LSA
KTKDNNFK
843
8
1
100

2155





LSA
KTKNNENNK
68
9
1
100
0.0028
2156





LSA
KTKNNENNKF
68
10
1
100

2157





LSA
KTKNNENNKFF
68
11
1
100

2158





ISA
LAEDLYGR
1648
8
1
100

2159





LSA
LAKEKLQEQQR
1615
11
1
100

2160





LSA
LANEKLQEQQR
1530
11
1
100

2161





LSA
LDDLDEGIEK
1816
10
1
100
0.0001
2162





LSA
LDEFKPIVQY
1782
10
1
100

2163





LSA
LGVSENIF
104
8
1
100

2164





LSA
LGVSENIFLK
104
10
1
100
0.0001
2165





LSA
LIFHINGK
17
8
1
100

2166





LSA
LIFHINGKIIK
17
11
1
100

2167





LSA
LLIFNINGK
16
9
1
100
0.0260
2168





LSA
LSEDITKY
1898
8
1
100

2169





LSA
LSEDITKYF
1898
9
1
100

2170





LSA
LSEDITKYDAK
1898
11
1
100

2171





LSA
LSEEKIKK
1830
8
1
100

2172





ISA
LSEEKIKKGK
1830
10
1
100
0.0004
2173





LSA
LSEEKIKKGKK
1830
11
1
100

2174





LSA
LSHNSYEK
61
8
1
100

2175





LSA
LSFINSYEKTK
61
10
1
100
0.0004
2176





LSA
LVNLLIFH
13
8
1
100

2177





LSA
NDDDDKKK
129
8
1
100

2178





LSA
NDDDDKKKY
129
9
1
100

2179





LSA
NDDDDKKKYIK
129
11
1
100

2180





LSA
NDFQISKY
1753
8
1
100

2181





LSA
NDKQVNKEK
1866
9
1
100
0.0002
2182





LSA
NDKQVNKEKEK
1866
11
1
100

2183





LSA
NDKSLYDEH
1852
9
1
100

2184





LSA
NDKSLYDEHIK
1852
11
1
100

2185





LSA
NFKPNDKSLY
1848
10
1
100

2186





LSA
NFQDEENIGIY
1793
11
1
100

2187





ISA
NGKIIKNSEK
22
10
1
100
0.0004
2188





LSA
NIFLKENK
109
8
1
100

2189





LSA
NIFLKENKLNK
109
11
1
100

2190





LSA
NISDVNDF
1748
8
1
100

2191





LSA
NLDDLDEGIEK
1815
11
1
100

2192





LSA
NLERKKEH
1637
8
1
100

2193





LSA
NLGVSENIF
103
9
1
100

2194





LSA
NLGVSENIFLK
103
11
1
100

2195





LSA
NLLIFHINGK
15
10
1
100
0.0049
2196





LSA
NLRSGSSNSR
38
10
1
100
0.0004
2197





LSA
NSEKDFIKK
28
9
1
100
0.0002
2198





LSA
NSRNRKNEEK
45
10
1
100
0.0004
2199





LSA
NSRNRINEEKH
45
11
1
100

2200





LSA
NVEGRRDIH
1707
9
1
100
0.0002
2201





LSA
NVEGRRDIHK
1707
10
1
100
0.0004
2202





LSA
NVKNVSQINF
88
10
1
100

2203





LSA
NVKNVSQINFK
88
11
1
100

2204





LSA
NVSQTNFK
91
8
1
100

2205





LSA
PAIELPSENER
659
11
1
100

2206





LSA
PIVQYDNF
787
8
1
100

2207





LSA
PSENERGY
664
8
1
100

2208





LSA
PSENERGYY
664
9
1
100
0.0001
2209





LSA
QDEENIGIY
795
9
1
100

2210





LSA
QDEENIGIYK
795
10
1
100
0.0004
2211





LSA
QDNRGNSR
681
8
1
100

2212





LSA
QDNRGNSRDSK
681
11
1
100

2213





LSA
QDRLAKEK
391
8
1
100

2214





LSA
QGWISCLEM
128
11
1
100

2215





LSA
QISKYEDEISA
756
11
1
100

2216





LSA
QSDLEQDR
386
8
1
100

2217





LSA
QSDLEQDRLA
386
10
1
100

2218





LSA
QSDLEQDRLAK
386
11
1
100

2219





LSA
QSDLEQER
590
8
1
100

2220





LSA
QSDLEQERLA
590
10
1
100

2221





LSA
QSDLEQERLAK
590
11
1
100

2222





LSA
QSDLEQERR
573
9
1
100
0.0002
2223





LSA
QSDLEQERRA
573
10
1
100

2224





LSA
QSDLEQDRLAK
573
11
1
100

2225





LSA
QSDLERTK
182
8
1
100

2226





LSA
QSDLERTKA
182
9
1
100

2227





LSA
QSDLERTKASK
182
11
1
100

2228





LSA
QSDSEQER
519
8
1
100

2229





LSA
QSDSEQERLA
519
10
1
100

2230





LSA
QSDLEQDRLAK
519
11
1
100

2231





LSA
QSSLPQDNR
1676
9
1
100
0.0002
2232





LSA
QTNFKSLLR
94
9
1
100
0.0320
2233





ISA
QVNKEKEK
1869
8
1
100

2234





ISA
QVNKEIEKF
1869
9
1
100

2235





LSA
QVNKEKEKFIK
1869
11
1
100

2236





LSA
RDIHKGHLEIEK
1712
11
1
100

2237





ISA
RDLEQERLA
1608
9
1
100

2238





LSA
RDLEQERLAK
608
10
1
100
0.0004
2239





LSA
RDLEQERR
540
8
1
100

2240





LSA
RDLEQERRA
540
9
1
100

2241





LSA
RDLEQERRAK
540
10
1
100
0.0004
2242





LSA
RDLEQRKA
625
8
1
100

2243





ISA
RDLEQRKADTK
625
11
1
100

2244





ISA
RDSKEISIIEK
688
11
1
100

2245





ISA
RGNSRDSK
684
8
1
100

2246





LSA
RINEEKHEK
49
9
1
100
0.0033
2247





LSA
RINEEKNEKK
49
10
1
100
0.0024
2248





ISA
RINEEKHEKKH
49
11
1
100

2249





LSA
RSGSSNSR
40
8
1
100

2250





ISA
RSGSSNSRNR
40
10
1
100
0.0011
2251





LSA
SDLEQDRLA
1387
9
1
100

2252





ISA
SDLBQDRLAK
1387
10
1
100
0.0002
2253





LSA
SDLEQERLA
1591
9
1
100

2254





ISA
SDLEQERLAK
1591
10
1
100
0.0002
2255





ISA
SDLEQERR
1574
8
1
100

2256





LSA
SDLEQERRA
1574
9
1
100

2257





LSA
SDLEQERRAK
1574
10
1
100
0.0002
2258





LSA
SDLERTKA
1183
8
1
100

2259





ISA
SDLERTKASK
1183
10
1
100
0.0002
2260





LSA
SDSEQERLA
520
9
1
100

2261





ISA
SDSEQERLAK
520
10
1
100
0.0002
2262





ISA
SDVNDFQISK
1750
10
1
100
0.0002
2263





LSA
SDVNDFQISKY
1750
11
1
100

2264





LSA
SGSSNSRNR
41
9
1
100
0.0002
2265





LSA
SIIEKTNR
1694
8
1
100

2266





LSA
SIKPEQKEDK
1726
10
1
100
0.0002
2267





LSA
MTTNVEGR
1703
9
1
100
0.0002
2268





LSA
MTTNVEGRR
1703
10
1
100
0.0002
2269





LSA
SLPQDNRGNSR
1678
11
1
100

2270





LSA
SLYDEHKK
1855
8
1
100

2271





LSA
SLYDEHIKK
1855
9
1
100
0.0460
2272





LSA
SLYDEHIKKY
1855
10
1
100
0.0015
2273





ISA
SLYDEHIKKYK
1855
11
1
100

2274





LSA
SSEELSEEK
1826
9
1
100
0.0002
2275





LSA
SSEEBEDUK
1826
11
1
100

2276





LSA
SSLPQDNR
1677
8
1
100

2277





LSA
TTNVEGRR
1705
8
1
100

2278





LSA
TTNVEGRRIMH
1705
11
1
100

2279





ISA
TVNISDVNDF
1746
10
1
100

2280





ISA
VDESEDITK
1895
10
1
100
0.0002
2281





LSA
VDELSEDITKY
1895
11
1
100

2282





ISA
VLAEDLYGR
1647
9
1
100
0.0013
2283





LSA
VLSHNSYEK
60
9
1
100
0.0280
2284





LSA
VLSHNSYEKTK
60
11
1
100

2285





LSA
VSENIFLK
106
8
1
100

2286





LSA
VSENIFLKENK
106
11
1
100

2287





ISA
VSQTNFKSLLR
92
11
1
100

2288





LSA
YEEHDUCY
1857
8
1
100

2289





LSA
YDEHIKKYK
1857
9
1
100
0.0005
2290





LSA
YFILVNLLIF
10
10
1
100

2291





LSA
YFILVNLLWH
10
11
1
100

2292





LSA
YGRLEIPA
1653
8
1
100

2293





LSA
YIKGQDENR
137
9
1
100
0.0025
2294





SSP2
AATPYAGEPA
525
10
8
80

2295





SSP2
ACAGLAYK
512
8
10
100

2296





SSP2
ACAGLAYKF
512
9
10
100

2297





SSP2
ADSAWENVK
216
9
10
100
0.0002
2298





SSP2
AFNRFLVGCH
197
10
10
100

2299





SSP2
AGGIAGGLA
501
9
10
100

2300





SSP2
AGGLALLA
505
8
10
100

2301





SSP2
AGGLALLACA
505
10
10
100

2302





SSP2
ALLACAGLA
509
9
10
100
0.0002
2303





SSP2
ALLACAGLAY
509
10
10
100
0.0630
2304





SSP2
ALLACAGLAYK
509
11
10
100

2305





SSP2
ALLQVRKH
136
8
9
90

2306





SSP2
ASKNKEKA
107
8
10
100

2307





SSP2
ATPYAGEPA
526
9
8
80

2308





SSP2
ATPYAGEPAPF
526
11
8
80

2309





SSP2
AVCVEVEK
233
8
10
100

2310





SSP2
AVCVEVEKTA
233
10
10
100

2311





SSP2
CAGLAYKF
513
8
10
100

2312





SSP2
CGKGTRSR
257
8
10
100

2313





SSP2
CGKGTRSRK
257
9
10
100
0.0002
2314





SSP2
CGKGIRSRKR
257
10
10
100
0.0002
2315





SSP2
CSGSIRRH
55
8
10
100

2316





SSP2
CSVTCGKGTR
253
10
10
100
0.0002
2317





SSP2
CVEVEKTA
235
8
10
100

2318





SSP2
DALLQVRK
135
8
9
90

2319





SSP2
DALLQVRKH
135
9
9
90
0.0004
2320





SSP2
DASKNKEK
106
8
10
100

2321





SSP2
DASKNKEKA
106
9
10
100

2322





SSP2
DCSGSIRR
54
8
10
100

2323





SSP2
DCSGSIRRH
54.
9
10
100

2324





SSP2
DDQPRPRGDNF
301
11
9
90

2325





SSP2
DDREENFDIPK
385
11
10
100

2326





SSP2
CCKCNLYA
209
8
10
100

2327





SSP2
DGKCNLYADSA
209
11
10
100

2328





SSP2
DIPKKPENK
392
9
10
100
0.0004
2329





SSP2
DIPICKPENKH
392
10
10
100
0.0002
2330





SSP2
DLDEPEQF
546
8
10
100

2331





SSP2
DLDEPEQFR
546
9
10
100
0.0002
2332





SSP2
DLFLVNGR
19
8
10
100

2333





SSP2
DSAWENVK
217
8
10
100

2334





SSP2
DSIQDSLK
166
8
10
100

2335





SSP2
DSIQDSLKESR
166
11
10
100

2336





SSP2
DSLKESRK
170
8
9
90

2337





SSP2
DVPKNPEDDR
378
10
10
100
0.0002
2338





SSP2
DVQNNIVDBK
27
11
10
100

2339





SSP2
EDDQPRPR
300
8
10
100

2340





SSP2
EDDREENF
384
8
10
100

2341





SSP2
EDKDLDEPEQF
543
11
10
100

2342





SSP2
EDRETRPH
450
8
9
90

2343





SSP2
EDRETRPHGR
450
10
9
90

2344





SSP2
EIIRLHSDA
99
9
10
100

2345





SSP2
EIIRLHSDASK
99
11
10
100

2346





SSP2
ELQEQCEEER
276
10
8
80
0.0002
2347





SSP2
ETLGEEDK
538
8
10
100

2348





SSP2
EVCNDEVDLY
41
10
8
80
0.0002
2349





SSP2
EVPSDVPK
374
8
10
100

2350





SSP2
FDETLGEEDK
536
10
10
100
0.0002
2351





SSP2
FDIPKKPENK
391
10
10
100
0.0002
2352





SSP2
FDIPKKPENKH
391
11
10
100

2353





SSP2
FDLFLVNGR
18
9
10
100

2354





SSP2
FFDLFLVNGR
17
10
10
100

2335





SSP2
FGIGQGINVA
188
10
10
100

2356





SSP2
FGIGQGINVAF
188
11
10
100

2357





SSP2
FLIFFDLF
14
8
10
100

2358





SSP2
FLVGCHPSDGK
201
11
10
100

2359





SSP2
FMKAVCVEVEK
230
11
10
100

2360





SSP2
FVVPGAATPY
520
10
8
80
0.0002
2361





SSP2
FVVPGAATPYA
520
11
8
80

2362





SSP2
GAATPYAGEPA
524
11
8
80

2363





SSP2
GCHPSDGK
204
8
10
100

2364





SSP2
GDNFAVEK
308
8
9
90

2365





SSP2
GGIAGGLA
502
8
10
100

2366





SSP2
GGIAGGLALLA
502
11
10
100

2367





SSP2
GGLALLACA
506
9
10
100

2368





SSP2
GIAGGLALLA
503
10
10
100

2369





SSP2
GIGQGINVA
189
9
10
100

2370





SSP2
GIGQGINVAF
189
10
10
100

2371





SSP2
GINVAFNR
193
8
10
100

2372





SSP2
GINVAFNRF
193
9
10
100

2373





SSP2
GIPDSIQDSLK
163
11
10
100

2374





SSP2
GLALLACA
507
8
10'
100

2375





SSP2
GLALLACAGLA
507
11
10
100

2376





SSP2
GLAYKFVVPGA
515
11
10
100

2377





SSP2
GSIRRHNWVNH
37
11
8
80

2378





SSP2
GTRSRKRELH
260
11
10
100

2379





SSP2
HAVPLAMK
67
8
10
100

2380





SSP2
HDNQNNLPNDK
401
11
10
100

2381





SSP2
HGRNNENR
457
8
10
100

2382





SSP2
HGRNNENRSY
457
10
10
100
0.0004
2383





SSP2
HLNDRINR
143
8
10
100

2384





SSP2
HLNDRINRENA
143
11
10
100

2385





SSP2
HSDASKNK
104
8
10
100

2386





SSP2
HSDASKNKEK
104
10
10
100
0.0004
2387





SSP2
HSDASKNKEKA
104
11
10
100

2388





SSP2
HVPNSEDR
445
8
10
100

2389





SSP2
HVPNSEDRE1R
445
11
9
90

2390





SSP2
IAGGIAGGLA
500
10
10
100

2391





SSP2
IAGGLALLA
504
9
10
100
0.0002
2392





SSP2
IAGGLALLACA
504
11
10
100

2393





SSP2
IFFDLFLVNGR
16
11
10
100

2394





SSP2
IGQGINVA
190
8
10
100

2395





SSP2
IGQGINVAF
190
9
10
100

2396





SSP2
IGQGINVAFNR
190
11
10
100

2397





SSP2
RRLHSDA
100
8
10
100

2398





SSP2
IIRLHSDASK
100
10
10
100
0.0230
2399





SSP2
IVDEIKYR
32
8
9
90

2400





SSP2
IVFLIFFDLF
12
10
10
100

2401





SSP2
KAVCVEVEK
232
9
10
100
0.0004
2402





SSP2
KAVCVEVEKTA
232
11
10
100

2403





SSP2
KCNLYADSA
211
9
10
100

2404





SSP2
KDLDEPEQF
545
9
10
100

2405





SSP2
KDLDEPEQFR
545
10
10
100

2406





SSP2
KFVVPGAA
519
8
10
100

2407





SSP2
KFVVPGAAIPY
519
11
8
80

2408





SSP2
KGIRSRICR
259
8
10
100

2409





SSP2
KIAGGIAGGLA
499
11
10
100

2410





SSP2
KVLDNERK
421
8
8
80

2411





SSP2
LACACLAY
511
8
10
100

2412





SSP2
LACAGLAYK
511
9
10
100
0.0240
2413





SSP2
LACAGLAYKF
511
10
10
100

2414





SSP2
LALLACAGLA
508
10
10
100

2415





SSP2
LALLACAGIAY
508
11
10
100

2416





SSP2
LAYKFVVPGA
516
10
10
100

2417





SSP2
LAYKFVVPGAA
516
11
10
100

2418





SSP2
LDEPEQFR
547
8
10
100

2419





SSP2
LGNVKYLVIVF
4
11
10
100

2420





SSP2
LLACAGLA
510
8
10
100

2421





SSP2
LLACAGLAY
510
9
10
100
0.0120
2422





SSP2
LLACAGLAYK
510
10
10
100
0.9500
2423





SSP2
LLACAGLAYKF
510
11
10
100

2424





SSP2
LLMDCSGSIR
51
10
10
100
0.0004
2425





SSP2
LLMDCSGSIRR
51
11
10
100

2426





SSP2
LLQVRKHLNDR
137
11
9
90

2427





SSP2
LLSINLPY
121
8
9
90

2428





SSP2
LLSTNLPYGR
121
10
8
80
0.0017
2429





SSP2
LMDCSGSIR
52
9
10
100
0.0004
2430





SSP2
LMDCSGSIRR
52
10
10
100
0.0015
2431





SSP2
LMDCSGSIRRH
52
11
10
100

2432





SSP2
LSTNLPYGR
122
9
8
80
0.0004
2433





SSP2
LVGCHPSDOK
202
10
10
100
0.0004
2434





SSP2
LVIVFLIF
10
8
10
100

2435





SSP2
LVIVFLIFF
10
9
10
100

2436





SSP2
MDCSGSIR
53
8
10
100

2437





SSP2
MDCSGSIRR
53
9
10
100

2438





SSP2
MDCSGSIRRH
53
10
10
100

2439





SSP2
NDRINRENA
145
9
10
100

2440





SSP2
NFDIPKKPENK
390
11
10
100

2441





SSP2
NIPEDSEK
366
8
10
100

2442





SSP2
NIVDSKY
31
8
10
100

2443





SSP2
NIVDEIKYR
31
9
9
90
0.0005
2444





SSP2
NLPNDKSDR
406
9
10
100
0.0005
2445





SSP2
NSEDRETR
448
8
9
90

2446





SSP2
NSEDRETRPH
448
10
9
90
0.0004
2447





SSP2
NVIGPFMK
225
8
10
100

2448





SSP2
NVIGPFMKA
225
9
10
100
0.0002
2449





SSP2
NVKNVIGPF
222
9
10
100

2450





SSP2
NVKNVIGPFMK
222
11
10
100

2451





SSP2
NVKYLVIVF
6
9
10
100

2452





SSP2
PCSVTCGK
252
8
10
100

2453





SSP2
PCSVTCGKGTR
252
11
10
100

2454





SSP2
PDSIQDSLK
165
9
10
100
0.0005
2455





SSP2
PFDETLGEEDK
535
11
10
100

2456





SSP2
PGAATPYA
523
8
8
80

2457





SSP2
PSDGKCNLY
207
9
10
100
0.0002
2458





SSP2
PSDOKCNLYA
207
10
10
1013

2459





SSP2
PSPNPEEGK
328
9
10
100
0.0005
2460





SSP2
QCEEERCPPK
280
10
8
80
0.0004
2461





SSP2
QDNNGNRH
438
8
10
100

2462





SSP2
QDSLKESR
169
8
10
100

2463





SSP2
QDSLKESRK
169
9
9
90
0.0005
2464





SSP2
QGINVAFNR
192
9
10
100
0.0009
2465





SSP2
QGINVAFNRF
192
10
10
100

2466





SSP2
QSQDNNGNR
436
9
10
100
0.0005
2467





SSP2
QSQDNNONRH
436
10
10
100
0.0004
2468





SSP2
QVRICHLNDR
139
9
9
90
0.0005
2469





SSP2
RGDNFAVEK
307
9
9
90
0.0005
2470





SSP2
RGVKIAVF
181
8
9
90

2471





SSP2
RLHSDASK
102
8
10
100

2472





SSP2
RLHSDASKNK
102
10
10
100
0.0240
2473





SSP2
RSRKREILH
262
9
10
100
0.0110
2474





SSP2
SDASICNKEK
105
9
10
100
0.0005
2475





SSP2
SDASICNICEKA
105
10
10
100

2476





SSP2
SDGKCNLY
208
8
10
100

2477





SSP2
SDGKCNLYA
208
9
10
100

2478





SSP2
SDNKYKIA
494
8
9
90

2479





SSP2
SDVPKNPEDDR
377
11
10
100

2480





SSP2
SIQDSLKESR
167
10
10
100
0.0004
2481





SSP2
SIQDSLKESRK
167
11
9
90

2482





SSP2
SIRRHNWVNH
58
10
8
80
0.0011
2483





SSP2
SIRRHNWVNHA
58
11
8
80

2484





SSP2
SLLSTNLPY
120
9
9
90
0.0280
2485





SSP2
SLLSTNLPYGR
120
11
8
80

2486





SSP2
STNLPYGR
123
8
8
80

2487





SSP2
SVTCGKGTR
254
9
10
100
0.0005
2488





SSP2
SVICGKGTRSR
254
11
10
100

2489





SSP2
TCGKGTRSR
256
9
10
100

2490





SSP2
TCGKGTRSRK
256
10
10
100
0.0004
2491





SSP2
TCGKGIRSRKR
256
11
10
100

2492





SSP2
VAFNRFLVGCH
196
11
10
100

2493





SSP2
VCNDEVDLY
42
9
8
80

2494





SSP2
VCVEVEKTA
234
9
10
100

2495





SSP2
VFGIGQGINVA
187
11
10
100

2496





SSP2
VFLIFFDLF
13
9
10
100

2497





SSP2
VGCHPSDGK
203
9
10
100
0.0005
2498





SSP2
VIGPFMKA
226
8
10
100

2499





SSP2
VIVFLIFF
11
8
10
100

2500





SSP2
VIVFLIFFDLF
11
11
10
100

2501





SSP2
VTCGKGTR
255
8
10
100

2502





SSP2
VTCGKGTRSR
255
10
10
100
0.0004
2503





SSP2
VTCGKGTRSRK
255
11
10
100

2504





SSP2
VVPGAATPY
521
9
8
80
0.0005
2505





SSP2
VVPGAATPYA
521
10
8
80

2506





SSP2
WSPCSVTCGK
250
10
10
100
0.0004
2507





SSP2
WVNHAVPLA
64
9
8
80
0.0002
2508





SSP2
WVNHAVPLAMK
64
11
8
80

2509





SSP2
YADSAWENVIC
215
10
10
100
0.0004
2510





SSP2
YAGEPAPF
529
8
8
80

2511





SSP2
YLLMDCSGSIR
50
11
10
100

2512





SSP2
YLVIVFLIF
9
9
10
100

2513





SSP2
YLVIVFLIFF
9
10
10
100

2514
















TABLE XVII







Malaria All Motif Peptides With Binding Information

















No. of
Sequence
Conservancy




Protein
Sequence
Position
Amino Acids
Frequency
(%)
A*1101
Seq. Id.

















CSP
ALFQEYQCY
18
9
19
100
0.0021
2515





CSP
ANANNAVK
336
8
16
84

2516





CSP
ANPNANKNK
305
9
19
100

2517





CSP
CGNGIQVR
377
8
19
100

2518





CSP
CGNGIQVRIK
377
10
19
100
0.0002
2519





CSP
DGNNEDNEX
96
9
19
100
0.0002
2520





CSP
DGNNEDNEKLR
96
11
19
100

2521





CSP
DGNNNNGDNGR
77
11
17
89

2522





CSP
DIEKKICK
402
8
19
100

2523





CSP
DIEKKICKMEK
402
11
19
100

2524





CSP
DNAGINLY
41
8
18
95

2525





CSP
DNEKLRKPK
101
9
19
100

2526





CSP
DNEKLRKPKH
101
10
19
100

2527





CSP
DNEKLRKPKHK
101
11
19
100

2528





CSP
DNGREGKDEDK
84
11
19
100

2529





CSP
EALFQEYQCY
17
10
19
100
0.0002
2530





CSP
EDNEKLRK
100
8
19
100

2531





CSP
EDNEKLRKPK
100
10
19
100
0.0002
2532





CSP
EDNEKLRKPKH
100
11
19
100

2533





CSP
EGKDEDKR
88
8
19
100

2534





CSP
ELEMNYYGK
50
9
19
100
0.0003
2535





CSP
ENANANNAVK
334
10
16
84

2536





CSP
ENKIEKKICK
400
10
19
100

2537





CSP
ENWYSLKK
60
8
19
100

2538





CSP
ENWYSLKKNSR
60
11
19
100

2539





CSP
FLFVEALFQEY
13
11
19
100

2540





CSP
FVEALFQEY
15
9
19
100
0.0003
2541





CSP
GDNGREGK
83
8
19
100

2542





CSP
GNGIQVRIK
378
9
19
100

2543





CSP
GNNEDNEK
97
8
19
100

2544





CSP
GNNEDNEKLR
97
10
19
100

2545





CSP
GNNEDNEKLRK
97
11
19
100

2546





CSP
GNNNNGDNGR
78
10
19
100

2547





CSP
HIEQYLKK
350
8
15
79

2548





CSP
HNMPNDPNR
322
9
19
100

2549





CSP
INLYNELEMNY
45
11
18
95

2550





CSP
KLRKPKHK
104
8
19
100

2551





CSP
KLRKPKHKK
104
9
19
100
0.0037
2552





CSP
KLRKPKHKKLK
104
11
19
100

2553





CSP
KNNNNEEPSDK
343
11
19
100

2554





CSP
KNNQGNGQGH
313
10
19
100

2555





CSP
LDYENDIEK
397
9
18
95
0.0002
2556





CSP
LDYENDIEKK
397
10
18
95
0.0002
2557





CSP
LFQEYQCY
19
8
19
100

2558





CSP
LFVEALFQEY
14
10
19
100

2559





CSP
LNYDNAGINLY
38
11
18
95

2560





CSP
MNYYGKQENWY
53
11
19
100

2561





CSP
NANANNAVK
335
9
16
1984
0.0002
2562





CSP
NANPNANPNK
304
10
19
100
0.0021
2563





CSP
NDIEKKICK
401
9
19
100
0.0002
2564





CSP
NGDNGREGK
82
9
19
100
0.0002
2565





CSP
NGIQVRIK
379
8
19
100

2566





CSP
NGREGKDEDK
85
10
19
100
0.0002
2567





CSP
NGEGKDEDKR
85
11
19
100

2568





CSP
NLYNELEMNY
46
10
19
100
0.0002
2569





CSP
NLYNELEMNYY
46
11
19
100

2570





CSP
NMPNDPNR
323
8
19
100

2571





CSP
NNEDNEKIR
98
9
19
100

2572





CSP
NNEDNEXLRK
98
10
19
100

2373





CSP
NNEEPSDK
346
8
19
100

2574





CSP
NNEEPSDKH
346
9
19
100

2575





CSP
NNGDNGREGK
81
10
19
100

2576





CSP
NNNEEPSDK
345
9
19
100

2577





CSP
NNNEEPSDKH
345
10
19
100

2578





CSP
NNNGDNGR
80
8
19
100

2579





CSP
NNNGDNGREGK
80
11
19
100

2580





CSP
NNNNEEPSDK
344
10
19
100

2581





CSP
NNNNEEPSDKH
344
11
19
100

2582





CSP
NNNNGDNGR
79
9
19
100

2583





CSP
NNQGNGQGH
314
9
19
100

2584





CSP
NTRVLNELNY
31
10
19
100
0.0002
2585





CSP
PNANPNANPNK
303
11
19
100

2586





CSP
PSDKHIEQY
346
9
15
79

2587





CSP
PSDKHIEQYLK
346
11
15
79

2588





CSP
QCYGSSSNTR
24
10
19
100

2589





CSP
QGHNMPNDPNR
320
11
19
100

2590





CSP
RDGNNEDNEK
95
10
19
100
0.0002 
2591





CSP
RVLNELNY
33
8
19
100

2592





CSP
SDICHIEQY
347
8
15
79

2593





CSP
SDKHIEQYLK
347
10
15
79

2594





CSP
SDKHIEQYLKK
347
11
15
79

2595





CSP
SNIRVLNELNY
30
11
19
100

2596





CSP
SVTCGNGIQVR
374
11
19
100

2597





CSP
TCGNGIQVR
376
9
19
100

2598





CSP
TCGNGIQVRDC
376
11
19
100

2599





CSP
VTCGNGIQVR
375
10
19
100
0.0340
2600





CSP
YDNAGINLY
40
9
18
95

2601





CSP
YGKQENWY
56
8
19
100

2602





CSP
YGKQENWYSLK
56
11
19
100

2603





CSP
YGSSSNTR
26
8
19
100

2604





CSP
YNELEMNY
48
8
19
100

2605





CSP
YNELEMNYY
48
9
19
100

2606





CSP
YNELEMNYYGK
48
11
19
100

2607





CSP
YSLKKNSR
63
8
19
100

2608





EXP
ALFFIIFNK
10
9
1
100
1.2000
2609





EXP
DDNNLVSGPEH
152
11
1
100

2610





EXP
DLISDMIK
52
8
1
100

2611





EXP
DLISDMIKK
52
9
1
100
0.0003
2612





EXP
DNNLVSGPEH
153
10
1
100

2613





EXP
DVHDLISDMIK
49
11
1
100

2614





EXP
ELVEVNKR
63
8
1
100

2615





EXP
ELVEVNKRK
63
9
1
100
0.0002
2616





EXP
ELVEVNKRKSK
63
11
1
100

2617





EXP
EMADCTNK
19
9
1
100
0.0002
2618





EXP
EVNKRKSK
66
8
1
100

2619





EXP
EVNKRKSKY
66
9
1
100
0.0002
2620





EXP
EVNKRKSKYK
66
10
1
100
0.0002
2621





EXP
FLALFFIIFNK
8
11
1
100

2622





EXP
FNKESLAEK
16
9
1
100

2623





EXP
GGVGLVLY
94
8
1
100

2624





EXP
GLVLYNIEK
97
9
1
100
0.0055
2625





EXP
GLVLYNTEKGR
97
11
1
100

2626





EXP
GSGEPLIDVH
42
10
1
00
0.0002
2627





EXP
GSGVSSKK
30
8
1
00

2628





EXP
GSOVSSKKK
30
9
1
00
0.0065
2629





EXP
GSGVSSKKKNK
30
11
1
00

2630





EXP
GTGSGVSSK
28
9
1
00
0.0180
2631





EXP
GTGSGVSSKK
28
10
1
00
0.0340
2632





EXP
GTGSGVSSKKK
28
11
1
00

2633





EXP
GVGLVLYNIEK
95
11
1
00

2634





EXP
GVSSKKKNK
32
9
1
00
0.0002
2635





EXP
GVSSKKKNKK
32
10
1
00
0.0002
2636





EXP
HDLISDMIK
51
9
1
00
0.0002
2637





EXP
HDLISDMIKK
51
10
1
00
0.0002
2638





EXP
IFNKESLAEK
15
10
1
00
0.0003
2639





EXP
IIFNKESLAEK
14
11
1
00

2640





EXP
KGSGEPLDVH
41
11
1
00

2641





EXP
KGTGSGVSSK
27
10
1
00
0.0009
2642





EXP
KGTGSGVSSKK
27
11
1
00

2643





EXP
LALFFIIFNK
9
10
1
00
0.0530
2644





EXP
LFFIIFNK
11
8
1
00

2645





EXP
LGGVGLVLY
93
9
1
00
0.0002
2646





EXP
LISDMIKK
53
8
1
00

2647





EXP
LLGGVGLVLY
92
10
1
00
0.0003
2648





EXP
LVEVNKRK
64
8
1
00

2649





EXP
LVEVNKRKSK
64
10
1
00
0.0002
2650





EXP
LVEVNKRKSKY
64
11
1
00

2651





EXP
LVLYNIEK
98
8
1
00

2652





EXP
LVLYNTEKGR
98
10
1
00
0.0002
2653





EXP
LVLYNTEKGRH
98
11
1
00

2654





EXP
NLVSGPEH
155
8
1
00

2655





EXP
NNLVSGPEH
154
9
1
00

2656





EXP
NTEKGRHPFK
102
10
1
00
0.0080
2657





EXP
SGEPLIDVH
43
9
1
00
0.0002
2658





EXP
SGVSSKKK
31
8
1
00

2659





EXP
SGVSSKKKNK
31
10
1
00
0.0002
2660





EXP
SGVSSKKKNKK
31
11
1
00

2661





EXP
SLAEKTNK
20
8
1
00

2662





EXP
SSKKKNKK
34
8
1
00

2663





EXP
TGSGVSSK
29
8
1
00

2664





EXP
TGSGVSSKK
29
9
1
00
0.0016
2665





EXP
TGSGVSSKKK
29
10
1
00
0.0002
2666





EXP
VGLVLYNTEK
96
10
1
00
0.0052
2667





EXP
VLLGGVGLVLY
91
11
1
00

2668





EXP
VLYNTEKGR
99
9
1
00
0.0007
2669





EXP
VLYNTEXGRH
99
10
1
00
0.0002
2670





EXP
VNKRKSKY
67
8
1
00

2671





EXP
VNKFRKSKYK
67
9
1
00

2672





EXP
VSSKKKNK
33
8
1
00

2673





EXP
VSSKKKNKK
33
9
1
00
0.0002
2674





EXP
YNTEKGRH
101
8
1
00

2675





EXP
YNTEKGRHPFK
101
11
1
00

2676





LSA
ADTKKNLER
1632
9
1
00

2677





LSA
ADTKKNLERK
1632
10
1
00
0.0003
2678





LSA
ADTKKNLERKK
1632
11
1
00

2679





LSA
AIELPSENER
1660
10
1
00
0.0002
2680





LSA
ANEKLQBQQR
1531
10
1
00

2681





LSA
DDDDKKKY
130
8
1
00

2682





LSA
DDDDKKKYIK
130
10
1
100
0.0002
2683





LSA
DDDKKKYIK
131
9
1
100
0.0002
2684





LSA
DDEDLDEFK
1778
9
1
100
0.0002
2685





LSA
DDKKKYIK
132
8
1
100

2686





LSA
DDLDEGIEK
1817
9
1
100
0.0002
2687





LSA
DGSIKPEQK
1724
9
1
100
0.0002
2688





LSA
DIHKGHLEEK
1713
10
1
100
0.0002
2689





LSA
DIHKGHLEEXK
1713
11
1
100

2690





LSA
DITKYFMK
1901
8
1
100

2691





LSA
DLDEFKPIVQY
1781
11
1
100

2692





LSA
DLDEOIEK
1818
8
1
100

2693





LSA
DLEEKAAK
148
8
1
100

2694





LSA
DLEQDRLAK
1388
9
1
100
0.0002
2695





LSA
DLEQDRLAKEK
1388
11
1
100

2696





LSA
DLEQDRLAK
1609
9
1
100
0.0002
2697





LSA
DLEQERLAKEK
1609
11
1
100

2698





LSA
DLEQERLANEK
1524
11
1
100

2699





LSA
DLEQBIRAK
1575
9
1
100
0.0002
2700





LSA
DLEQERRAKEK
1575
11
1
100

2701





LSA
DLEQRKADTK
1626
10
1
100
0.0002
2702





LSA
DLEQRKADTKK
1626
11
1
100

2703





LSA
DLERTKASK
1184
9
1
100
0.0002
2704





LSA
DNNFKPNDK
1846
9
1
100

2705





LSA
DNRGNSRDSK
1682
10
1
100

2706





LSA
DSEQERLAK
521
9
1
100
0.0002
2707





LSA
DSEQERLAKEK
521
11
1
100

2708





LSA
DSKEISIIEK
1689
10
1
100
0.0002
2709





LSA
DTKKNLER
1633
8
1
100

2710





LSA
DTKKNLERK
1633
9
1
100
0.0002
2711





LSA
DTKKNLERKK
1633
10
1
100
0.0002
2712





LSA
DVLAEDLY
1646
8
1
100

2713





LSA
DVLAEDLYGR
1646
10
1
100
0.0002
2714





LSA
DVNDFQISK
1751
9
1
100
0.0018
2715





LSA
DVNDFQISKY
1751
10
1
100
0.0002
2716





LSA
EDDEDLDEFK
1777
10
1
100
0.0002
2717





LSA
EDEISAEY
1761
8
1
!CO

2718





LSA
EDMCYFMK
1900
9
1
100
0.0003
2719





LSA
EDKSADIQNH
1733
10
1
100

2720





LSA
EDLEEKAAK
147
9
1
100
0.0002
2721





LSA
EFKPIVQY
1784
8
1
100

2722





LSA
EGRRDIHK
1709
8
1
100

2723





LSA
EGRRDIHKGH
1709
10
1
100
0.0002
2724





LSA
EIIKSNLR
33
8
1
100

2725





LSA
EISIIEKTNR
1692
10
1
100
0.0002
2726





LSA
ELEDLIEK
1805
8
1
100

2727





LSA
ELPSENER
1662
8
1
100

2728





LSA
ELPSENERGY
1662
10
1
100
0.0002
2729





LSA
ELPSENERGYY
1662
11
1
100

2730





LSA
ELSEDDK
1897
8
1
100

2731





LSA
ELSEDITKY
1897
9
1
100
0.0002
2732





LSA
ELSEEKIK
1829
8
1
100

2733





LSA
ELSEEKIKK
1829
9
1
100
0.0002
2734





LSA
ELSEEKIKKGK
1829
11
1
100

2735





LSA
ELTMSNVK
83
8
1
100

2736





LSA
ENERGYYIPH
1666
10
1
100

2737





LSA
ENIFLKENK
108
9
1
100

2738





LSA
ENKLNKEGK
114
9
1
100

2739





LSA
ENNKFFDK
73
8
1
100

2740





LSA
ENNKFFDKDK
73
10
1
100

2741





LSA
ENRQEDLEEK
143
10
1
100

2742





LSA
ESITINVEGR
1702
10
1
100
0.0002
2743





LSA
ESITTNVEGRR
1702
11
1
100

2744





LSA
FILVNLLIFH
11
10
1
100
0.0060
2745





LSA
FLKENKLNK
111
9
1
100
0.0005
2746





LSA
GDVLAEDLY
1645
9
1
100

2747





LSA
GDVLAEDLYGR
1645
11
1
100

2748





LSA
GSIKPEQK
1725
8
1
100

2749





LSA
GSIKPEQKEDK
1725
11
1
100

2750





LSA
GSSNSRNR
42
8
1
100

2751





LSA
GVSENIFLK
105
9
1
100
0.6600
2752





LSA
HGDVLAEDLY
1644
10
1
100
0.0002
2753





LSA
HIINDDDDK
126
9
1
100
0.0002
2754





LSA
HIINDDDDKK
126
10
1
100
0.0002
2755





LSA
HIINDDDDKKK
126
11
1
100

2756





LSA
HIKKYKNDK
1860
9
1
100
0.0002
2757





LSA
HILYISFY
3
8
1
100

2758





LSA
HINGKIIK
20
8
1
100

2759





LSA
HLEEKDGSIK
1718
11
1
100

2760





LSA
HNSYEKTK
63
8
1
100

2761





LSA
HVLSHNSY
59
8
1
100

2762





LSA
HVLSHNSYEK
59
10
1
100
0.0140
2763





LSA
IFHINGKIIK
18
10
1
100
0.0006
2764





LSA
IFLKENIQNK
110
10
1
100
0.0002
2765





LSA
IINDDDDK
127
8
1
100

2766





LSA
IINDDDDKK
127
9
1
100
0.0002
2767





LSA
IINDDDDKKK
127
10
1
100
0.0002
2768





LSA
IINDDDDKKKY
127
11
1
100

2769





LSA
ILVNLLIFH
12
9
1
100
0.0008
2770





LSA
INDDDDKK
128
8
1
100

2771





LSA
INDDDDKKK
128
9
1
100

2772





LSA
INDDDDKKKY
128
10
1
100

2773





LSA
INEEKHSC
50
8
1
100

2774





LSA
INEEKHEKK
50
9
1
100

2775





LSA
INEEKNEKKH
50
10
1
100

2776





LSA
INGKIIKNSEK
21
11
1
100

2777





LSA
ISDVNDFQISK
1749
11
1
100

2778





LSA
ISIIEKTNR
1693
9
1
100
0.0008
2779





LSA
ITTNVEGR
1704
8
1
100

2780





LSA
ITTNVEGRR
1704
9
1
100
0.0007
2781





LSA
IVDELSEDMC
1894
11
1
100

2782





LSA
KADTKKNLER
1631
10
1
100
0.0002
2783





LSA
KADTKKNLERK
1631
11
1
100

2784





LSA
KDEIIKSTILR
31
10
1
100

2785





LSA
KDGSIKPEQK
1723
10
1
100
0.0002
2786





LSA
KDKELIMSNVK
80
11
1
100

2787





LSA
KDNNFKPNDK
1845
10
1
100
0.0002
2788





LSA
KFIKSLFH
1876
8
1
100

2789





LSA
KGHLEEKK
1716
8
1
100

2790





LSA
KGKKYEKIK
1837
9
1
100
0.0002
2791





LSA
KIIKNSEK
24
8
1
100

2792





LSA
KIKKGKKY
1834
8
1
100

2793





LSA
KIKKGKKYEK
1834
10
1
100
0.0007
2794





LSA
KLNKEGKLIEH
116
11
1
100

2795





LSA
KLQEQQSDLER
1177
11
1
100

2796





LSA
KNDKQVNK
1865
8
1
100

2797





LSA
KNDKQVNKEK
1865
10
1
100

2798





LSA
KNLERKKEH
1636
9
1
100

2799





LSA
KNNENNKFFDK
70
11
1
100

2800





LSA
KNSEKDEIIK
27
10
1
100

2801





LSA
KNVSQTNFK
90
9
1
100

2802





LSA
KSADIQNH
1735
8
1
100

2803





LSA
KSLYDEHIIK
1854
9
1
100
0.0340
2804





LSA
KSLYDEHIKK
1854
10
1
100
0.0490
2805





LSA
KSLYDEHIIKKY
1854
11
1
100

2806





LSA
KSSEELSEEK
1825
10
1
100
0.0009
2807





LSA
KTKDNNFK
1843
8
1
100

2808





LSA
KTKNNENNK
68
9
1
100
0.0038
2809





LSA
LAEDLYGR
1648
8
1
100

2810





LSA
LAKEKLQEQQR
1615
11
1
100

2811





LSA
LANEKLQEQQR
1530
11
1
100

2812





LSA
LDDLDEGIEK
1816
10
1
100
0.0002
2813





LSA
LDEFKPIVQY
1782
10
1
100

2814





LSA
LGVSENTIFLK
104
10
1
100
0.0063
2815





LSA
LIFHINGK
17
8
1
100

2816





LSA
LIFHINGKIIK
17
11
1
100

2817





LSA
LLIFHINGK
16
9
1
100
0.0100
2818





LSA
LNKEGKLIEH
117
10
1
100

2819





LSA
LSEDITKY
1898
8
1
100

2820





LSA
LSEDITKYFMK
1898
11
1
100

2821





LSA
LSEEKIKK
1830
8
1
100

2822





LSA
LSEEKIKKGK
1830
10
1
100
0.0002
2823





LSA
LSEEKIKKGKK
1830
11
1
100

2824





LSA
LSHNSYEK
61
8
1
100

2825





LSA
LSHNSYEKTK
61
10
1
100
0.0002
2826





LSA
LVNLLIFH
13
8
1
100

2827





LSA
NDDDDKKK
129
8
1
100

2828





LSA
NDDDDKKKY
129
9
1
100

2829





LSA
NDDDDKKKYIK
129
11
1
100

2830





LSA
NDFQISKY
1753
8
1
100

2831





LSA
NDKQVNKEK
1866
9
1
100
0.0002
2832





LSA
NDKQVNKEKEK
1866
11
1
100

2833





LSA
NDKSLYDEH
1852
9
1
100

2834





LSA
NDKSLYDEHIIK
1852
11
1
100

2835





LSA
NFKPNDKSLY
1848
10
1
100

2836





LSA
NFQDEENIGIY
1793
11
1
100

2837





LSA
NGKIIKNSEK
22
10
1
100
0.0002
2838





LSA
NIFLKENK
109
8
1
100

2839





LSA
NIFLKENKLNK
109
11
1
100

2840





LSA
NLDDLDEGIEK
1815
11
1
100

2841





LSA
NLERKKEH
1637
8
1
100

2842





LSA
NLGVSENIFLK
103
11
1
100

2843





LSA
NLLIFHINGK
15
10
1
100
0.0008
2844





LSA
NLRSGSSNSR
38
10
1
100
0.0002
2845





LSA
NNENNFFDK
71
10
1
100

2846





LSA
NNFKPNDK
1847
8
1
100

2847





LSA
NNFKPNDKSLY
1847
11
1
100

2848





LSA
NNKFFDKDK
74
9
1
100

2849





LSA
NSEKDEIIK
28
9
1
100
0.0002
2850





LSA
NSRNRINEEK
45
10
1
100
0.0002
2851





LSA
NSRNRINEEKH
45
11
1
100

2852





ISA
NVEGRRDIH
1707
9
1
100
0.0002
2853





ISA
NVEGRRDIHK
1707
10
1
100
0.0002
2854





LSA
NVKNVSQTNFK
88
11
1
100

2855





LSA
NVSQTNFK
91
8
1
100

2856





LSA
PAIELPSENER
659
11
1
100

2857





LSA
PNDKSLYDEFI
851
10
1
100

2858





LSA
PSENERGY
664
8
1
100

2859





LSA
PSENERGYY
664
9
1
100
0.0002
2860





LSA
QDEENIGIY
795
9
1
100

2861





LSA
QDEENIGIYK
795
10
1
100
0.0002
2862





LSA
QDNRGNSR
681
8
1
100

2863





LSA
QDNRGNSRDSK
681
11
1
100

2864





LSA
QDRLAKEK
391
8
1
100

2865





LSA
QGQQSDLEQER
128
11
1
100

2866





LSA
QSDLEQDR
386
8
1
100

2867





LSA
QSDLEQDRLAK
386
11
1
100

2868





ISA
QSDSEQER
590
8
1
100

2869





LSA
QSDLEQERLAK
590
11
1
100

2870





LSA
QSDLEQERR
573
9
1
100
0.0002
2871





LSA
QSDLEQERRAK
573
11
1
100

2872





LSA
QSDLERTK
182
8
1
100

2873





LSA
QSDLERTKASK
182
11
1
100

2874





LSA
QSDSEQER
519
8
1
100

2875





LSA
QSDSEQERLAK
519
11
1
100

2876





ISA
QSSLPQDNR
1676
9
1
100
0.0013
2877





ISA
QTNFKSLLR
94
9
1
100
0.0440
2878





LSA
QVNKEKEK
1869
8
1
100

2879





LSA
QVNKEKEKFIK
1869
11
1
100

2880





ISA
RDIHKGHLEEK
1712
11
1
100

2881





ISA
RDLEQERLAK
1608
10
1
100
0.0002
2882





LSA
RDLEQERR
1540
8
1
100

2883





LSA
RDLEQERRAK
1540
10
1
100
0.0002
2884





ISA
RDLEQRKADTK
1625
11
1
100

2885





ISA
RDSKEISIIEK
1688
11
1
100

2886





LSA
RGNSRDSK
1684
8
1
100

2887





LSA
RINEEKHEK
49
9
1
100
0.0370
2888





LSA
RINEEKHEKK
49
10
1
100
0.0018
2889





ISA
RINEEKHEKKH
49
11
1
100

2890





LSA
RNRINEEK
47
8
1
100

2891





LSA
RNRINEEKH
47
9
1
100

2892





LSA
RNRINEEKHEK
47
11
1
100

2893





ISA
RSGSSNSR
40
8
1
100

2894





LSA
RSGSSNSRNR
40
10
1
100
0.0002
2895





LSA
SDLEQDRLAK
387
10
1
100
0.0002
2896





ISA
SDLEQERLAK
591
10
1
100
0.0002
2897





LSA
SDLEQERR
574
8
1
100

2898





LSA
SDLEQERRAK
574
10
1
100
0.0002
2899





LSA
SDLERTKASK
183
10
1
100
0.0002
2900





ISA
SDSEQERLAK
520
10
1
100
0.0002
2901





LSA
SDVNDFQISK
750
10
1
100
0.0002
2902





ISA
SDVNDFQISKY
750
11
1
100

2903





ISA
SGSSNSRNR
41
9
1
100
0.0030
2904





ISA
SIIEKTNR
694
8
1
100

2905





ISA
SIKPEQKEDK
726
10
1
100
0.0002
2906





LSA
SITTNVEGR
703
9
1
100
0.0027
2907





LSA
SITTNVEGRR
703
10
1
100
0.0002
2908





LSA
SLPQDNRGNSR
678
11
1
100

2909





LSA
SLYDEHIK
835
8
1
100

2910





LSA
SLYDEHIKK
855
9
1
100
0.4100
2911





LSA
SLYDEHRKY
855
10
1
100
0.0045
2912





LSA
SLYDEHIKKVK
835
11
1
100

2913





LSA
SNLRSGSSNSR
37
11
1
100

2914





LSA
SNSRNRINEEK
44
11
1
100

2915





LSA
SSEELSEEK
1826
9
1
100
0.0017
2916





ISA
SSEELSEEKIK
1826
11
1
100

2917





LSA
SSLPQDNR
1677
8
1
100

2918





LSA
TNFKSLLR
95
8
1
100

2919





LSA
TNVEGRRDIH
1706
10
1
100

2920





LSA
TNVEGRRDIHK
1706
11
1
100

2921





LSA
TTNVEGRR
1705
8
1
100

2922





LSA
TINVEGRRDIH
1705
11
1
100

2923





LSA
VDELSEDTK
1895
10
1
100
0.0002
2924





LSA
VDELSEDITKY
1895
11
1
100

2925





LSA
VLAEDLYGR
1647
9
1
100
0.0004
2926





LSA
VLSHNSYEK
60
9
1
100
0.0280
2927





LSA
VLSHNSYEKTK
60
11
1
100

2928





LSA
VNDFQISK
1752
8
1
100

2929





LSA
VNDFQISKY
1752
9
1
100

2930





LSA
VNKEKEKFIK
1870
10
1
100

2931





LSA
VNLLIFHINGK
14
11
1
100

2932





LSA
VSENIFLK
106
8
1
100

2933





LSA
VSEMFLKENK
106
11
1
100

2934





LSA
VSQTNFKSLLR
92
11
1
100

2935





LSA
YDEHIKKY
1857
8
1
100

2936





LSA
YDEHIKKYK
1857
9
1
100
0.0002
2937





LSA
YFILVNLLIFH
10
11
1
100

2938





LSA
YIKGQDENR
137
9
1
100
0.0002
2939





SSP2
ACAGLAYK
512
8
10
100

2940





SSP2
ADSAWENVK
216
9
10
100
0.0009
2941





SSP2
AFNRFLVGCH
197
10
10
100

2942





SSP2
ALLACAGLAY
509
10
10
100
0.0110
2943





SSP2
ALIACAGLAYK
509
11
10
100

2944





SSP2
ALLQVRKH
136
8
9
90

2945





SSP2
AVCVEVEK
233
8
10
100

2946





SSP2
CGKGTRSR
257
8
10
100

2947





SSP2
CGKGTRSRK
257
9
10
100
0.0002
2948





SSP2
CCKGIRSRKR
257
10
10
100
0.0002
2949





SSP2
CNDEVDLY
43
8
8
80

2950





SSP2
CSGSIRRH
55
8
10
100

2951





SSP2
CSVTCGKGTR
253
10
10
100
0.0002
2952





SSP2
DALLQVRK
135
8
9
90

2953





SSP2
DALLQVRKH
135
9
9
90
0.0002
2954





SSP2
DASKNIUEK
106
8
10
100

2955





SSP2
DCSGSIRR
54
8
10
100

2956





SSP2
DCSGSIRRH
54
9
10
100

2957





SSP2
DDREENFDIPK
385
11
10
100

2958





SSP2
DIPKKPENK
392
9
10
100
0.0002
2959





SSP2
DIPKKPENKH
392
10
10
100
0.0002
2960





SSP2
DLDEPEQFR
546
9
10
100
0.0002
2961





SSP2
DLFLVNGR
19
8
10
100

2962





SSP2
DNQNNLPNDK
402
10
10
100

2963





SSP2
CGAVIENVK
217
8
10
100

2964





SSP2
DSIQDSLK
166
8
10
100

2965





SSP2
DSIQDSLKESR
166
11
10
100

2966





SSP2
DSLKESRK
170
8
9
90

2967





SSP2
DVPKNPEDDR
378
10
10
100
0.0002
2968





SSP2
DVQNNIVDEIK
27
11
10
100

2969





SSP2
EDDQPRPR
300
8
10
100

2970





SSP2
EDRETRPH
450
8
9
90

2971





SSP2
EDRETRPHGR
450
10
9
90

2972





SSP2
EIIRLHSDASK
99
11
10
100

2973





SSP2
ELQEQCEEER
276
10
8
80
0.0002
2974





SSP2
ENFDIPKK
389
8
10
100

2975





SSP2
ENRSYNRK
462
8
10
100

2976





SSP2
ETLGEEDK
538
8
10
100

2977





SSP2
EVCNDEVDLY
41
10
8
80
0.0002
2978





SSP2
EVPSDVPK
374
8
10
100

2979





SSP2
FDEILGEEDK
536
10
10
100
0.0002
2980





SSP2
FDIPKKPENK
391
10
10
100
0.0002
2981





SSP2
FDIPKKPENKH
391
11
10
100

2982





SSP2
FDLFLVNGR
18
9
10
100

2983





SSP2
FFDLFLVNGR
17
10
10
100

2984





SSP2
FLVGCHPSDGK
201
11
10
100

2985





SSP2
FMKAVCVEVEK
230
11
10
100

2986





SSP2
FNRFLVGCH
198
9
10
100

2987





SSP2
FVVPGAATPY
520
10
8
80
0.0002
2988





SSP2
GCHPSDGK
204
8
10
100

2989





SSP2
GDNFAVEK
308
8
9
90

2990





SSP2
GINVAFNR
193
8
10
100

2991





SSP2
GIPDSIQDSLK
163
11
10
100

2992





SSP2
GNRHVPNSEDR
442
11
10
100

2993





SSP2
GSIRRHNWVNH
57
11
8
80

2994





SSP2
GIRSRKREILH
260
11
10
100

2995





SSP2
HAVPLAMK
67
8
10.
100

2996





SSP2
HDNQNNLPNDK
401
11
10
100

2997





SSP2
HGRNNENR
457
8
10
100

2998





SSP2
HORNNENRSY
457
10
10
100
0.0002
2999





SSP2
HLNDRINR
143
8
10
100

3000





SSP2
HSDASKNK
104
8
10
100

3001





SSP2
HSDASKNKEK
104
10
10
100
0.0002
3002





SSP2
HVPNSEDR
445
8
10
100

3003





SSP2
HVPNSEDRETR
445
11
9
90

3004





SSP2
IFFDLFLVNGR
16
11
10
100

3005





SSP2
IGQGINVAFNR
190
11
10
100

3006





SSP2
IIRLHSDASK
100
10
10
100
0.0002
3007





SSP2
IVDEIKYR
32
8
9
90

3008





SSP2
KAVCVEVEK
232
9
10
100
0.0076
3009





SSP2
KDLDEPEQFR
545
10
10
100

3010





SSP2
KFVVPGAATPY
519
11
8
80

3011





SSP2
KGTRSRKR
259
8
10
100

3012





SSP2
KNVIGPFMK
224
9
10
100

3013





SSP2
KVLDNERK
421
8
8
80

3014





SSP2
LACAGLAY
511
8
10
100

3015





SSP2
LACAGLAYK
511
9
10
100
0.0290
3016





SSP2
LALLACAOLAY
508
11
10
100

3017





SSP2
LDEPEQFR
547
8
10
100

3018





SSP2
LLACAGLAY
510
9
10
100
0.0005
3019





SSP2
LLACAGLAYK
510
10
10
100
0.0870
3020





SSP2
LLMDCSGSIR
51
10
10
100
0.0005
3021





SSP2
LLMDCSGSIRR
51
11
10
100

3022





SSP2
LLQVRKHLNDR
137
11
9
90

3023





SSP2
LLSTNLPY
121
8
9
90

3024





SSP2
LLSTNLPYGR
121
10
8
80
0.0025
3025





SSP2
LMDCSGSIR
52
9
10
100
0.0002
3026





SSP2
LMDCSGSIRR
52
10
10
100
0.0002
3027





SSP2
LMDCSGSIRRH
52
11
10
100

3028





SSP2
LSTNLPYGR
122
9
8
80
0.0100
3029





SSP2
LVGCHPSDGK
202
10
10
100
0.0002
3030





SSP2
MDCSGSIR
53
8
10
100

3031





SSP2
MDCSGSIRR
53
9
10
100

3032





SSP2
MDCSGSIRRH
53
10
10
100

3033





SSP2
MNHLGNVK
1
8
10
100

3034





SSP2
MNHLGNVKY
1
9
10
100

3035





SSP2
NFDIPKKPENK
390
11
10
100

3036





SSP2
NIPEDSEK
366
8
10
100

3037





SSP2
NIVDEIKY
31
8
10
100

3038





SSP2
NIVDEIKYR
31
9
9
90
0.0002
3039





SSP2
NLPNDKSDR
406
9
10
100
0.0002
3040





SSP2
NNENFtSYNR
460
9
10
100

3041





SSP2
NNENRSYNRK
460
10
10
100

3042





SSP2
NNIVDEIK
30
8
10
100

3043





SSP2
NNIVDEIKY
30
9
10
100

3044





SSP2
NNIVDEIKYR
30
10
9
90

3045





SSP2
NNLPNDKSDR
405
10
10
100

3046





SSP2
NSEDRETR
448
8
9
90

3047





SSP2
NSEDRETPPH
448
10
9
90
0.0002
3048





SSP2
NVIGPFMK
225
8
10
100

3049





SSP2
NVKNVIGPFMK
222
11
10
100

3050





SSP2
PCSVTCGK
252
8
10
100

3051





SSP2
PCSVTCGKGTR
252
11
10
100

3052





SSP2
PDSIQDSLK
165
9
10
100
0.0002
3053





SSP2
PFDETLGEEDK
535
11
10
100

3054





SSP2
PNIPEDSEK
365
9
10
100

3055





SSP2
PNSEDRETR
447
9
9
90

3056





SSP2
PNSEDREMPFI
447
11
9
90

3057





SSP2
PSDGKCNLY
207
9
10
100
0.0002
3058





SSP2
PSPNPEEGK
328
9
10
100
0.0002
3059





SSP2
QCEEERCPPK
280
10
8
80
0.0002
3060





SSP2
QDNNGNRH
438
8
10
100

3061





SSP2
QDSLKESR
169
8
10
100

3062





SSP2
QDSLKESRK
169
9
9
90
0.0002
3063





SSP2
QGINVAFNR
192
9
10
100
0.0780
3064





SSP2
QNNIVDEIK
29
9
10
100

3065





SSP2
QNNIVDEIKY
29
10
10
100

3066





SSP2
QNNIVDBKYR
29
11
9
90

3067





SSP2
QNNLPNDK
404
8
10
100

3068





SSP2
QNNLPNDKSDR
404
11
10
100

3069





SSP2
QSQDNNGNR
436
9
10
100
0.0002
3070





SSP2
QSQDNNGNRH
436
10
10
100
0.0002
3071





SSP2
QVRKHLNDR
139
9
9
90
0.0002
3072





SSP2
RGDNFAVEK
307
9
9
90
0.0240
3073





SSP2
FILHSDASK
102
8
10
100

3074





SSP2
RLHSDASKNK
102
10
10
100
0.0002
3075





SSP2
RNNENRSY
459
8
10
100

3076





SSP2
RNNENRSYNR
459
10
10
100

3077





SSP2
RNNENRSYNRK
459
11
10
100

3078





SSP2
RSRKREILH
262
9
10
100
0.0002
3079





SSP2
SDASKNKEK
105
9
10
100
0.0002
3080





SSP2
SDGKCNLY
208
8
10
100

3081





SSP2
SDVPKNPEDDR
377
11
10
100

3082





SSP2
SIQDSLKESR
167
10
10
100
0.0009
3083





SSP2
SIQDSLKESRK
167
11
9
90

3084





SSP2
SIRRHNWVNH
58
10
8
80
0.0002
3085





SSP2
SLLSTNLPY
120
9
9
90
0.0046
3086





SSP2
SLLSTNLPYGR
120
11
8
80

3087





SSP2
STNLPYGR
123
8
8
80

3088





SSP2
SVTCGKOTFt
254
9
10
100
0.0009
3089





SSP2
SVTCGKGTRSR
254
11
10
100

3090





SSP2
TCGKGTRSR
256
9
10
100

3091





SSP2
TCGKGIRSRK
256
10
10
100
0.0002
3092





SSP2
TCGKGTRSRKR
256
11
10
100

3093





SSP2
VAFNRFLVGCH
196
11
10
100

3094





SSP2
VCNDEVDLY
42
9
8
80

3095





SSP2
VGCHPSDGK
203
9
10
100
0.0003
3096





SSP2
VNHAVPLAMK
65
10
8
80

3097





SSP2
VTOGKGIR
255
8
10
100

3098





SSP2
VTCGKGTRSR
255
10
10
100
0.0017
3099





SSP2
VTCGKGIRSRK
255
11
10
100

3100





SSP2
VVPGAATPY
521
9
8
80
0.0002
3101





SSP2
WSPCSVTCGK
250
10
10
100
0.0002
3102





SSP2
WVNHAVPLAMK
64
11
8
80

3103





SSP2
YADSAWENVK
215
10
10
100
0.0002
3104





SSP2
YLLMDCSGSIR
50
11
10
100

3105
















TABLE XVIII







Malaria A24 Motif Peptides With Binding Information

















No. of
Sequence
Conservancy




Protein
Sequence
Position
Amino Acids
Frequency
(%)
A*2401
Seq. Id

















CSP
CYGSSSNTRVL
25
11
19
100

3106





CSP
DYENDREKKI
398
10
18
95

3107





CSP
EMNYYGKQENW
52
11
19
100

3108





CSP
IMVLSFLF
427
8
19
100

3109





CSP
IMVLSFLFL
427
9
19
100
0.0008
3110





CSP
KMEKCSSVF
409
9
19
100

3111





CSP
MMRKLAIL
1
8
19
100

3112





CSP
NYDNAGINL
39
9
18
100
0.0004
3113





CSP
NYYGKQENW
54
9
19
100

3114





CSP
SFLFVEAL
12
8
19
100

3115





CSP
SFLFVEALF
12
9
19
100

3116





CSP
VFNVVNSSI
416
9
19
100

3117





CSP
VFNVVNSSIGL
416
11
19
100

3118





CSP
WYSLKKNSRSL
62
11
19
100

3119





CSP
YYGKQENW
55
8
19
100

3120





CSP
YYGKQENWYSL
55
11
19
100

3121





EXP
DMIKKEEEL
56
9
1
100

3122





EXP
FFIIFNKESL
12
10
1
100

3123





EXP
FFLALFFI
7
8
1
100

3124





EXP
FFLALFFII
7
9
1
100

3125





EXP
FFLALFFIIF
7
10
1
100

3126





EXP
KYKLATSVL
73
9
1
100
0.0960
3127





EXP
LFFIIFNKESL
11
11
1
100

3128





EXP
LYNTEKGRHPF
100
11
1
100

3129





EXP
VFFLALFF
6
8
1
100

3130





EXP
VFFLALFFI
6
9
1
100

3131





EXP
VFFLALFFII
6
10
1
100

3132





EXP
VFFLALFFIIF
6
11
1
100

3133





LSA
DFQISKYEDEI
1754
11
1
100

3134





LSA
EFKPIVQYDNF
1784
11
1
100

3135





LSA
FFDKDKEL
77
8
1
100

3136





LSA
FYFILVNL
9
8
1
100

3137





LSA
FYFILVNLL
9
9
1
100
7.5000
3138





LSA
FYFILVNLLI
9
10
1
100

3139





LSA
FYFILVNLLIF
9
11
1
100

3140





LSA
GYYIPHQSSL
1670
10
1
100
0.0074
3141





LSA
IFDGDNEI
1884
8
1
100

3142





LSA
IFDGDNEIL
1884
9
1
100

3143





LSA
IFDGDNEILQI
1884
11
1
100

3144





LSA
IFHINGKI
18
8
1
100

3145





LSA
IFHINGKII
18
9
1
100

3146





LSA
IFLKENKL
110
8
1
100

3147





LSA
IYKELEDL
1802
8
1
100

3148





LSA
IYKELEDLI
1802
9
1
100

3149





LSA
KFFDKDKEL
76
9
1
100

3150





LSA
KFIKSLFHI
1876
9
1
100

3151





LSA
KFIKSLFHIF
1876
10
1
100

3152





LSA
KYEKTKDNNF
1840
10
1
100
0.0004
3153





LSA
LFHIFDGDNEI
1881
11
1
100

3154





LSA
LYGRLETPAI
1652
10
1
100

3155





LSA
LYISFYFI
5
8
1
100

3156





LSA
LYISFYFIL
5
9
1
100
0.0088
3157





LSA
NFKPNDKSL
1848
9
1
100

3158





LSA
NFKSLLRNL
96
9
1
100

3159





LSA
NFQCEENI
1793
8
1
100

3160





LSA
NFQDEENIGI
1793
10
1
100

3161





LSA
QYDNFQDEENI
1790
11
1
100

3162





LSA
SFYFILVNL
8
9
1
100

3163





LSA
SFYFILVNLL
8
10
1
100

3164





LSA
SFYFILVNLLI
8
11
1
100

3165





LSA
YFILVNLL
10
8
1
100

3166





LSA
YFILVNLLI
10
9
1
100

3167





LSA
YFILVNLLIF
10
10
1
100

3168





LSA
YYIPHQSSL
1671
9
1
100
4.3000
3169





SSP2
AMKLIQQL
72
8
10
100

3170





SSP2
AMKLIQQLNL
72
10
10
100
0.0006
3171





SSP2
AWENVKNVI
219
9
10
100

3172





SSP2
KYKIAGGI
497
8
9
90

3173





SSP2
KYLVIVFL
8
8
10
100

3174





SSP2
KYLVIVFLI
8
9
10
100
4.6000
3175





SSP2
KYLVIVFLIF
8
10
10
100
0.0003
3176





SSP2
KYLVIVFLIFF
8
1 1
10
100

3177





SSP2
LMDCSGSI
52
8
10
100

3178





SSP2
LYLLMDCSGSI
49
11
9
90

3179





SSP2
NWVNHAVPL
63
9
8
80

3180





SSP2
PYAGEPAPF
528
9
8
80
0.0370
3181





SSP2
QFRLPEENEW
552
1 0
10
100

3182





SSP2
VFGIGQGI
187
8
10
100

3183





SSP2
VFLIFFDL
13
8
10
100

3184





SSP2
VFLIFFDLF
13
9
10
100

3185





SSP2
VFLIFFDLFL
13
10
10
100

3186





















TABLE XIXa









Core

Core




Core
SeqID
Core
Conservancy
Exemplary


Protein
Sequence
Num
Frequency
(%)
Sequence





CSP
FLFVEALFQ
3187
19
100
VSSFLFVEALFQEYQ





CSP
FNVVNSSIG
3188
19
100
SSVFNVVNSSIGLIM





CSP
FQEYQCYGS
3189
19
100
EALFQEYQCYGSSSN





CSP
IEKKICKME
3190
19
100
ENDIEKKICKMEKCS





CSP
IGLIMVLSF
3191
19
100
NSSIGLIMVLSFLFL





CSP
ILSVSSFLF
3192
19
100
KLAILSVSSFLFVEA





CSP
LAILSVSSF
3193
19
100
MRKLAILSVSSFLFV





CSP
MEKCSSVFN
3194
19
100
ICKMEKCSSVFNVVN





CSP
VVNSSIGLI
3195
19
100
VFNVVNSSIGLIMVL





CSP
YQCYGSSSN
3196
19
100
FQEYQCYGSSSNTRV





CSP
YNELEMNYY
3197
19
100
INLYNELEMNYYGKQ





CSP
YDNAGINLY
3198
18
 95
ELNYDNAGINLYNEL





CSP
IQNSLSTEW
3199
15
 79
LKKIQNSLSTEWSPC





CSP
WSPCSVTCG
3200
10
100
STEWSPCSVTCGNGI





LSA
FILVNLLIF
3201
 1
100
SFYFILVNLLIFHIN





LSA
FYFILVNLL
3202
 1
100
YISFYFILVNLLIFH





LSA
IHKGHLEEK
3203
 1
100
RRDIHKGHLEEKKDG





LSA
IIKSNLRSG
3204
 1
100
KDEIIKSNLRSGSSN





LSA
ILVNLLIFH
3205
 1
100
FYFILVNLLIFHING





LSA
INGKIIKNS
3206
 1
100
IFHINGKIIKNSEKD





LSA
IPAIELPSE
3207
 1
100
RLEIPAIELPSENER





LSA
IPHQSSLPQ
3208
 1
100
QYYIPHQSSLPQDNR





LSA
IQNHTLETV
3209
 1
100
SADIQNHTLETVNIS





LSA
ISFYFILVN
3210
 1
100
ILYISFYFILVNLLI





LSA
LDEFKPIVQ
3211
 1
100
DEDLDEFKPIVQYDN





LSA
LEEKAAKET
3212
 1
100
QEDLEEKAAKETLQG





LSA
LEEPAIELP
3213
 1
100
YGRLEEPAIELPSEN





LSA
LEQRKADTK
3214
 1
100
QRDLEQRKADTKKNL





LSA
LERTKASKE
3215
 1
100
QSDLERTKASKETLQ





LSA
LETVNISDV
3216
 1
100
NHTLETVNISDVNDF





LSA
LIEFIENDD
3217
 1
100
EGKLIEHIINDDDDK





LSA
LKENKLNKE
3218
 1
100
NIFLKENKLNKEGKL





LSA
LLIFHINGK
3219
 1
100
LVNLLIFHINGKIIK





LSA
LQEQQSDLE
3220
 1
100
KETLQEQQSDLEQER





LSA
LQEQQSDSE
3221
 1
100
KEKLQEQQSDSEQER





LSA
LQGQQSDLE
3222
 1
100
KETLQGQQSDLEQER





LSA
LRNLGVSEN
3223
 1
100
KSLLRNLGVSENIFL





LSA
LRSGSSNSR
3224
 1
100
KSNLRSGSSNSRNRI





LSA
LTMSNVKNV
3225
 1
100
DKELTMSNVKNVSQT





LSA
LVNLLXFHI
3226
 1
100
YFILVNLLIFHINGK





LSA
VLSHNSYEK
3227
 1
100
KKHVLSHNSYEKTKN





LSA
VNDFQISKY
3228
 1
100
ISDVNDFQISKYEDE





LSA
VNISDVNDF
3229
 1
100
LETVNISDVNDFQIS





LSA
YDDSLIDEE
3230
 1
100
SAEYDDSLIDEEEDD





LSA
YGRLEIPAI
3231
 1
100
EDLYGRLEIPAIELP





LSA
YIPHQSSLP
3232
 1
100
RGYYIPHQSSLPQDN





EXP
FIUGSSDPA
3233
 1
100
RHPFKIGSSDPADNA





EXP
IDVHDLISD
3234
 1
100
EPLIDVHDLISDMIK





EXP
IFNKESLAE
3235
 1
100
FFIIFNKESLAEKTN





EXP
IGSSDPADN
3236
 1
100
PFIUGSSDPADNANP





EXP
LALFFIIFN
3237
 1
100
VFFLALFFIIFNKES





EXP
LATSVLAGL
3238
 1
100
KYKLATSVLAGLLGN





EXP
LGGVGLVLY
3239
 1
100
TVLLGGVGLVLYNTE





EXP
LGNVSTVLL
3240
 I
100
AGLLGNVSTVLLGGV





EXP
LLGNVSTVL
3241
 1
100
LAGLLGNVSTVLLGG





EXP
LSVFFLALF
3242
 1
100
MKILSVFFLALFFII





EXP
LVLYNTEKG
3243
 1
100
GVOLVLYNTEKGRHP





EXP
VFFLALFFI
3244
 1
100
ILSVFFLALFFIIFN





EXP
VHDLISDMI
3245
 1
100
LIDVHDLISDMIKKE





EXP
VLAGLLGNV
3246
 1
100
ATSVLAGLLGNVSTV





EXP
VLLGGVGLV
3247
 1
100
VSTVLLGGVGLVLYN





EXP
VNKRKSKYK
3248
 1
100
LVEVNKRKSKYKLAT





EXP
VSTVLLGGV
3249
 1
100
LGNVSTVLLGGVGLV





EXP
VTAQDVTPE
3250
 1
100
DPQVTAQDVTPEQPQ





EXP
YKLATSVLA
3251
 1
100
KSKYKLATSVLAGLL





SSP2
FDLFLVNGR
3252
10
100
LIFFDLFLVNGRDVQ





SSP2
FFDLFLVNG
3253
10
100
FLIFFDLFLVNGRDV





SSP2
FMKAVCVEV
3254
10
100
IGPFMKAVCVEVEKT





SSP2
FNRFLVGCH
3255
10
100
NVAFNRFLVGCHPSD





SSP2
IAGGLALLA
3256
10
100
AGGIAGGLALLACAG





SSP2
IAVFGIGQG
3257
10
100
GVKIAVFGIGQGINV





SSP2
LACAGLAYK
3258
10
100
LALLACAGLAYKFVV





SSP2
LALLACAGL
3259
10
100
AGGLALLACAGLAYK





SSP2
LAMKLIQQL
3260
10
100
AVPLAMKLIQQLNLN





SSP2
LAYKFVVPG
3261
10
100
CAGLAYKFVVPGAAT





SSP2
LIFFDLFLV
3262
10
100
IVFLIFFDLFLVNGR





SSP2
LTDGIPDSI
3263
10
100
VVILTDGIPDSIQDS





SSP2
LVGCHPSDG
3264
10
100
NRFLVGCHPSDGKCN





SSP2
LVIVFLIFF
3265
10
100
VKYLVTVFLIFFDLF





SSP2
LVVILTDGI
3266
10
100
ANQLVVILTDGIPDS





SSP2
MDCSGSIRR
3267
10
100
YLLMDCSGSIRRHNW





SSP2
MKAVCVEVE
3268
10
100
GPFMKAVCVEVEKTA





SSP2
VEKTASCGV
3269
10
100
CVEVEKTASCGVWDE





SSP2
VGCHPSDGK
3270
10
100
RFLVGCHPSDGKCNL





SSP2
VIGPFMKAV
3271
10
100
VKNVIGPFMKAVCVE





SSP2
VIVFLIFFD
3272
10
100
KYLVIVFLIFFDLFL





SSP2
VKYLVIVFL
3273
10
100
LGNVKYLVIVFLIFF





SSP2
VNGRDVQNN
3274
10
100
LFLVNGRDVQNNIVD





SSP2
WDEWSPCSV
3275
10
100
CGVWDEWSPCSVTCG





SSP2
IAGGIAGGL
3276
10
100
KYKIAGGIAGGLALL





SSP2
VQNNIVDEI
3277
10
100
GRDVQNNIVDEIKYR





SSP2
YLLMDCSGS
3278
10
100
VDLYLLMDCSGSIRR





SSP2
FVVPGAATP
3279
10
100
AYKFVVPGAATPYAG





SSP2
YKFVVPGAA
3280
10
100
GLAYKFVVPGAATPY





SSP2
IIRLHSDAS
3281
10
100
AKEIIRLHSDASKNK





SSP2
IIDNNPQEP
3282
10
100
EENIIDNNPQEPSPN





SSP2
VDLYLLMDC
3283
 9
 90
NDEVDLYLLMDCSGS





SSP2
LLSTNLPYG
3284
 9
 90
IKSLLSTNLPYGRTN





SSP2
LHEGCTSEL
3285
 8
 80
REILHEGCTSELQEQ





SSP2
VNHAVPLAM
3286
 8
 80
HNWVNHAVPLAMKLI





SSP2
VPGAATPYA
3287
 8
 80
KFVVPGAATPYAGEP





SSP2
VVPGAATPY
3288
 8
 80
YKFVVPGAATPYAGE





SSP2
WVNHAVPLA
3289
 8
 80
REINWYNHAVPLAMKL





SSP2
LSTNLPYGR
3290
 8
 80
KSLLSTNLPYGRTNL



















Position 
Exemplary
Exemplary 



Exemplary
In PF
Sequence
Sequence


Protein
SeqID Num
Poly-Protein
Frequency
Conservancy (%)





CSP
3291
10
19
100





CSP
3292
440
19
100





CSP
3293
17
19
100





CSP
3294
426
19
100





CSP
3295
447
19
100





CSP
3296
4
19
100





CSP
3297
2
19
100





CSP
3298
433
19
100





CSP
3299
442
19
100





CSP
3300
20
19
100





CSP
3301
45
18
95





CSP
3302
37
18
95





CSP
3303
385
15
79





CSP
3304
393
19
100





LSA
3305
8
1
100





LSA
3306
6
1
100





LSA
3307
1711
1
100





LSA
3308
31
1
100





LSA
3309
9
1
100





LSA
3310
18
1
100





LSA
3311
1655
1
100





LSA
3312
1670
1
100





LSA
3313
1736
1
100





LSA
3314
4
1
100





LSA
3315
1779
1
100





LSA
3316
146
1
100





LSA
3317
1653
1
100





LSA
3318
1624
1
100





LSA
3319
1182
1
100





LSA
3320
1741
1
100





LSA
3321
120
1
100





LSA
3322
109
1
100





LSA
3323
13
1
100





LSA
3324
1192
1
100





LSA
3325
512
1
100





LSA
3326
155
I
100





LSA
3327
98
1
100





LSA
3328
36
1
100





LSA
3329
81
1
100





LSA
3330
10
1
100





LSA
3331
57
1
100





LSA
3332
1749
1
100





LSA
3333
1744
1
100





LSA
3334
1765
1
100





LSA
3335
1650
1
100





LSA
3336
1669
1
100





EXP
3337
107
1
100





EXP
3338
45
1
100





EXP
3339
12
1
100





EXP
3340
109
1
100





EXP
3341
6
1
100





EXP
3342
73
1
100





EXP
3343
90
1
100





EXP
3344
82
1
100





EXP
3345
81
1
100





EXP
3346
1
1
100





EXP
3347
95
1
100





EXP
3348
3
1
100





EXP
3349
47
1
100





EXP
3350
77
1
100





EXP
3351
88
1
100





EXP
3352
64
1
100





EXP
3353
85
1
100





EXP
3574
136
1
100





EXP
3354
71
1
100





SSP2
3355
15
10
100





SSP2
3356
14
10
100





SSP2
3357
227
10
100





SSP2
3358
195
10
100





SSP2
3359
513
10
100





SSP2
3360
182
10
100





SSP2
3361
520
10
100





SSP2
3362
517
10
100





SSP2
3363
68
10
100





SSP2
3364
525
10
100





SSP2
3365
12
10
100





SSP2
3366
157
10
100





SSP2
3367
199
10
100





SSP2
3368
7
10
100





SSP2
3369
153
10
100





SSP2
3370
50
10
100





SSP2
3371
228
10
100





SSP2
3372
235
10
100





SSP2
3373
200
10
100





SSP2
3374
223
10
100





SSP2
3375
8
10
100





SSP2
3376
4
10
100





SSP2
3377
20
10
100





SSP2
3378
244
10
100





SSP2
3379
509
9
 90





SSP2
3380
25
9
 90





SSP2
3381
47
9
 90





SSP2
3382
529
8
 80





SSP2
3383
527
8
 80





SSP2
3384
97
6
 60





SSP2
3385
317
4
 40





SSP2
3386
44
8
 80





SSP2
3387
118
5
 50





SSP2
3388
266
8
 80





SSP2
3389
62
8
 80





SSP2
3390
531
8
 80





SSP2
3391
530
8
 80





SSP2
3392
61
8
 80





SSP2
3393
119
5
 50
















TABLE XIXb





Malaria Super Motif Peptides With Binding Data





















Core






Core
SeqID
Exemplary
Exemplary




Sequence
Num
Sequence
SeqID Num
DR1
DR2w2β1





FLFVEALFQ
3187
VSSFLFVEALFQEYQ
3291







FNVVNSSIG
3188
SSVFNVVNSSIGLIM
3292
0.1200
0.0290





FQEYQCYGS
3189
EQLFQEYQCYGSSSN
3293
0.0001






IEKKICKME
3190
ENDIEKKICKMEKCS
3294







IGLIMVLSF
3191
NSSIGLIMVLSFLFL
3295
0.0040
0.0250





ILSVSSFLF
3192
KLAILSVSSFLFVEA
3296







LAILSVSSF
3193
MRKLAILSVSSFLFV
3297
0.1000
0.5000





MEKCSSVFN
3194
ICKMEKCSSVFNVVN
3298







VVNSSGILI
3195
VFNVVNSSIGLIMVL
3299
0.0310
0.0021





YQCYGSSSN
3196
FQEYQCYGSSSNTRV
3300







YNELEMNYY
3197
INLYNELEMNYYGKQ
3301







YDNAGINLY
3198
ELNYDNAGINLYNEL
3302
0.0003






IQNSLSTEW
3199
LKKIQNSLSTEWSPC
3303







WSPSCSVTCG
3200
STEWSPCSVTCGNGI
3304







FILVNLLIF
3201
SFYFILVNLLIFHIN
3305
0.0009
0.0100





FYFILVNLL
3202
YISFYFILVNLLIGH
3306
0.0029
0.0040





IHKGHLEEK
3203
RRDIHKGHLEEKKDG
3307







IIKSNLRSG
3204
KDEIIKSNLRSGSSN
3308







ILVNLLIFH
3205
FYFILVNLLIFHING
3309







INGKIIKNS
3206
IFHINGKIIKNSEKD
3310
0.0320
0.0220





IPAIELPSE
3207
RLEIPAIELPSENER
3311







IPHQSSLPQ
3208
GYYIPHQSSLPQDNR
3312







IQNHTLETV
3209
SADIQNHTLETVNIS
3313
0.0001






ISFYFILVN
3210
ILYISFYFILVNLLI
3314







LDEFKPIQ
3211
DEDLDEFKPIVQYDN
3315







LEEKAAKET
3212
QEDLEEKAAKETLQG
3316
0.0001






LEIPAIELP
3213
YGRLEIPAIELPSEN
3317







LEQRKADTK
3214
QRDLEQRKADTKKNL
3318







LERTKASKE
3215
QDDLERTKASKETLQ
3319







LETVNISDV
3216
NGTLETVNISDVNDF
3320
0.0001






LIEHIINDD
3217
EGKLIEHIINDDDDK
3321







LKENKLNKE
3218
NIFLKEKLNKEGKL
3322







LLIFHINGK
3219
LVNLLIFHINGKIIK
3323
0.0640
0.7100





LQEQQSDLE
3220
KETLQEQQSDLEQER
3324







LQEQQSESE
3221
KEKLQEQQSDSEQER
3325







LQGQQSDLE
3222
KETLQGQQSDLEQER
3326







LRNTLGVSEN
3223
KSLLRNLGVSENIFL
3327
0.0150
0.0088





LRSGSSNSR
3224
KSNLRSGSSNSRNRI
3328







LTMSNVKNV
3225
DKELTMSNVKNVSQT
3329
0.0018
0.0003





LVNLLIFHI
3226
YFILVNLLIFHINGK
3330
0.0018
0.0004





VLSHNSYEK
3227
KKHVLSHNSYEKTKN
3331







VNDFQISKY
3228
ISDVNDFQISKYEDE
3332
0.0001






VNISKVNDF
3229
LETVNISDVNDFQIS
3333







YDDSLIDEE
3230
SAEYDDSLIDEEEDD
3334







YGRLEIPAI
3231
EDLYGRLEIPAIELP
3335
0.0004






YIPHQSSLP
3232
RGYYIPHQSSLPQDN
3336
0.2900
0.0004





FKIGSSDPA
3233
RHPFKIGSSDPADNA
3337
0.0044
-0.0004





IDVHDLISH
3234
EPLIDVHDLISDMIK
3338







IFNKESLAE
3235
FFIIFNKESLAEKTN
3339







IGSSDPADN
3236
PFKIGSSDPADNANP
3340







LALFFIIFN
3237
VFFALFFIIFNKES
3341
0.0006
0.0180





LATSVLAGL
3238
KYKLATSVLAGLLGN
3342
1.2000
0.0018





LGGVGLVLY
3239
TVLLGGVGLVLYNTE
3343
0.4900






LGNVSTVLL
3240
AGLLGNVSTVLLGGV
3344
0.0430
0.0240





LLGNVSTVL
3241
LAGLLGNVSTVLLGG
3345
0.0420
0.0110





LSVFFLALF
3242
MKILSVFFLALFFII
3346
0.0017
0.0170





LVLYNTEKG
3243
GVGLVLYNTEKGRHP
3347







VFFLALFFI
3244
ILSVFFLALFFIIFN
3348
0.0016
0.0036





VHDLISDMI
3245
LIDVHDLISDMIKKE
3349
0.0130






VLAGLLGNV
3246
ATSVLAGLLGNVSTV
3350
0.2600






VLLGGVGLV
3247
VSTVLLGGVGLVLYN
3351
0.8800
0.0080





VNKRKSKYK
3248
LVEVNKRKSKYKLAT
3352







VSTVLLGGV
3249
LGNVSTVLLGGVGLV
3353
0.0140
0.0001





VTAQDVTPE
3250
DPQVTAQDVTPEQPQ
3574







YKLATSVLA
3251
KSKYKLATSVLAGLL
3354
1.4000
0.0073





FDLFLVNGR
3252
LIFFDLFLVNGRDVQ
3355
0.0042






FFDLFLVNG
3253
FLIFFDLFLVNGRDV
3356







FMKAVCVEV
3254
IGPFMKAVCVEVEKT
3357
0.0072
0.0003





FNRFLVGCH
3255
NVAFNRFLVGCHPSD
3358







IAGGLALLA
3256
AGGIAGGLALLACAG
3359
0.0160






IAVFGIGQG
3257
GVKIAVFGIGQGINV
3360







LACAGLAYK
3258
LALLACAGLAYKFVV
3361







LALLACAGL
3259
AGGLALLACAGLAYK
3362
0.0018






LAMKLIQQL
3260
AVPLAMKLIQQLNTN
3363
0.0015






LAYKFVVPG
3261
CAGLAYKFVVPGAAT
3364







LIFFDLFLV
3262
IVFLIFFDLFLVNGR
3365
0.0006
0.0048





LTDGIPDSI
3263
VVILTDGIPDSIQDS
3366
0.0001






LVGCHPSDG
3264
NRFLVGCHPSDGKCN
3367







LVTVFLIFF
3265
VKYLVTVFLIFFDLF
3368
0.0001






LVVILTDGI
3266
ANQLVVILTDGIPDS
3379
0.0038
0.0008





MDCSGSIRR
3267
YLLMDCSGSIRRHNW
3370







MKAVCVEVE
3268
GPFMKAVCVEVEKTA
3371







VEKTASCGV
3269
CVEVEKTASCGVWDE
3372
0.0004






VGCHPSDGK
3270
RFLVGCHPSDGKCNL
3373







VIGPFMKAV
3271
VKNVIGPFMKAVCVE
3374
0.0900
0.0430





VIVFLIFFD
3272
KYVTVFLIFFDLFL
3375
0.0012
0.0057





VKYLVTVFL
3273
LGNVKYLVTVFLIFF
3376
0.0006
0.0033





VNGRDVQNN
3274
LFLVNGRDVQNNTVD
3377







WDEWSPCSV
3275
CGVWDEWSPCSVTCG
3378
0.0001






IAGGIAGGL
3276
KYKIAGGIAGGLALL
3389
0.0380
0.0001





YQNNIVDEI
3277
GRDVQNNIVDEIKYR
3380
0.0001
0.0001





YLLMDCSGS
3278
VDLYLLMDCSGSIRR
3381
0.0015






FVVPGAATP
3279
AYKFVVPGAATPYAG
3382
0.3600
-0.0009





YKFVVPGAA
3280
GLAYKFVVPGAATPY
3383
1.6000
0.0001





IIRLHSDAS
3281
AKEIIRLHSDASKNK
3384







IIDNNPQEP
3282
EENIIDNNPQEPSPN
3385







VDLYLLMDC
3283
NDEVDLYLLMDCSGS
3386
0.0001






LLSTNLPYG
3284
IKSLSSTNLPYGRTN
3387







LHEGCTSEL
3285
REILHEGCTSELQEQ
3388
0.0001






VNHAVPLAM
3286
HNWVNHAVPLAMKLI
3389
0.3500
0.0250





VPGAATPYA
3287
KFVVPGAATPYAGEP
3390
0.0230
0.0001





VVPGAATPY
3288
YKFVVPGAATPYAGE
3391
0.1100
0.0008





WVNHAVPLA
3289
RHNWVNHAVPLAMKL
3392
0.1900
0.0350





LSTNLPYGR
3290
KSLLSTNLPYGRTNL
3393
0.0012
















Core








Sequence
DR2w2β2
DR3
DR4w4
DR4w15
DR5w11
DR5w12





FLFVEALFQ











FNVVNSSIG
0.0050
-0.0043
0.1000
0.230
0.0170
0.0051





FQEYQCYGS
-0.0005

0.0053
-0.0009
-0.0002
0.0001





IEKKICKME











IGLIMVLSF
0.0024
-0.0043
0.0120
0.0035
-0.0005
0.0340





ILSVSSFLF











LAILSVSSF
0.0130
-0.0043
0.0078
0.0270
0.0370
0.1200





MEKCSSVFN











VVNSSGILI
0.0006
0.0021
0.0079
0.0056
0.0002
0.0015





YQCYGSSSN











YNELEMNYY











YDNAGINLY
-0.0005
0.0091
-0.0009
-0.0009
-0.0002
0.0001





IQNSLSTEW











WSPSCSVTCG











FILVNLLIF
-0.0020
-0.0043
0.0250
0.0038
-0.0005
0.0009





FYFILVNLL
0.0044
-0.0008
0.0210
-0.0009
0.0011
0.0006





IHKGHLEEK











IIKSNLRSG











ILVNLLIFH











INGKIIKNS
0.0660
0.0120
-0.0007
0.0038
0.0380
0.0055





IPAIELPSE











IPHQSSLPQ











IQNHTLETV
-0.0005
-0.0041
-0.0007
-0.0014
-0.0002
0.0001





ISFYFILVN











LDEFKPIQ











LEEKAAKET
-0.0005

-0.0009
-0.0009
-0.0002
0.0001





LEIPAIELP











LEQRKADTK











LERTKASKE











LETVNISDV
-0.0005

-0.0007
0.0016
-0.0002
0.0015





LIEHIINDD











LKENKLNKE











LLIFHINGK
0.0070
-0.0043
0.0110
-0.0030
0.2700
0.0410





LQEQQSDLE











LQEQQSESE











LQGQQSDLE











LRNTLGVSEN
0.0006

0.0210
0.0810
0.0033






LRSGSSNSR











LTMSNVKNV
0.0009
0.0058
0.0023
0.0074
0.0030
0.0001





LVNLLIFHI
0.0120
-0.008
0.0160
0.0027
0.0015
0.0006





VLSHNSYEK











VNDFQISKY
-0.0005

-0.0007
-0.0014
-0.0002
0.0001





VNISKVNDF











YDDSLIDEE











YGRLEIPAI
-0.0005

-0.0007
0.0170
-0.0002
0.0002





YIPHQSSLP
0.0029

4.1000
0.2800
0.0064






FKIGSSDPA
-0.0003
-0.0008
0.4700
0.0029
0.0056
0.0001





IDVHDLISH











IFNKESLAE











IGSSDPADN











LALFFIIFN
-0.0021
-0.0043
0.0047
0.0100
-0.0005
0.0002





LATSVLAGL
0.0700
0.0010
3.2000
0.1200
0.0210
0.0073





LGGVGLVLY
-0.005

0.0032
-0.0009
-0.0062
0.0004





LGNVSTVLL
0.0013
0.0059
0.0065
0.0360
0.0005
0.0001





LLGNVSTVL
0.0006
0.0078
0.0160
0.0230
0.0004
0.0003





LSVFFLALF
-0.0021
-0.0043
0.0370
-0.0047
-0.0010
0.0023





LVLYNTEKG











VFFLALFFI
0.0091
-0.0008
0.0130
-0.0009
0.0012
0.0008





VHDLISDMI
0.0061
0.0100
0.0310
0.0075
0.0037
0.0001





VLAGLLGNV
-0.0005

0.0021
-0.0014
0.0008
0.0043





VLLGGVGLV
0.0005
-0.0008
0.0067
-0.0009
0.0003
0.0011





VNKRKSKYK











VSTVLLGGV
-0.0005
-0.0008
0.0016
-0.0014
-0.0002
0.0005





VTAQDVTPE











YKLATSVLA
0.8500
-0.0008
6.3000
0.8100
0.6700
0.0009





FDLFLVNGR


0.0036








FFDLFLVNG











FMKAVCVEV
0.0430
-0.0008
-0.0006
0.0086
-0.0004
0.0038





FNRFLVGCH











IAGGLALLA
0.0013

0.0014
0.0014
-0.0002
0.0007





IAVFGIGQG











LACAGLAYK











LALLACAGL
0.0013

-0.0007
-0.0014
-0.0002
0.0051





LAMKLIQQL
-0.0006

0.0023
0.0013
0.0002
0.1300





LAYKFVVPG











LIFFDLFLV
0.0019
-0.0008
0.0130
-0.0009
0.0019
0.0016





LTDGIPDSI
-0.0006

0.1200
-0.0014
-0.0004
0.0001





LVGCHPSDG











LVTVFLIFF


0.0030








LVVILTDGI
-0.0005
0.0019
0.0460
0.0062
-0.0002
0.0003





MDCSGSIRR











MKAVCVEVE











VEKTASCGV
-0.0009

0.0021
-0.0009
-0.0002
0.0001





VGCHPSDGK











VIGPFMKAV
0.0800
-0.0026
-0.0020
-0.0030
0.3420
0.0920





VIVFLIFFD
-0.0020
-0.0043
0.0680
-0.0030
-0.0009
0.0021





VKYLVTVFL
0.0012
-0.0008
0.0120
0.0045
0.0018
0.0011





VNGRDVQNN











WDEWSPCSV
-0.0006

-0.0007
-0.0014
-0.0002
0.0001





IAGGIAGGL
0.0480
0.0250
0.0120
0.0017
0.2300
0.3600





YQNNIVDEI
-0.0006
0.0026
-0.0006
-0.0014
-0.0004
0.0001





YLLMDCSGS
0.0096

0.0150
-0.0014
-0.0004
0.0001





FVVPGAATP

0.0620
0.1600
0.0036
0.6400
0.1200





YKFVVPGAA
0.7000
-0.0008
1.0000
0.0270
1.9000
0.3500





IIRLHSDAS











IIDNNPQEP











VDLYLLMDC
-0.0005

0.0028
-0.0009
-0.0002
0.0001





LLSTNLPYG











LHEGCTSEL
-0.0005
-0.0041
-0.0009
-0.0014
-0.0002
0.0001





VNHAVPLAM
0.1400
0.2300
3.900
0.0400
0.0074
0.6000





VPGAATPYA
0.0010
0.0620
0.1200
0.0067
0.0010
0.0860





VVPGAATPY
0.0053
-0.0008
0.0057
-0.0014
0.0036
0.0061





WVNHAVPLA
0.1600
0.4000
5.0000
0.0360
0.0079
0.0240





LSTNLPYGR


0.0120


















Core
Seq
Exemplary
Exemplary







Sequence
Id.
Sequence
SeqID Num
DR6w19
DR7
DR8w2
DR9
DRw53





FLFVEALFQ
3187
VSSFLFVEALFQEYQ
3291










FNVVNSSIG
3188
SSVFNVVNSSIGLIM
3292
0.3600
0.7600
0.0550
1.2000
























FQEYQCYGS
3189
EQLFQEYQCYGSSSN
3293

-0.0003
0.0005







IEKKICKME
3190
ENDIEKKICKMEKCS
3294










IGLIMVLSF
3191
NSSIGLIMVLSFLFL
3295
0.0009
0.0690
-0.0010
0.0042






ILSVSSFLF
3192
KLAILSVSSFLFVEA
3296










LAILSVSSF
3193
MRKLAILSVSSFLFV
3297
0.0930
0.0500
0.0013
0.1100






MEKCSSVFN
3194
ICKMEKCSSVFNVVN
3298










VVNSSGILI
3195
VFNVVNSSIGLIMVL
3299
0.2600
0.1800
0.0012
0.5000






YQCYGSSSN
3196
FQEYQCYGSSSNTRV
3300










YNELEMNYY
3197
INLYNELEMNYYGKQ
3301










YDNAGINLY
3198
ELNYDNAGINLYNEL
3302

-0.0003
-0.0003







IQNSLSTEW
3199
LKKIQNSLSTEWSPC
3303










WSPSCSVTCG
3200
STEWSPCSVTCGNGI
3304










FILVNLLIF
3201
SFYFILVNLLIFHIN
3305
0.0004
0.0084
-0.0007
-0.0018






FYFILVNLL
3202
YISFYFILVNLLIGH
3306
0.0003
0.0020
0.0010
-0.0003






IHKGHLEEK
3203
RRDIHKGHLEEKKDG
3307










IIKSNLRSG
3204
KDEIIKSNLRSGSSN
3308










ILVNLLIFH
3205
FYFILVNLLIFHING
3309










INGKIIKNS
3206
IFHINGKIIKNSEKD
3310
0.0120
0.0150
0.0400
0.0093
 0.0020





IPAIELPSE
3207
RLEIPAIELPSENER
3311










IPHQSSLPQ
3208
GYYIPHQSSLPQDNR
3312










IQNHTLETV
3209
SADIQNHTLETVNIS
3313

-0.0003
-0.0003

 0.0012





ISFYFILVN
3210
ILYISFYFILVNLLI
3314










LDEFKPIQ
3211
DEDLDEFKPIVQYDN
3315










LEEKAAKET
3212
QEDLEEKAAKETLQG
3316

-0.0003
-0.0002







LEIPAIELP
3213
YGRLEIPAIELPSEN
3317










LEQRKADTK
3214
QRDLEQRKADTKKNL
3318










LERTKASKE
3215
QDDLERTKASKETLQ
3319

0.0010
-0.0003

-0.0005





LETVNISDV
3216
NGTLETVNISDVNDF
3320










LIEHIINDD
3217
EGKLIEHIINDDDDK
3321










LKENKLNKE
3218
NIFLKEKLNKEGKL
3322
0.0530
0.1200
0.0290
0.1800






LLIFHINGK
3219
LVNLLIFHINGKIIK
3323










LQEQQSDLE
3220
KETLQEQQSDLEQER
3324










LQEQQSESE
3221
KEKLQEQQSDSEQER
3325










LQGQQSDLE
3222
KETLQGQQSDLEQER
3326










LRNTLGVSEN
3223
KSLLRNLGVSENIFL
3327
0.5700
0.0770
0.0021
1.6000






LRSGSSNSR
3224
KSNLRSGSSNSRNRI
3328










LTMSNVKNV
3225
DKELTMSNVKNVSQT
3329
0.0430
0.0410
0.0110
0.0710
 0.0024





LVNLLIFHI
3226
YFILVNLLIFHINGK
3330
0.0013
0.0059
0.0005
0.0040
 0.0290





VLSHNSYEK
3227
KKHVLSHNSYEKTKN
3331










VNDFQISKY
3228
ISDVNDFQISKYEDE
3332

-0.0003
-0.0003

-0.0005





VNISKVNDF
3229
LETVNISDVNDFQIS
3333










YDDSLIDEE
3230
SAEYDDSLIDEEEDD
3334










YGRLEIPAI
3231
EDLYGRLEIPAIELP
3335

-0.0003
0.0021

-0.0005





YIPHQSSLP
3232
RGYYIPHQSSLPQDN
3336
0.0004
0.1700
0.0150
0.1500






FKIGSSDPA
3233
RHPFKIGSSDPADNA
3337
0.0003
-0.0003
0.0380
0.0950






IDVHDLISH
3234
EPLIDVHDLISDMIK
3338










IFNKESLAE
3235
FFIIFNKESLAEKTN
3339










IGSSDPADN
3236
PFKIGSSDPADNANP
3340










LALFFIIFN
3237
VFFALFFIIFNKES
3341
-0.0002
0.0056
-0.0007
-0.0018






LATSVLAGL
3238
KYKLATSVLAGLLGN
3342
0.0072
0.6500
0.1300
2.6000






LGGVGLVLY
3239
TVLLGGVGLVLYNTE
3343

0.0007
-0.0002







LGNVSTVLL
3240
AGLLGNVSTVLLGGV
3344
4.6000
0.4300
0.0012
0.5300
 0.0012





LLGNVSTVL
3241
LAGLLGNVSTVLLGG
3345
0.6400
0.3800
0.0006
0.5500






LSVFFLALF
3242
MKILSVFFLALFFII
3346
0.0019
0.0360
0.0023
0.0060






LVLYNTEKG
3243
GVGLVLYNTEKGRHP
3347










VFFLALFFI
3244
ILSVFFLALFFIIFN
3348
0.0005
0.0110
0.0031
-0.0003






VHDLISDMI
3245
LIDVHDLISDMIKKE
3349
0.0004
0.0100
0.0096
0.0430
 0.0940





VLAGLLGNV
3246
ATSVLAGLLGNVSTV
3350

-0.0003
0.0005

 0.0039





VLLGGVGLV
3247
VSTVLLGGVGLVLYN
3351
0.0002
0.0020
-0.0002
0.0120






VNKRKSKYK
3248
LVEVNKRKSKYKLAT
3352










VSTVLLGGV
3249
LGNVSTVLLGGVGLV
3353
0.0006
-0.0003
-0.0003
-0.0005
-0.0005





VTAQDVTPE
3250
DPQVTAQDVTPEQPQ
3574










YKLATSVLA
3251
KSKYKLATSVLAGLL
3354
0.0082
1.9000
1.1000
2.7000
 0.0150





FDLFLVNGR
3252
LIFFDLFLVNGRDVQ
3355

0.0470








FFDLFLVNG
3253
FLIFFDLFLVNGRDV
3356










FMKAVCVEV
3254
IGPFMKAVCVEVEKT
3357
0.0003
0.0019
-0.0003
0.0820
 0.0700





FNRFLVGCH
3255
NVAFNRFLVGCHPSD
3358










IAGGLALLA
3256
AGGIAGGLALLACAG
3359

-0.0003
0.0004

-0.0005





IAVFGIGQG
3257
GVKIAVFGIGQGINV
3360










LACAGLAYK
3258
LALLACAGLAYKFVV
3361










LALLACAGL
3259
AGGLALLACAGLAYK
3362

0.0009
0.0003

-0.0005





LAMKLIQQL
3260
AVPLAMKLIQQLNTN
3363

0.0770
0.0400

 0.0350





LAYKFVVPG
3261
CAGLAYKFVVPGAAT
3364










LIFFDLFLV
3262
IVFLIFFDLFLVNGR
3365
0.0006
0.0028
0.0007
-0.0003






LTDGIPDSI
3263
VVILTDGIPDSIQDS
3366

-0.0003
-0.0003

 0.0114





LVGCHPSDG
3264
NRFLVGCHPSDGKCN
3367










LVTVFLIFF
3265
VKYLVTVFLIFFDLF
3368

0.0010








LVVILTDGI
3266
ANQLVVILTDGIPDS
3379
0.0070
0.0054
-0.0002
0.0420






MDCSGSIRR
3267
YLLMDCSGSIRRHNW
3370










MKAVCVEVE
3268
GPFMKAVCVEVEKTA
3371










VEKTASCGV
3269
CVEVEKTASCGVWDE
3372

0.0095
0.0005







VGCHPSDGK
3270
RFLVGCHPSDGKCNL
3373










VIGPFMKAV
3271
VKNVIGPFMKAVCVE
3374
0.1100
0.0590
0.0230
0.0870






VIVFLIFFD
3272
KYVTVFLIFFDLFL
3375
0.0034
0.0130
0.0065
-0.0018






VKYLVTVFL
3273
LGNVKYLVTVFLIFF
3376
0.0016
0.0040
0.0050
0.0012






VNGRDVQNN
3274
LFLVNGRDVQNNTVD
3377










WDEWSPCSV
3275
CGVWDEWSPCSVTCG
3378

-0.0003
-0.0003

-0.0006





IAGGIAGGL
3276
KYKIAGGIAGGLALL
3389
0.2400
0.0063
1.6000
0.2600
-0.0010





YQNNIVDEI
3277
GRDVQNNIVDEIKYR
3380
0.0810
-0.0003
-0.0003
-0.0005
 0.0850





YLLMDCSGS
3278
VDLYLLMDCSGSIRR
3381

0.0046
0.0007

-0.0010





FVVPGAATP
3279
AYKFVVPGAATPYAG
3382
0.1700
0.1800
0.9200
0.1300






YKFVVPGAA
3280
GLAYKFVVPGAATPY
3383
0.4900
0.1500
2.5000
0.6000
0.0190





IIRLHSDAS
3281
AKEIIRLHSDASKNK
3384










IIDNNPQEP
3282
EENIIDNNPQEPSPN
3385










VDLYLLMDC
3283
NDEVDLYLLMDCSGS
3386

-0.0003
-0.0003







LLSTNLPYG
3284
IKSLSSTNLPYGRTN
3387










LHEGCTSEL
3285
REILHEGCTSELQEQ
3388

-0.0003
-0.0003







VNHAVPLAM
3286
HNWVNHAVPLAMKLI
3389
0.9400
0.3800
0.200
4.000
 0.0250





VPGAATPYA
3287
KFVVPGAATPYAGEP
3390
0.0460
0.0017
0.0064
0.2500






VVPGAATPY
3288
YKFVVPGAATPYAGE
3391
0.0017
0.0160
0.0026
0.0200






WVNHAVPLA
3289
RHNWVNHAVPLAMKL
3392
0.8900
0.4400
1.8000
4.6000
 0.0430





LSTNLPYGR
3290
KSLLSTNLPYGRTNL
3393

0.0005
















TABLE XXa







Malaria DR3a Motif Peptides




















Core

Ex-
Position






Core
Core 
Sequence

emplary
in Pf
Exemplary
Exemplary



Core
SeqID
Sequence
Conser-
Exemplary
SeqID
Poly-
Sequence
Conser-


Protein
Sequence
Num
Frequency
vancy (%)
Sequence
Num
Protein
Frequency
vancy (%)





CSP
LFQEYQCYG
3394
19
100
VEALFQEYQCYGSSS
3449
  16
19
100





CSP
LFVEALFQE
3395
19
100
SSFLFVEALFQEYQC
3450
  11
19
100





CSP
MPNDPNRNV
3396
19
100
GHNMPNDPNRNVDEN
3451
 347
19
100





CSP
LYNELEMNY
3397
19
100
GINLYNELEMNYYGK
3452
  44
18
 95





CSP
VLNELNYDN
3398
19
100
NTRVLNELNYDNAGI
3453
  31
18
 95





CSP
YENDIEKKI
3399
19
100
ELDYENDIEKKICKM
3454
 422
12
 63





CSP
LNYDNAGIN
3400
18
 95
LNELNYDNAGINLYN
3455
  35
18
 95





CSP
LSTEWSPCS
3401
18
 95
QNSLSTEWSPCSVTC
3456
 389
15
 79





CSP
LDYENDIEK
3402
18
 95
KDELDYENDIEKKIC
3457
 420
12
 63





LSA
FDGDNEILQ
3403
 1
100
FHIFDGDNEILQIVD
3458
1882
 1
100





LSA
FDKDKELTM
3404
 1
100
NKFFDKDKELTMSNV
3459
  75
 1
100





LSA
FQDEENIGI
3405
 1
100
YDNFQDEENIGIYKE
3460
1791
 1
100





LSA
IDEEEDDED
3406
 1
100
DSLIDEEEDDEDLDE
3461
1770
 1
100





LSA
IINDDDDKK
3407
 1
100
IEHIINDDDDKKKYI
3462
 124
 1
100





LSA
INDDDDKKK
3408
 1
100
EHIINDDDDKKKYIK
3463
 125
 1
100





LSA
ISAEYDDSL
3409
 1
100
EDEISAEYDDSLIDE
3464
1761
 1
100





LSA
IVDELSEDI
3410
 1
100
ILQIVDELSEDITKY
3465
1891
 1
100





LSA
IYKELEDLI
3411
 1
100
NIGIYKELEDLIEKN
3466
1799
 1
100





LSA
LAEDLYGRL
3412
 1
100
GDVLAEDLYGRLEIP
3467
1645
 1
100





LSA
LAKEKLQEQ
3413
 1
100
QERLAKEKLQEQQSD
3468
1357
 1
100





LSA
LAKEKLQGQ
3414
 1
100
QERLAKEKLQGQQSD
3469
1119
 1
100





LSA
LANEKLQEQ
3415
 1
100
QERLANEKLQEQQRD
3470
1527
 1
100





LSA
LEQDRLAKE
3416
 1
100
QSDLEQDRLAKEKLQ
3471
1386
 1
100





LSA
LEQERLAKE
3417
 1
100
QSDLEQERLAKEKLQ
3472
1590
 1
100





LSA
LEQERLANE
3418
 1
100
QSDLEQERLANEKLQ
3473
1522
 1
100





LSA
LIDEEEDDE
3419
 1
100
DDSLIDEEEDDEDLD
3474
1769
 1
100





LSA
LPSENERGY
3420
 1
100
AIELPSENERGYYIP
3475
1660
 1
100





LSA
LSEDITKYF
3421
 1
100
VDELSEDITKYFMKL
3476
1895
 1
100





LSA
LSEEKIKKG
3422
 1
100
SEELSEEKIKKGKKY
3477
1827
 1
100





LSA
LYDEHIKKY
3423
 1
100
DKSLYDEHIKKYKND
3478
1853
 1
100





LSA
VLAEDLYGR
3424
 1
100
HGDVLAEDLYGRLEI
3479
1644
 1
100





LSA
VNKEKEKFI
3425
 1
100
DKQVNKEKEKFIKSL
3480
1867
 1
100





LSA
VQYDNFQDE
3426
 1
100
KPIVQYDNFQDEENI
3481
1786
 1
100





LSA
YEDEISAEY
3427
 1
100
ISKYEDEISAEYDDS
3482
1757
 1
100





LSA
YKNDKQVNK
3428
 1
100
IKKYKNDKQVNKEKE
3483
1861
 1
100





PfEXP
FNKESLAEK
3429
 1
100
FIIFNKESLAEKTNK
3484
  13
 1
100





PfEXP
IKKEEELVE
3430
 1
100
SDMIKKEEELVEVNK
3485
  55
 1
100





PfEXP
LISDMIKKE
3431
 1
100
VHDLISDMIKKEEEL
3486
  50
 1
100





PfEXP
VTPEQPQGD
3432
 1
100
AQDVTPEQPQGDDNN
3487
 141
 1
100





PfEXP
YNTEKGRHP
3433
 1
100
LVLYNTEKGRHPFKI
3488
  98
 1
100





SSP2
IFFDLFLVN
3434
10
100
VFLIFFDLFLVNGRD
3489
  13
10
100





SSP2
ILTDGIPDS
3435
10
100
LVVILTDGIPDSIQD
3490
 156
10
100





SSP2
INRENANQL
3436
10
100
NDRINRENANQLVVI
3491
 145
10
100





SSP2
LHSDASKNK
3437
10
100
IIRLHSDASKNKEKA
3492
 100
10
100





SSP2
LYADSAWEN
3438
10
100
KCNLYADSAWENVKN
3493
 211
10
100





SSP2
VCVEVEKTA
3439
10
100
MKAVCVEVEKTASCG
3494
 231
10
100





SSP2
VEVEKTASC
3440
10
100
AVCVEVEKTASCGVW
3495
 233
10
100





SSP2
VPSDVPKNP
3441
10
100
EKEVPSDVPKNPEDD
3496
 384
10
100





SSP2
VWDEWSPCS
3442
10
100
SCGVWDEWSPCSVTC
3497
 243
10
100





SSP2
LLMDCSGSI
3443
10
 90
DLYLLMDCSGSIRRH
3498
  48
 9
 90





SSP2
ILHEGCTSE
3444
10
 80
KREILHEGCTSELQE
3499
 265
 8
 80





SSP2
IPEDSEKEV
3445
10
 80
EPNIPEDSEKEVPSD
3500
 376
 8
 80





SSP2
YREEVCNDE
3446
 9
 80
EIKYREEVCNDEVDL
3501
  35
 8
 80





SSP2
VCNDEVDLY
3447
 8
 80
REEVCNDEVDLYLLM
3502
  39
 8
 80





SSP2
YAGEPAPFD
3448
 8
 80
ATPYAGEPAPFDETL
3503
 538
 8
 80
















TABLE XXb





DR3a Motif Peptides With Binding Information






















Core

Exemplary





Core
SeqID
Exemplary
SeqID





Sequence
Num
Sequence
Num
DR1
DR2w2β1
DR2w2β2





LFQEYQCYG
3394
VEALFQEYQCYGSSS
3449








LFVEALFQE
3395
SSFLFVEALFQEYQC
3450








MPNDPNRNV
3396
GHNMPNDPNRNVDEN
3451








LYNELEMNY
3397
GINLYNELEMNYYGK
3452








VLNELNYDN
3398
NTRVLNELNYDNAGI
3453








YENDIEKKI
3399
ELDYENDIEKKICKM
3454








LNYDNAGIN
3400
LNELNYDNAGINLYN
3455








LSTEWSPCS
3401
QNSLSTEWSPCSVTC
3456








LDYENDIEK
3402
KDELDYENDIEKKIC
3457








FDGDNEILQ
3403
FHIFDGDNEILQIVD
3458








FDKDKELTM
3404
NKFFDKDKELTMSNV
3459








FQDEENIGI
3405
YDNFQDEENIGIYKE
3460








IDEEEDDED
3406
DSLIDEEEDDEDLDE
3461








IINDDDDKK
3407
IEHIINDDDDKKKYI
3462








INDDDDKKK
3408
EHIINDDDDKKKYIK
3463








ISAEYDDSL
3409
EDEISAEYDDSLIDE
3464








IVDELSEDI
3410
ILQIVDELSEDITKY
3465
0.0001

-0.0005





IYKELEDLI
3411
NIGIYKELEDLIEKN
3466








LAEDLYGRL
3412
GDVLAEDLYGRLEIP
3467








LAKEKLQEQ
3413
QERLAKEKLOEQQSD
3468








LAKEKLQGQ
3414
QERLAKEKLOGQQSD
3469








LANEKLQEQ
3415
QERLANEKLOEQQRD
3470








LEQDRLAKE
3416
QSDLEQDRLAKEKLQ
3471








LEQERLAKE
3417
QSDLEQERLAKEKLQ
3472








LEQERLANE
3418
QSDLEQERLANEKLQ
3473








LIDEEEDDE
3419
DDSLIDEEEDDEDLD
3474








LPSENERGY
3420
AIELPSENERGYYIP
3475








LSEDITKYF
3421
VDELSEDITKYFMKL
3476








LSEEKIKKG
3422
SEELSEEKIKKGKKY
3477








LYDEHIKKY
3423
DKSLYDEHIKKYKND
3478
0.0001

-0.0005





VLAEDLYGR
3424
HGDVLAEDLYGRLEI
3479








VNKEKEKFI
3425
DKOVNKEKEKFIKSL
3480








VQYDNFQDE
3426
KPIVQYDNFQDEENI
3481








YEDEISAEY
3427
ISKYEDEISAEYDDS
3482
0.0001

-0.0005





YKNDKQVNK
3428
IKKYKNDKQVNKEKE
3483








FNKESLAEK
3429
FIIFNKESLAEKTNK
3484








IKKEEELVE
3430
SDMIKKEEELVEVNK
3485








LISDMIKKE
3431
VHDLISDMIKKEEEL
3486








VTPEQPQGD
3432
AQDVTPEQPQGDDNN
3487








YNTEKGRHP
3433
LVLYNTEKGRHPFKI
3488








IFFDLFLVN
3434
VFLIFFDLFLVNGRD
3489








ILTDGIPDS
3435
LVVILTDGIPDSIQD
3490
0.0002
0.0001
-0.0006





INRENANQL
3436
NDRINRENANOLVVI
3491
0.0770

0.0015





LHSDASKNK
3437
IIRLHSDASKNKEKA
3492








LYADSAWEN
3438
KCNLYADSAWENVKN
3493
0.0002
0.0005
-0.0010





VCVEVEKTA
3439
MKAVCVEVEKTASCG
3494








VEVEKTASC
3440
AVCVEVEKTASCGVW
3495
0.0001

-0.0006





VPSDVPKNP
3441
EKEVPSDVPKNPEDD
3496








VWDEWSPCS
3442
SCGVWDEWSPCSVTC
3497
0.0001

-0.0005





LLMDCSGSI
3443
DLYLLMDCSGSIRRH
3498
0.0041

0.0250















Core







Sequence
DR3
DR4w4
DR4w15
DR5w11
DR5w12





LFQEYQCYG
0.0082









LFVEALFQE
0.0051









MPNDPNRNV
-0.0033









LYNELEMNY
0.0270









VLNELNYDN
-0.0033









YENDIEKKI










LNYDNAGIN










LSTEWSPCS
-0.0033









LDYENDIEK










FDGDNEILQ
0.0640









FDKDKELTM










FQDEENIGI
-0.0033









IDEEEDDED










IINDDDDKK










INDDDDKKK










ISAEYDDSL
-0.0033









IVDELSEDI
-0.0041
0.0027
0.0017
-0.0002
0.0001





IYKELEDLI
-0.0033









LAEDLYGRL










LAKEKLQEQ










LAKEKLQGQ










LANEKLQEQ
-0.0033









LEQDRLAKE
0.0038









LEQERLAKE
-0.0033









LEQERLANE










LIDEEEDDE










LPSENERGY
-0.0033









LSEDITKYF










LSEEKIKKG
-0.0033









LYDEHIKKY
-0.0041
-0.0007
-0.0014
-0.0002
0.0001





VLAEDLYGR










VNKEKEKFI
-0.0033









VQYDNFQDE
-0.0033









YEDEISAEY
-0.0041
0.0008
-0.0014
-0.0002
0.0001





YKNDKQVNK
-0.0033









FNKESLAEK
0.0040









IKKEEELVE
-0.0033









LISDMIKKE










VTPEQPQGD
-0.0033









YNTEKGRHP










IFFDLFLVN










ILTDGIPDS
0.1400
0.3600
-0.0014
-0.0004
0.0002





INRENANQL
0.0092
0.0011
0.0010
-0.0004
0.0001





LHSDASKNK
-0.0033









LYADSAWEN
0.3500
-0.0055

-0.0006






VCVEVEKTA










VEVEKTASC
-0.0041
0.0030
-0.0014
0.0003
0.0001





VPSDVPKNP

-0.0130








VWDEWSPCS
-0.0041
-0.0009
-0.0009
-0.0002
0.0001





LLMDCSGSI
0.0300
0.0340
0.0028
-0.0002
0.0001



















Core

Exemplary







Core
SeqID
Exemplary
SeqID







Sequence
Num
Sequence
Num
DR6w19
DR7
DR8w2
DR9
DRw53





LFQEYQCYG
3394
VEALFQEYQCYQSSS
3449










LFVEALFQE
3395
SSFLFVEALFQEYQC
3450










MPNDPNRNV
3396
GHNMPNDPNRNVDEN
3451










LYNELEMNY
3397
GINLYNELEMNYYGK
3452










VLNELNYDN
3398
NTRVLNELNYDNAGI
3453










YENDIEKKI
3399
ELDYENDIEKKICKM
3454










LNYDNAGIN
3400
LNELNYDNAGINLYN
3455










LSTEWSPCS
3401
QNSLSTEWSPCSVTC
3456










LDYENDIEK
3402
KDELDYENDIEKKIC
3457










FDGDNEILQ
3403
FHIFDGDNEILQIVD
3458










FDKDKELTM
3404
NKFFDKDKELTMSNV
3459










FQDEENIGI
3405
YDNFQDEENIGIYKE
3460










IDEEEDDED
3406
DSLIDEEEDDEDLDE
3461










IINDDDDKK
3407
IEHIINDDDDKKKYI
3462










INDDDDKKK
3408
EHIINDDDDKKKYIK
3463










ISAEYDDSL
3409
EDEISAEYDDSLIDE
3464










IVDELSEDI
3410
ILQIVDELSEDITKY
3465

-0.0003
-0.0003

0.0290





IYKELEDLI
3411
NIGIYKELEDLIEKN
3466










LAEDLYGRL
3412
GDVLAEDLYGRLEIP
3467










LAKEKLQEQ
3413
QERLAKEKLQEQQSD
3468










LAKEKLQGQ
3414
QERLAKEKLQGQQSD
3469










LANEKLQEQ
3415
QERLANEKLQEQQRD
3470










LEQDRLAKE
3416
QSDLEQDRLAKEKLQ
3471










LEQERLAKE
3417
QSDLEQERLAKEKLQ
3472










LEQERLANE
3418
QSDLEQERLANEKLQ
3473










LIDEEEDDE
3419
DDSLIDEEEDDEDLD
3474










LPSENERGY
3420
AIELPSENERGYYIP
3475










LSEDITKYF
3421
VDELSEDITKYFMKL
3476










LSEEKIKKG
3422
SEELSEEKIKKGKKY
3477










LYDEHIKKY
3423
DKSLYDEHIKKYKND
3478

-0.0003
-0.0003

0.0006





VLAEDLYGR
3424
HGDVLAEDLYGRLEI
3479










VNKEKEKFI
3425
DKQVNKEKEKFIKSL
3480










VQYDNFQDE
3426
KPIVQYDNFQDEENI
3481










YEDEISAEY
3427
ISKYEDEISAEYDDS
3482

-0.0003
-0.0003

-0.0005





YKNDKQVNK
3428
IKKYKNDKQVNKEKE
3483










FNKESLAEK
3429
FIIFNKESLAEKTNK
3484










IKKEEELVE
3430
SDMIKKEEELVEVNK
3485










LISDMIKKE
3431
VHDLISDMIKKEEEL
3486










VTPEQPQGD
3432
AQDVTPEQPQGDDNN
3487










YNTEKGRHP
3433
LVLYNTEKGRHPFKI
3488










IFFDLFLVN
3434
VFLIFFDLFLVNGRD
3489










ILTDGIPDS
3435
LVVILTDGIPDSIQD
3490
0.0002
0.0046
-0.0003
0.0014
0.0480





INRENANQL
3436
NDRINRENANQLVVI
3491

-0.0003
-0.0003

0.0096





LHSDASKNK
3437
IIRLHSDASKNKEKA
3492










LYADSAWEN
3438
KCNLYADSAWENVKN
3493
0.0003
-0.0014
-0.0009







VCVEVEKTA
3439
MKAVCVEVEKTASCG
3494










VEVEKTASC
3440
AVCVEVEKTASCGVW
3495

0.0073
0.0006

0.0022





VPSDVPKNP
3441
EKEVPSDVPKNPEDD
3496










VWDEWSPCS
3442
SCGVWDEWSPCSVTC
3497

-0.0003
-0.0003







LLMDCSGSI
3443
DLYLLMDCSGSIRRH
3498

0.0072
0.0014

0.0057

















Core

Exemplary





Core
SeqID
Exemplary
SeqID





Sequence
Num
Sequence
Num
DR1
DR2w2β1
DR2w2β2





ILHEGCTSE
3444
KREILHEGCTSELQE
3499








IPEDSEKEV
3445
EPNIPEDSEKEVPSD
3500








YREEVCNDE
3446
EIKYREEVCNDEVDL
3501








VCNDEVDLY
3447
REEVCNDEVDLYLLM
3502
0.0003
-0.0006
0.1300





YAGEPAPFD
3448
ATPYAGEPAPFDETL
3503















Core







Sequence
DR3
DR4w4
DR4w15
DR5w11
DR5w12





ILHEGCTSE







IPEDSEKEV
-0.0130






YREEVCNDE
-0.0033






VCNDEVDLY
-0.0006
-0.0014
-0.0004
0.0001



YAGEPAPFD
-0.0130



















Core

Exemplary







Core
SeqID
Exemplary
SeqID







Sequence
Num
Sequence
Num
DR6w19
DR7
DR8w2
DR9
DRw53





ILHEGCTSE
3444
KREILHEGCTSELQE
3499










IPEDSEKEV
3445
EPNIPEDSEKEVPSD
3500










YREEVCNDE
3446
EIKYREEVCNDEVDL
3501










VCNDEVDLY
3447
REEVCNDEVDLYLLM
3502

-0.0003
-0.0003

-0.0010





YAGEPAPFD
3448
ATPYAGEPAPFDETL
3503





















TABLE XXc









Core

Core




Core
SeqID
Core
Conservancy
Exemplary


Protein
Sequence
Num
Frequency
(%)
Sequence





CSP
LKKNSRSLG
3504
19
100
WYSLKKNSRSLGEND





CSP
ANNDVKNNN
3505
3
16
NANANNDVKNNNNEE





LSA
ADIQNHTLE
3506
1
100
DKSADIQNHTLETVN





LSA
FHINGKIIK
3507
1
100
LLIFHINGKIIKNSE





LSA
FKPNDKSLY
3508
1
100
DNNFKPNDKSLYDEH





LSA
FLKENKLNK
3509
1
100
ENIFLKENKLNKEGK





LSA
IEKTNRESI
3510
1
100
ISIIEKTNRESITTN





LSA
IKNSEKDEI
3511
1
100
GKIIKNSEKDEIIKS





LSA
IKPEQKEDK
3512
1
100
DGSIKPEQKEDKSAD





LSA
IKSNLRSGS
3513
1
100
DEIIKSNLRSGSSNS





LSA
INEEKHEKK
3514
1
100
RNRINEEKHEKKHVL





LSA
LEQERRAKE
3515
1
100
QSDLEQERRAKEKLQ





LSA
LNKEGKLIE
3516
1
100
ENKLNKEGKLIEHII





LSA
LPQDNRGNS
3517
1
100
QSSLPQDNRGNSRDS





LSA
LQEQQRDLE
3518
1
100
NEKLQEQQRDLEQER





PfEXP
AEKTNKGTG
3519
1
100
ESLAEKTNKGTGSGV





PfEXP
LYNTEKGRH
3520
1
100
GLVLYNTEKGRHPFK





PfEXP
VEVNKRKSK
3521
1
100
EELVEVNKRKSKYKL





SSP2
AWENVKNVI
3522
10
100
ADSAWENVKNVIGPF





SSP2
FLVNGRDVQ
3523
10
100
FDLFLVNGRDVQNNI





SSP2
LGEEDKDLD
3524
10
100
DETLGEEDKDLDEPE





SSP2
LDNERKQSD
3525
10
80
PKVLDNERKQSDPQS





SSP2
VLDNERKQS
3526
10
70
PPKVLDNERKQSDPQ





SSP2
IQDSLKESR
3527
10
60
PDSIQDSLKESRKLN





SSP2
IVDEIKYSE
3528
9
90
QNNIVDEIKYREEVC





SSP2
ALLQVRKHL
3529
9
60
LTDALLQVRKHLNDR





SSP2
LKESRKLND
3530
6
50
QDSLKESRKLSDRGV





SSP2
FSNNAKEII
3531
6
40
VNVFSNNAKEIIRLH





SSP2
YNDTPKHPE
3532
5
50
NRKYNDTPKHPEREE





SSP2
FSNNAREII
3533
4
20
LNIFSNNAREIIRLH





SSP2
LKESRKLSD
3534
3
30
QDSLKESRKLSDRGV





SSP2
YNDTPKYPE
3535
2
20
NRKYNDTPKYPEREE





SSP2
AGSDNKYKI
3536
1
10
KKKAGSDNKYKIAGG





SSP2
ALLEVRKHL
3537
1
10
LTDALLEVRKHLNDR





SSP2
IVDEIKYSE
3538
1
10
QNNIVDEIKYSEEVC















Exemplary
Position 
Exemplary
 Exemplary 



SeqID
In PF
Sequence
Sequence


Protein
Num
Poly-Protein
Frequency
Conservancy (%)





CSP
3539
62
19
100





CSP
3540
361
3
 16





LSA
3541
1734
1
100





LSA
3542
16
1
100





LSA
3543
1846
1
100





LSA
3544
108
1
100





LSA
3545
1693
1
100





LSA
3546
23
1
100





LSA
3547
1724
1
100





LSA
3548
32
1
100





LSA
3549
47
1
100





LSA
3550
1573
1
100





LSA
3551
114
1
100





LSA
3552
1676
1
100





LSA
3553
1532
1
100





PfEXP
3554
19
1
100





PfEXP
3555
97
1
100





PfEXP
3556
62
1
100





SSP2
3557
216
10
100





SSP2
3558
18
10
100





SSP2
3559
549
10
100





SSP2
3560
435
8
 80





SSP2
3561
434
7
 70





SSP2
3562
165
6
 60





SSP2
3563
29
9
 90





SSP2
3564
133
6
 60





SSP2
3565
169
5
 50





SSP2
3566
90
4
 40





SSP2
3567
479
5
 50





SSP2
3568
90
2
 20





SSP2
3569
169
3
 30





SSP2
3570
479
2
 20





SSP2
3571
501
1
 10





SSP2
3572
133
1
 10





SSP2
3573
29
1
 10
















TABLE XXd





Malaria DR3b Motif Peptides With Binding Information






















Core

Exemplary





Core
SeqID
Exemplary
SeqID





Sequence
Num
Sequence
Num
DR1
DR2w2β1
DR2w2β2





LKKNSRSLG
3504
WYSLKKNSRSLGEND
3539








ANNDVKNNN
3505
NANANNDVKNNNNEE
3540








ADIQNHTLE
3506
DKSADIQNHTLETVN
3541








FHINGKIIK
3507
LLIFHINGKIIKNSE
3542
0.5700
0.2900
0.2500





FKPNDKSLY
3508
DNNFKPNDKSLYDEH
3543








FLKENKLNK
3509
ENIFLKENKLNKEGK
3544








IEKTNRESI
3510
ISIIEKTNRESITIN
3545








IKNSEKDEI
3511
GKIIKNSEKDEIIKS
3546
0.0002
-0.0021
-0.0160





IKPEQKEDK
3512
DGSIKPEQKEDKSAD
3547








IKSNLRSGS
3513
DEIIKSNLRSGSSNS
3548








INEEKHEKK
3514
RNRINEEKHEKKHVL
3549








LEQERRAKE
3515
QSDLEQERRAKEKLQ
3550








LNKEGKLIE
3516
ENKLNKEGKLIEHII
3551
0.0001

-0.0021





LPQDNRGNS
3517
QSSLPQDNRGNSRDS
3552








LQEQQRDLE
3518
NEKLQEQQRDLEQER
3553








AEKTNKGTG
3519
ESLAEKTNKGTGSGV
3554








LYNTEKGRH
3520
GLVLYNTEKGRHPFK
3555








VEVNKRKSK
3521
EELVEVNKRKSKYKL
3556








AWENVKNVI
3522
ADSAWENVKNVIGPF
3557








FLVNGRDVQ
3523
FDLFLVNGRDVQNNI
3558








LGEEDKDLD
3524
DETLGEEDKDLDEPE
3559








LDNERKQSD
3525
PKVLDNERKQSDPQS
3560








VLDNERKQS
3526
PPKVLDNERKQSDPQ
3561








IQDSLKESR
3527
PDSIQDSLKESRKLN
3562
-0.0001
0.0040
-0.0018





IVDEIKYRE
3528
QNNIVDEIKYREEVC
3563








ALLQVRKHL
3529
LTDALLQVRKHLNDR
3564








LKESRKLND
3530
QDSLKESRKLNDRGV
3565








FSNNAKEll
3531
VNVFSNNAKEIIRLH
3566








YNDTPKHPE
3532
NRKYNDTPKHPEREE
3567








FSNNAREII
3533
LNIFSNNAREIIRLH
3568








LKESRKLSD
3534
QDSLKESRKLSDRGV
3569








YNDTPKYPE
3535
NRKYNDTPKYPEREE
3570








AGSDNKYKI
3536
KKKAGSDNKYKIAGG
3571








ALLEVRKHL
3537
LTDALLEVRKHLNDR
3572








IVDEIKYSE
3538
QNNIVDEIKYREEVC
3573


















Core










Sequence
DR3
DR4w4
DR4w15
DR5w11
DR5w12








LKKNSRSLG













ANNDVKNNN













ADIQNHTLE













FHINGKIIK
0.5300
0.0060
-0.0030
0.3600
0.0230








FKPNDKSLY
0.1700












FLKENKLNK
0.0950












IEKTNRESI
0.1300












IKNSEKDEI
-0.0017
0.0030
-0.0010
-0.0003









IKPEQKEDK
-0.0033












IKSNLRSGS
0.0050












INEEKHEKK
0.0420












LEQERRAKE













LNKEGKLIE
-0.0140
-0.0017
-0.0047
-0.0005
-0.0003








LPQDNRGNS
-0.0033












LQEQQRDLE













AEKTNKGTG
-0.0033












LYNTEKGRH













VEVNKRKSK
0.0880












AWENVKNVI
-0.0130












FLVNGRDVQ
-0.0033












LGEEDKDLD
-0.0130












LDNERKQSD
-0.0130












VLDNERKQS
-0.0130












IQDSLKESR
0.8400
-0.0055

-0.0006









IVDEIKYRE













ALLQVRKHL
-0.0033












LKESRKLND













FSNNAKEll













YNDTPKHPE













FSNNAREII













LKESRKLSD













YNDTPKYPE













AGSDNKYKI













ALLEVRKHL













IVDEIKYSE



















Core

Exemplary







Core
SeqID
Exemplary
SeqID







Sequence
Num
Sequence
Num
DR6w19
DR7
DR8w2
DR9
DRw53





LKKNSRSLG
3504
WYSLKKNSRSLGEND
3539










ANNDVKNNN
3505
NANANNDVKNNNNEE
3540










ADIQNHTLE
3506
DKSADIQNHTLETVN
3541










FHINGKIIK
3507
LLIFHINGKIIKNSE
3542
0.0330
0.1300
0.1400
0.1500






FKPNDKSLY
3508
DNNFKPNDKSLYDEH
3543










FLKENKLNK
3509
ENIFLKENKLNKEGK
3544










IEKTNRESI
3510
ISIIEKTNRESITTN
3545










IKNSEKDEI
3511
GKIIKNSEKDEIIKS
3546

-0.0011
-0.0007







IKPEQKEDK
3512
DGSIKPEQKEDKSAD
3547










IKSNLRSGS
3513
DEIIKSNLRSGSSNS
3548










INEEKHEKK
3514
RNRINEEKHEKKHVL
3549










LEQERRAKE
3515
QSDLEQERRAKEKLQ
3550










LNKEGKLIE
3516
ENKLNKEGKLIEHII
3551

-0.0009
-0.0007







LPQDNRGNS
3517
QSSLPQDNRGNSRDS
3552










LQEQQRDLE
3518
NEKLQEQQRDLEQER
3553










AEKTNKGTG
3519
ESLAEKTNKGTGSGV
3554










LYNTEKGRH
3520
GLVLYNTEKGRHPFK
3555










VEVNKRKSK
3521
EELVEVNKRKSKYKL
3556










AWENVKNVI
3522
ADSAWENVKNVIGPF
3557










FLVNGRDVQ
3523
FDLFLVNGRDVQNNI
3558










LGEEDKDLD
3524
DETLGEEDKDLDEPE
3559










LDNERKQSD
3525
PKVLDNERKQSDPQS
3560










VLDNERKQS
3526
PPKVLDNERKQSDPQ
3561










IQDSLKESR
3527
PDSIQDSLKESRKLN
3562
-0.0002
-0.0014
0.0012







IVDEIKYRE
3528
QNNIVDEIKYREEVC
3563










ALLQVRKHL
3529
LTDALLQVRKHLNDR
3564










LKESRKLND
3530
QDSLKESRKLNDRGV
3565










FSNNAKEII
3531
VNVFSNNAKEIIRLH
3566










YNDTPKHPE
3532
NRKYNDTPKHPEREE
3567










FSNNAREII
3533
LNIFSNNAREIIRLH
3568










LKESRKLND
3534
QDSLKESRKLNDRGV
3569










YNDTPKYPE
3535
NRKYNDTPKYPEREE
3570










AGSDNKYKI
3536
KKKAGSDNKYKIAGG
3571










ALLEVRKHL
3537
LTDALLEVRKHLNDR
3572










IVDEIKYSE
3538
QNNIVDEIKYREEVC
3573
















TABLE XXI







Population coverage with combined HLA Supertypes









PHENOTYPIC FREQUENCY















North








American


HLA-SUPERTYPES
Caucasian
Black
Japanese
Chinese
Hispanic
Average
















a. Individual Supertypes








A2
45.8
39.0
42.4
45.9
43.0
43.2


A3
37.5
42.1
45.8
52.7
43.1
44.2


B7
38.6
52.7
48.8
35.5
47.1
44.7


A1
47.1
16.1
21.8
14.7
26.3
25.2


A24
23.9
38.9
58.6
40.1
38.3
40.0


B44
43.0
21.2
42.9
39.1
39.0
37.0


B27
28.4
26.1
13.3
13.9
35.3
23.4


B62
12.6
4.8
36.5
25.4
11.1
18.1


B58
10.0
25.1
1.6
9.0
5.9
10.3


b. Combined Supertypes


A2, A3, B7
83.0
86.1
87.5
88.4
86.3
86.2


A2, A3, B7, A24, B44, A1
99.5
98.1
100.0
99.5
99.4
99.3


A2, A3, B7, A24, B44, A1,
99.9
99.6
100.0
99.8
99.9
99.8


B27, B62, B58
















TABLE XXII 







Fixed analogs of P. falciparum CTL epitopes


















SEQ




SEQ


Supertype


ID

Alleles
Fixing
Fixed
ID


(or allele)
Peptide
Sequence
NO:
Source
bounda
strategy
sequence
NO:


















A2
1167.21
FLIFFDLFLV
3610
Pf SSP2 14
5
V2
FLIFFDLFLV
3803


supertype
1167.16
FMKAVCVEV
3611
Pf SSP2 230
5
V2
FVKAVCVEV
3804



1167.08
GLIMVLSFL
3612
Pf CSP 425
4
Vc
GLIMVLSFV
3805








V2
GVIMVLSFL
3806








V2Nc
GVIMVLSFV
3807



1167.12
VLAGLLGNV
3613
Pf EXP1 80
4
V2
VLAGLLGNV
3808



1167.13
KILSVFFLA
3614
Pf EXP1 2
3
L2
KLLSVFFLA
3809








V2
KVLSVFFLA
3810








Vc
KILSVFFLV
3811








L2/Vc
KLLSVFFLV
3812








V2/Vc
KVLSVFFLV
3813



1167.10
GLLGNVSTV
3615
Pf EXP1 83
3
V2
GVLGNVSTV
3814



1167.18
ILSVSSFLFV
3616
Pf CSP 7
2
V2
IVSVSSFLFV
3815



1167.19
VLLGGVGLVL
3617
Pf EXP1 91
2
Vc
VLLGGVGLVV
3816








V2
VVLGGVGLVL
3817








V2/Vc
VVLGGVGLVV
3818





A3-
1167.36
LACAGLAYK
3718
Pf SSP2 511
4
V2
LVCAGLAYK
3819


supertype
1167.32
QTNFKSLLR
3619
Pf LSA1 94
4
V2
QVNFKSLLR
3820



1167.43
VTCGNGIQVR
3620
Pf CSP 375
4
V2
VVCGNGIQVR
3821



1167.24
ALFFIIFNK
3621
Pf EXP1 10
3
V2
AVFFIIFNK
3822



1167.28
GVSENIFLK
3622
Pf LSA1 105
3






1167.47
HVLSHNSYEK
3623
Pf LSA1 59
3






1167.51
LLACAGLAYK
3624
Pf SSP2 510
3
V2
LVACAGLAYK
3823



1167.46
FILVNLLIFH
3625
Pf LSA1 11
2
V2
FVLVNLLIFH
3824








Rc
FILVNLLIFR
3825








Kc
FILVNLLIFK
3826








V2/Rc
FVLVNLL1FR
3827








V2/Kc
FVLVNLLIFK
3828





B7-
1167.61
TPYAGEPAPF
3626
Pf SSP2 539
4
Ic
TPYAGEPAPI
3829


supertype














19.0051
LPYGRTNL
3627
Pf SSP2 126
3
Ic
LPYGRTNI
3830


A1
16.0245
FQDEENIGIY
3628
Pf LSA1 1794
1
T2
FTDEENIGIY
3831



16.0040
FVEALFQEY
3629
Pf CSP 15
1
D3
FVEALFQEY
3832








T2
FTEALFQEY
3833



15.0184
LPSENERGY
3630
Pf LSA1 1663
1
D3
LPDENERGY
3834








T2
LTSENERGY
3835



16.0130
PSDGKCNLY
3631
Pf SSP2 207
1
T2
PTDGKCNLY
3836





A24
1167.54
FYFILVNLL
3632
Pf LSA1 9
1
Fc
FYFILVNLF
3837



1167.53
KYKLATSVL
3633
Pf EXP1 73
1
Fc
KYKLATSVF
3838



1167.56
KYLVIVFLI
3634
Pf SSP2 8
1
Fc
KYLVIVFLF
3839



1167.55
YYIPHQSSL
3635
Pf LSA1 1671
1
Fc
YYIPHQSSF
3840






aA2-supertype peptides are tested for binding to A*0201, A*0202, A*0203, A*0206, and A*6802. A3-supertype peptides are tested for binding ato A*03, A*11, A*31011, A*3301, and A*6801. B7-supertype peptides are tested for binding to B*0702, B*3501, B*5101, B*5301, and B*5401. A1 and A24 peptides are tested for binding to A*0101, and A*2402, respectively.














TABLE XXIII








Plasmodium falciparum CTL-inducing epitopes













SEQ






ID


HLA-


Epitope
NO:
Antigen
Residues
restriction





GLIMVLSFL
3636
CSP
386-394
A2-supertype





ILSVSSFLFV
3637
CSP
  7-16
A2-supertype





VLAGLLGNV
3638
Exp-1
 80-88
A2-supertype





KILSVFFLA
3639
Exp-1
  2-10
A2-supertype





GLLGNVSTV
3640
Exp-1
 83-91
A2-supertype





VLLGGVGLVL
3641
Exp-1
 91-100
A2-supertype





FLIFFDLFLV
3642
SSP2
 14-23
A2-supertype





VTCGNGIQVR
3643
CSP
336-345
A3-supertype





ALFFIIFNK
3644
Exp-1
 10-18
A3-supertype





QTNFKSLLR
3645
LSA-1
 94-102
A3-supertype





GVSENIFLK
3646
LSA-1
105-113
A3-supertype





HVLSHNSYEK
3647
LSA-1
 59-68
A3-supertype





FILVNLLIFH
3648
LSA-1
 11-20
A3-supertype





TPYAGELPAPF
3649
SSP2
539-548
B7-supertype





MPLETQLAI
3650
s16
 77-85
B7-supertype





MRKLAILSVSSFLVF
3651
CSP
  2-16
DR-supermotif





MNYYGKQENWYSLICK
3652
CSP
 53-67
DR-supermotif





RHNWVNHAVPLAMKLI
3653
SSP2
 61-76
DR-supermotif





VKNVIGPFMKAVCVE
3654
SSP2
223-237
DR-supermotif





SSVFNVVNSSIGLIM
3655
CSP
410-424
DR-supermotif





AGLLGNVSTVSTVLLGGV
3656
EXP1
 82-96
DR-supermotif





KSKYKLATSVLAGLL
3657
EXP1
 71-85
DR-supermotif





GLAYKFVVPGAATPY
3658
SSP2
512-526
DR-supermotif





KYKIAGGIAGGLALL
3659
SSP2
494-508
DR-supermotif
















TABLE XXIV





MHC-peptide binding assays: cell lines and radiolabeled ligands.







A. Class I binding assays















Radiolabeled peptide













Species
Antigen
Allele
Cell line
Source
Sequence
SEQ ID NO:





Human
A1
A*0101
Steinlin
Hu. J chain 102-110
YTAVVPLVY
3660



A2
A*0201
JY
HBVc 18-27 F6->Y
FLPSDYFPSV
3661



A2
A*0202
P815 
HBVc 18-27 F6->Y
FLPSDYFPSV
3662





(transfected)






A2
A*0203
FUN
HBVc 18-27 F6->Y
FLPSDYFPSV
3663



A2
A*0206
CLA
HBVc 18-27 F6->Y
FLPSDYFPSV
3664



A2
A*0207
721.221 
HBVc 18-27 F6->Y
FLPSDYFPSV
3665





(transfected)






A3

GM3107
non-natural (A3CON1)
KVFPYALINK
3666



A11

BVR
non-natural (A3CON1)
KVFPYALINK
3667



A24
A*2402
KAS116
non-natural (A24CON1)
AYIDNYNKF
3668



A31
A*3101
SPACH
non-natural (A3CON1)
KVFPYALINK
3669



A33
A*3301
LWAGS
non-natural (A3CON1)
KVFPYALINK
3670



A28/68
A*6801
C1R
HBVc 141-151 T7->Y
STLPETYVVRR
3671



A28/68
A*6802
AMAI
HBV pol 646-654 C4->A
FTQAGYPAL
3672



B7
B*0702
GM3107
A2 sigal seq. 5-13 
APRTLVYLL
3673






(L7->Y)





B8
B*0801
Steinlin
HIVgp 586-593 Y1->F, 
FLKDYQLL
3674






Q5->Y





B27
B*2705
LG2
R 60s
FRYNGLIHR
3675



B35
B*3501
C1R, BVR
non-natural (B35CON2)
FPFKYAAAF
3676



B35
B*3502
TISI
non-natural (B35CON2)
FPFKYAAAF
3677



B35
B*3503
EHM
non-natural (B35CON2)
FPFKYAAAF
3678



B44
B*4403
PITOUT
EF-1 G6->Y
AEMGKYSFY
3679



B51

KAS116
non-natural (B35CON2)
FPFKYAAAF
3680



B53
B*5301
AMAI
non-natural (B35CON2)
FPFKYAAAF
3681



B54
B*5401
KT3
non-natural (B35CON2)
FPFKYAAAF
3682



Cw4
Cw*0401
CIR
non-natural (C4CON1)
QYDDAVYKL
3683



Cw6
Cw*0602
721.221 
non-natural (C6CON1)
YRHDGGNVL
3684





transfected






Cw7
Cw*0702
721.221 
non-natural (C6CON1)
YRHDGGNVL
3685





transfected








Mouse
Db

EL4
Adenovirus ElA P7->Y
SGPSNTYPEI
3686



Kb

EL4
VSV NP 52-59
RGYVFQGL
3687



Dd

P815
HIV-IIIB ENV 04->Y
RGPYRAFVTI
3688



Kd

P815
non-natural (KdCON1)
KFNPMKTYI
3689



Ld

P815
HBVs 28-39
IPQSLDSYWTSL
3690










B. Class II binding assays















Radiolabeled peptide













Species
Antigen
Allele
Cell line
Source
Sequence
SEQ ID NO:





Human
DR1
DRB1*0101
LG2
HA Y307-319
YPKYVKQNTLKLAT
3691



DR2
DRB1*1501
L466.1
MBP 88-102Y
VVHFFKNIVTPRTPPY
3692



DR2
DRB1*1601
L242.5
non-natural (760.16)
YAAFAAAKTAAAFA
3693



DR3
DRB1*0301
MAT
MT 65kD Y3-13
YKTIAFDEEARR
3694



DR4w4
DRB1*0401
Preiss
non-natural (717.01)
YARFQSQTTLKQKT
3695



DR4w10
DRB1*0402
YAR
non-natural (717.10)
YARFQRQTTLKAAA
3696



DR4w14
DRB1*0404
BIN 40
non-natural (717.01)
YARFQSQTTLKQKT
3697



DR4w15
DRB1*0405
KT3
non-natural (717.01)
YARFQSQTTLKQKT
3698



DR7
DRB1*0701
Pitout
Tet. tox. 830-843
QYIKANSKFIGITE
3699



DR8
DRB1*0802
OLL
Tet. tox. 830-843
QYIKANSKFIGITE
3700



DR8
DRB1*0803
LUY
Tet. tox. 830-843
QYIKANSKFIGITE
3701



DR9
DRB1*0901
HID
Tet. tox. 830-843
QYIKANSKFIGITE
3702



DR11
DRB1*1101
Sweig
Tet. tox. 830-843
QYIKANSKFIGITE
3703



DR12
DRB1*1201
Herluf
unknown eluted peptide
EALIHQLKINPYVLS
3704



DR13
DRB1*1302
H0301
Tet. tox. 830-843 S->A
QYIKANAKFIGITE
3705



DR51
DRB5*0101
GM3107 
Tet. tox. 830-843
QYIKANAKFIGITE
3706





or 








L416.3






DR51
DRB5*0201
L255.1
HA 307-319
PKYVKQNTLKLAT
3707



DR52
DRB3*0101
MAT
Tet. tox. 830-843
NGQIGNDPNRDIL
3708



DR53
DRB4*0101
L257.6
non-natural (717.01)
YARFQSQTTLKQKT
3709



DQ3.1
QA1*0301/
PF
non-natural (ROIV)
YAHAAHAAHAAHAAHAA
3710




DQB1*03(









Mouse
IAb

DB27.4
non-natural (ROIV)
YAHAAHAAHAAHAAHAA
3711



IAd

A20
non-natural (ROIV)
YAHAAHAAHAAHAAHAA
3712



IAk

CH-12
HEL 46-61
YNTDGSTDYGILQINSR
3713



IAs

LS102.9
non-natural (ROIV)
YAHAAHAAHAAHAAHAA
3714



IAu

91.7
non-natural (ROIV)
YAHAAHAAHAAHAAHAA
3715



IEd

A20
Lambda repressor 12-26
YLEDARRKKAIYEKKK
3716



lEk

CH-12
Lambda repressor 12-26
YLEDARRKKAIYEKKK
3717
















TABLE XXV







Monoclonal antibodies used


in MHC purification.










Monoclonal antibody
Specificity







W6/32
HLA-class I



B123.2
HLA-B and C



IVD12
HLA-DQ



LB3.1
HLA-DR



M1/42
H-2 class I



28-14-8S
H-2 Db and Ld



34-5-8S
H-2 Dd



B8-24-3
H-2 Kb



SF1-1.1.1
H-2 Kd



Y-3
H-2 Kb



10.3.6
H-2 IAk



14.4.4
H-2 IEd, IEK



MKD6
H-2 IAd



Y3JP
H-2 IAb, IAs, IAu

















TABLE XXVI








P. falciparum A2-supermotif CTL epitopes

















SEQ ID

A2-supertype binding capacity (IC50 nM)
Alleles

















Peptide
AA
Sequence
NO:
Source
A*0201
A*0202
A*0203
A*0206
A*6802
bounda




















1167.21
10
FLIFFDLFLV
3718
Pf SSP2 14
12
10
5.9
11
333
5





1167.16
 9
FMKAVCVEV
3719
Pf SSP2 230
63
307
2.9
389
143
5





1167.12
 9
VLAGLLGNV
3720
Pf EXP1 80
19
24
0.67
31
606
4





1167.08
 9
GLIMVLSFL
3721
Pf CSP 425
22
20
3.6
74
4396
4





1167.13
 9
KILSVFFLA
3722
Pf EXP1 2
5.0
172
3448
8.0
9524
3





1167.10
 9
GLLGNVSTV
3723
Pf EXP1 83
24
1194
1.2
25
21053
3





1167.19
10
VLLGGVGLVL
3724
Pf EXP1 91
94

2500
420
16000
2





1167.18
10
ILSVSSFLFV
3725
Pf CSP 7
208
3583
19
587
2105
2





* A dash indicates IC50 nM > 30000.













TABLE XXVII 








P. falciparum A3-supermotif CTL epitopes


















A3-supertype binding capacity (IC50 nm)




















SEQ ID






Alleles


Peptide
AA
Sequence
NO:
Source
A*301
A-1101
A*3101
A*3301
A*6801
bounda




















1167.32
 9
QTNFKSLLR
3726
Pf LSA1 94
50
14
180
617
4
4





1167.36
 9
LACAGLAYK
3727
Pf SSP2 511
423
143
5294
64
32
4





1167.43
10
VTCGNGIQVR
3728
Pf CSP 375
6875
11
15
64
444
4





1167.24
 9
ALFFIIFNK
3729
Pf EXP1 10
9.2
2.2
720
1261
73
3





1167.51
10
LLACAGLAYK
3730
Pf SSP2 510
22
73
692
1526
24
3





1167.28
 9
GVSENIFLK
3731
Pf LSA1 105
151
5.0
2250
8286
10
3





1167.47
10
HVLSHNSYEK
3732
Pf LSA1 59
407
200


114
3





1167.46
10
FILVNLLIFH
3733.
Pf LSA1 11
733
1333
1957
397
154
2





* A dash indicates IC50 nM > 30000.













TABLE XXVIII 








P. falciparum B7-supermotif CTL epitopes

















SEQ ID

B7-supertype binding capacity (IC50 nM)
Alleles

















Peptide
AA
Sequence
NO:
Source
B*0702
B*3501
B*5101
B*5301
B*5401
bounda




















1167.61
10
TPYAGEPAPF
3734
Pf SSP2 539
31
14
15
  158
25000
4





19.0051
 8
LPYGRTNL
3735
Pf SSP2 126
50

32
15500
  417
3





* A dash indicates 1050 nM > 30000.













TABLE XXIX








P. falciparum HLA-A*0101 and A*2402 binding peptides










Binding capacity



(IC50 nM)














Motif
Peptide
AA
Sequence
SEQ ID NO:
Source
A*0101
A*2401

















A1
16.0040
9
FVEALFQEY
3736
Pf CSP 15
  7.4




16.0245
10
FQDEENIGIY
3737
Pf LSA1 1794
23




15.0184
9
LPSENERGY
3738

37




16.0130
9
PSDGKCNLY
3739
Pf SSP2 207
46






A24
1167.55
9
YYPHQSSL
3740
Pf LSA1 1671

  2.4



1167.54
9
FYFILVNLL
3741
Pf LSA1 9

25



1167.56
9
KYLVIVFLI
3742
Pf SSP2 8

34



1167.53
9
KYKLATSVL
3743
Pf EXP1 73

75
















TABLE XXX







HLA-DR screening panels









Screening
Representative Assay
Phenotypic Frequencies

















Panel
Antigen
Alleles
Allele
Alias
Cauc.
Blk.
Jpn.
Chn.
Hisp.
Avg.




















Primary
DR1
DRB1*0101-03
DRB1*0101
(DR1)
18.5
8.4
10.7
4.5
10.1
10.4



DR4
DRB1*0401-12
DRB1*0401
(DR4w4)
23.6
6.1
40.4
21.9
29.8
24.4



DR7
DRB1*0701-02
DRB1*0701
(DR7)
26.2
11.1
1.0
15.0
16.6
14.0



Panel total



59.6
24.5
49.3
38.7
51.1
44.6


Secondary
DR2
DRB1*1501-03
DRB1*1501
(DR2w2 β1)
19.9
14.8
30.9
22.0
15.0
20.5



DR2
DRB5*0101
DRB5*0101
(DR2w2 β2)









DR9
DRB1*09011, 09012
DRB1*0901
(DR9)
3.6
4.7
24.5
19.9
6.7
11.9



DR13
DRB1*1301-06
DRB1*1302
(DR6w19)
21.7
16.5
14.6
12.2
10.5
15.1



Panel total



42.0
33.9
61.0
48.9
30.5
43.2


Tertiary
DR4
DRB1*0405
DRB1*0405
(DR4w15)









DR8
DRB1*0801-5
DRB1*0802
(DR8w2)
5.5
10.9
25.0
10.7
23.3
15.1



DR11
DRB1*1101-05
DRB1*1101
(DR5w11)
17.0
18.0
4.9
19.4
18.1
15.5



Panel total



22.0
27.8
29.2
29.0
39.0
29.4


Quartemary
DR3
DRB1*0301-2
DRB1*0301
(DR3w17)
17.7
19.5
0.4
7.3
14.4
11.9



DR12
DRB1*1201-02
DRB1*1201
(DR5w12)
2.8
5.5
13.1
17.6
5.7
8.9



Panel total



20.2
24.4
13.5
24.2
19.7
20.4
















TABLE XXXI






P. falciparum derived HTL candidate epitopes






















SEQ ID

Binding capacity (IC50 nM)















Peptide
Sequence
NO:
Source
DR1
DR2w2β1
DR2w2β2
DR4w4
DR4w15





F125.04
RHNWVNHAVPLAMKLI
3744
Pf SSP2 61
26
260
83
14
317





1188.34
HNWVNHAVPLAMKLI
3745
Pf SSP2 62
14
364
143
12
950





1188.16
KSKYKLATSVLAGLL
3746
Pf EXP1 71
3.6
1247
24
7.1
47






LVNLLIFHINGKIIKNSE
3747
Pf LSA1 13










F125.02
LVNLLIFHINGKIIKNS
3748
Pf LSA1 13
78
13
426

1810





27.0402
LLIFHINGKIIKNSE
3749
Pf LSA1 16
8.8

80
7500






1188.32
GLAYKFVVPGAATPY
3750
Pf SSP2 512
3.1
-
29
45
1407





27.0392
SSVFNVVNSSIGLIM
3751
Pf CSP 410
42
314
2500
450
1652





27.0417
VKNVIGPFMKAVCVE
3752
Pf SSP2 223
56
212
250







27.0388
MRKLAILSVSSFLFV
3753
Pf CSP 2
50
18
1538
5769
1407





27.0387
MNYYGKQENWYSLKK
3754
Pf CSP 53
6.4
9100
435
21
292





1188.38
KYKIAGGIAGGLALL
3755
Pf SSP2 494
132
-
417
3750
22353





1188.13
AGLLGNVSTVLLGGV
3756
Pf EXP1 82
116
379
15,385
6923
1056





27.0408
QTNFKSLLRNLGVSE
3757
Pf LSA1 94
91
8273
5405
2500
1900





35.0171
PDSIQDSLKESRKLN
3758
Pf SSP2 165
-
2285
-
-






35.0172
KCNLYADSAWENVKN
3759
Pf SSP2 211
23425
18200
-
-














Binding capacity (IC50 nM)
Alleles















Peptide
DR5w11
DR6w19
DR7
DR8w2
DR9
DR3
DR5w12
bound2





F125.04
282
3.9
23
41
33
8751
441
11





1188.34
2703
3.7
66
68
19
1304
497
10





1188.16
30
427
13
45
28


 9





F125.02
408
66
260
766
625
19722
11610
 8





27.0402
56
106
192
350
500
566
12957
 8





1188.32
11
7.1
167
20
125

851
 9





27.0392
1176
9.7
33
891
63


 7





27.0417
476
32
424
2130
862

3239
 7





27.0388
541
38
500

682


 6





27.0387
351
3182
3788
538
22059


 6





1188.38
87
15
3968
31
288


 6





1188.13

0.76
58

142


 5





27.0408
51
47
7813
69



 4





35.0171





357

 1





35.0172

11061



857

 1





A dash (—) indicates IC50 > 20 μM.













TABLE XXXII







PBMC responses of individuals from the Irian Java


endemic malaria region.









Percent individuals yielding positive responses (n)










Peptide
IFNγ
TNFα
Proliferation





CSP.2
11% (7)
59% (39)
 9% (11)


LSA1.13
16% (9)
30% (21)
 8% (10)


CSP.53
 7% (4)
53% (40)
3% (4)


SSP2.61
 7% (4)
45% (36)
7% (9)


SSP2.223
15% (9)
42% (31)
5% (6)


CSP.410
16% (9)
47% (33)
12% (14)


EXP1.82
 29% (17)
43% (32)
6% (7)


EXP1.71
 9% (5)
49% (36)
12% (14)


SSP2.512
14% (8)
41% (30)
3% (4)


SSP2.62
11% (6)
42% (31)
12% (14)


SSP2.494
 7% (4)
36% (26)
2% (3)
















TABLE XXXIII 








P. falciparum CTL epitopes














Supertype



SEQ ID

Alleles


(or allele)
Peptide
AA
Sequence
NO:
Source
bounda
















A2-
1167.08
 9
GLIMVLSFL
3760
Pf CSP 425
4


supertype
1167.10
 9
GLLGNVSTV
3761
Pf EXP1 83
3



1167.12
 9
VLAGLLGNV
3762
Pf EXP1 80
4



1167.13
 9
KILSVFFLA
3763
Pf EXP1 2
3



1167.16
 9
FMKAVCVEV
3764
Pf SSP2 230
5



1167.18
10
ILSVSSFLFV
3765
Pf CSP 7
2



1167.19
10
VLLGGVGLVL
3766
Pf EXP1 91
2



1167.21
10
FLIFFDLFLV
3767
Pf SSP2 14
5





A3-
1167.24
 9
ALFFIIFNK
3768
PF EXP1 10
3


supertype
1167.28
 9
GVSENIFLK
3769
Pf LSA1 105
3



1167.32
 9
QTNFKSLLR
3770
Pf LSA1 94
4



1167.36
 9
LACAGLAYK
3771
Pf SSP2 511
4



1167.43
10
VTCGNGIQVR
3772
Pf CSP 375
4



1167.46
10
FILVNLLIFH
3773
Pf LSA1 11
2



1167.47
10
HVLSHNSYEK
3774
Pf LSA1 59
3



1167.51
10
LLACAGLAYK
3775
Pf SSP2 510
3





B7-
19.0051
 8
LPYGRTNL
3776
Pf SSP2 126
3


supertype
1167.61
10
TPYAGEPAPF
3777
Pf SSP2 539
4





A1
15.0184
 9
LPSENERGY
3778
Pf LSA1 1663
1



16.0040
 9
FVEALFQEY
3779
Pf CSP 15
1



16.0130
 9
PSDGKCNLY
3780
Pf SSP2 207
1



16.0245
10
FQDEENIGIY
3781
Pf LSA1 1794
1





A24
1167.53
 9
KYKLATSVL
3782
Pf EXP1 73
1



1167.54
 9
FYFILVNLL
3783
Pf LSA1 9
1



1167.55
 9
YYIPHQSSL
3784
Pf LSA1 1671
1



1167.56
 9
KYLVIVFLI
3785
Pf SSP2 8
1






aA2-supertype peptides are tested for binding to A*0201, A*0202, A*0203, A*0206, and A*6802. A3-supertype peptides are tested for binding to A*03, A*11, A*31011, A*3301, and A*6801. B7-supertype peptides are tested for binding to B*0702, B*3501, B*5101, B*5301, and B*5401. A1 and A24 peptides are tested for binding to A*0101 and A*2402, respectively.














TABLE XXXIV 








P. falciparum HTL epitopes
















SEQ ID

Alleles


Motif
Peptide
Sequence
NO:
Source
bounda





DR-
F125.04
RHNWVNHAVPLAMKLI
3786
Pf SSP2 61
11


supermotif
1188.16
KSKYKLATSVLAGLL
3787
Pf EXP1 71
 9



27.0402
LLIFHINGKIIKNSE
3788
Pf LSA1 16
9(DR3)



1188.32
GLAYKFVVPGAATPY
3789
Pf SSP2 512
9



27.0392
SSVFNVVNSSIGLIM
3790
Pf CSP 410
7



27.0417
VKNVIGPFMKAVCVE
3791
Pf SSP2 223
7



27.0388
MRKLAILSVSSFLFV
3792
Pf CSP 2
6



27.0387
MNYYGKQENWYSLKK
3793
PF CSP53
6



1188.38
KYKIAGGIAGGLALL
3794
Pf SSP2 494
6



1188.13
AGLLGNVSTVLLGGV
3795
Pf EXP1 82
5



27.0408
QTNFKSLLRNLGVSE
3796
Pf LSA1 94
4





DR3
35.0171
PDSIQDSLKESRKLN
3797
Pf SSP2 165
DR3



35.0172
KCNLYADSAWENVKN
3798
Pf SSP2 211
DR3






aHLA-DR supermotif peptides are screened for binding to a panel alleles representing the 10 most common HLA antigens, including DR1, DR2w2 β1, DR2w2 β2, DR4w4, DR4w15, DR5w11, DR6w19, DR7, DR8w2, and DR9. Additional alleles that are tested include DR3, DR5w12, DR52a, and DR53. DR3-motif peptides are tested for binding to DR3.














TABLE XXXV







Estimated population coverage by a panel of P. falciparum derived HTL epitopes











Representative
No. of
Population coverage (phenotypic frequency)
















Antigen
Alleles
assay
epitopes2
Cauc.
Blk.
Jpn.
Chn.
Hisp.
Avg.



















DR1
DRB1*0101-03
DR1
11
18.5
8.4
10.7
4.5
10.1
10.4


DR2
DRB1*1501-03
DR2w2 β1
6
19.9
14.8
30.9
22.0
15.0
20.5


DR2
DRB5*0101
DR2w2 β2
7








DR3
DRB1*0301-2
DR3
3
17.7
19.5
0.40
7.3
14.4
11.9


DR4
DRB1*0401-12
DR4w4
5
23.6
6.1
40.4
21.9
29.8
24.4


DR4
DRB1*0401-12
DR4w15
3








DR7
DRB1*0701-02
DR7
8
26.2
11.1
1.0
15.0
16.6
14.0


DR8
DRB1*0801-5
DR8w2
8
5.5
10.9
25.0
10.7
23.3
15.1


DR9
DRB1*09011, 09012
DR9
9
3.6
4.7
24.5
19.9
6.7
11.9


DR11
DRB1*1101-05
DR5w11
9
17.0
18.0
4.9
19.4
18.1
15.5


DR12
DRB1*1201-2
DR5w12
2
2.8
5.5
13.1
17.6
5.7
8.9


DR13
DRB1*1301-06
DR6w19
10
21.7
16.5
14.6
12.2
10.5
15.1


Total



97.0
83.9
98.8
95.5
95.6
94.7








Claims
  • 1-40. (canceled)
  • 41. An isolated peptide less than 13 amino acids in length comprising the oligopeptide: LLACAGLAY (SEQ ID NO: 3019), FLIFFDLFLV (SEQ ID NO: 3718), FMKAVCVEV (SEQ ID NO: 3719), VLAGLLGNV (SEQ ID NO: 3720), GLIMVLSFL (SEQ ID NO: 3721), KILSVFFLA (SEQ ID NO: 3722), GLLGNVSTV (SEQ ID NO: 3723), VLLGGVGLVL (SEQ ID NO: 3724), ILSVSSFLFV (SEQ ID NO: 3725), QTNFKSLLR (SEQ ID NO: 3726), LACAGLAYK (SEQ ID NO: 3727), ALFFIIFNK (SEQ ID NO: 3729), LLACAGLAYK (SEQ ID NO: 3730), HVLSHNSYEK (SEQ ID NO: 3732), FILVNLLIFH (SEQ ID NO: 3733), FQDEENIGIY (SEQ ID NO: 3737), PSDGKCNLY (SEQ ID NO: 3739), YYIPHQSSL (SEQ ID NO: 3740), FYFILVNLL (SEQ ID NO: 3741), KYLVIVFLI (SEQ ID NO: 3742) or KYKLATSVL (SEQ ID NO: 3743).
  • 42. The isolated peptide of claim 41, wherein the peptide is LLACAGLAY (SEQ ID NO: 3019), FLIFFDLFLV (SEQ ID NO: 3718), FMKAVCVEV (SEQ ID NO: 3719), VLAGLLGNV (SEQ ID NO: 3720), GLIMVLSFL (SEQ ID NO: 3721), KILSVFFLA (SEQ ID NO: 3722), GLLGNVSTV (SEQ ID NO: 3723), VLLGGVGLVL (SEQ ID NO: 3724), ILSVSSFLFV (SEQ ID NO: 3725), QTNFKSLLR (SEQ ID NO: 3726), LACAGLAYK (SEQ ID NO: 3727), ALFFIIFNK (SEQ ID NO: 3729), LLACAGLAYK (SEQ ID NO: 3730), HVLSHNSYEK (SEQ ID NO: 3732), FILVNLLIFH (SEQ ID NO: 3733), FQDEENIGIY (SEQ ID NO: 3737), PSDGKCNLY (SEQ ID NO: 3739), YYIPHQSSL (SEQ ID NO: 3740), FYFILVNLL (SEQ ID NO: 3741), KYLVIVFLI (SEQ ID NO: 3742) or KYKLATSVL (SEQ ID NO: 3743).
  • 43. A conjugate of an isolated peptide less than 13 amino acids in length comprising an oligopeptide selected from a group consisting of LLACAGLAY (SEQ ID NO: 3019), FLIFFDLFLV (SEQ ID NO: 3718), FMKAVCVEV (SEQ ID NO: 3719), VLAGLLGNV (SEQ ID NO: 3720), GLIMVLSFL (SEQ ID NO: 3721), KILSVFFLA (SEQ ID NO: 3722), GLLGNVSTV (SEQ ID NO: 3723), VLLGGVGLVL (SEQ ID NO: 3724), ILSVSSFLFV (SEQ ID NO: 3725), QTNFKSLLR (SEQ ID NO: 3726), LACAGLAYK (SEQ ID NO: 3727), ALFFIIFNK (SEQ ID NO: 3729), LLACAGLAYK (SEQ ID NO: 3730), HVLSHNSYEK (SEQ ID NO: 3732), FILVNLLIFH (SEQ ID NO: 3733), FQDEENIGIY (SEQ ID NO: 3737), PSDGKCNLY (SEQ ID NO: 3739), YYIPHQSSL (SEQ ID NO: 3740), FYFILVNLL (SEQ ID NO: 3741), KYLVIVFLI (SES ID NO: 3742) and KYKLATSVL (SEQ ID NO: 3743) and a T helper peptide, wherein the T helper peptide is less than about 50 amino acids in length and wherein the T helper peptide comprises a pan-DR binding epitope.
  • 44. The conjugate of claim 43, wherein the isolated peptide is LLACAGLAY (SEQ ID NO: 3019), FLIFFDLFLV (SEQ ID NO: 3718), FMKAVCVEV (SEQ ID NO: 3719), VLAGLLGNV (SEQ ID NO: 3720), GLIMVLSFL (SEQ ID NO: 3721), KILSVFFLA (SEQ ID NO: 3722), GLLGNVSTV (SEQ ID NO: 3723), VLLGGVGLVL (SEQ ID NO: 3724), ILSVSSFLFV (SEQ ID NO: 3725), QTNFKSLLR (SEQ ID NO: 3726), LACAGLAYK (SEQ ID NO: 3727), ALFFIIFNK (SEQ ID NO: 3729), LLACAGLAYK (SEQ ID NO: 3730), HVLSHNSYEK (SEQ ID NO: 3732), FILVNLLIFH (SEQ ID NO: 3733), FQDEENIGIY (SEQ ID NO: 3737), PSDGKCNLY (SEQ ID NO: 3739), YYIPHQSSL (SEQ ID NO: 3740), FYFILVNLL (SEQ ID NO: 3741), KYLVIVFLI (SEQ ID NO: 3742) or KYKLATSVL (SEQ ID NO: 3743).
  • 45. The conjugate of claim 43, wherein said pan-DR binding epitope is aKXVWANTLKAAa (SEQ ID NO: 3802), wherein “X” is either cycloexylalanine, phenylalanine, or tyrosine, and “a” is either D-alanine or L-alanine.
  • 46. The conjugate of claim 45, wherein “X” is cycloexylalanine.
  • 47. The conjugate of claim 45, wherein “X” is phenylalanine.
  • 48. The conjugate of claim 45, wherein “X” is tyrosine.
  • 49. The conjugate of claim 45, wherein “a” is D-alanine.
  • 50. The conjugate of claim 45, wherein “a” is L-alanine.
  • 51. A composition comprising the isolated peptide of claim 41.
  • 52. A composition comprising the isolated peptide claim 42.
  • 53. The composition of claim 51, further comprising a carrier.
  • 54. A composition comprising the conjugate of claim 43.
  • 55. A composition comprising the conjugate of claim 44.
  • 56. The composition of claim 54, further comprising a carrier.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a divisional application of U.S. application Ser. No. 09/390,061, filed Sep. 3, 1999, wherein U.S. application Ser. No. 09/390,061 is a continuation-in-part of U.S. application Ser. No. 09/017,743, filed Feb. 3, 1998 (abandoned); and is a continuation-in-part of U.S. application Ser. No. 08/821,739, filed Mar. 20, 1997 (abandoned); and is a continuation-in-part of U.S. application Ser. No. 08/452,843, filed May 30, 1995 (abandoned); and is a continuation-in-part of U.S. application Ser. No. 08/454,033, filed May 26, 1995 (abandoned); and is a continuation-in-part of U.S. application Ser. No. 08/344,824, filed Nov. 23, 1994 (abandoned); said Ser. No. 09/017,743 (abandoned) is a continuation-in-part of U.S. application Ser. No. 08/753,615, filed Nov. 23, 1996 (abandoned); which is a continuation-in-part of U.S. application Ser. No. 08/590,298, filed Jan. 23, 1996 (abandoned); which is a continuation-in-part of said Ser. No. 08/452,843, filed May 30, 1995 (abandoned); which is a continuation-in-part of said Ser. No. 08/344,824, filed Nov. 23, 1994 (abandoned); which is a continuation-in-part of U.S. application Ser. No. 08/278,634, filed Jul. 21, 1994 (abandoned); said Ser. No. 08/821,739 (abandoned) claims the benefit of U.S. Provisional Application No. 60/013,833, filed Mar. 21, 1996 (now inactive); and is a continuation-in-part of U.S. application Ser. No. 08/451,913, filed May 26, 1995 (abandoned). This application is related to U.S. Ser. No. 09/189,702 filed Nov. 10, 1998, now U.S. Pat. No. 7,252,829, which is a CIP of U.S. Ser. No. 08/205,713 filed Mar. 4, 1994 (abandoned), which is a CIP of Ser. No. 08/159,184 filed Nov. 29, 1993 and now abandoned, which is a CIP of Ser. No. 08/073,205 filed Jun. 4, 1993 and now abandoned, which is a CIP of Ser. No. 08/027,146 filed Mar. 5, 1993 and now abandoned. The present application is also related to U.S. Ser. No. 09/226,775 (abandoned), which is a CIP of abandoned U.S. Ser. No. 08/815,396, which claims benefit of abandoned U.S. Ser. No. 60/013,113 filed Mar. 21, 1996. Furthermore, the present application is related to U.S. Ser. No. 09/017,735 (abandoned), which is a CIP of abandoned U.S. Ser. No. 08/589,108; U.S. Ser. No. 08/454,033 (abandoned); and U.S. Ser. No. 08/349,177 (abandoned). The present application is also related to U.S. Ser. No. 09/017,524 (abandoned), U.S. Ser. No. 08/821,739 (abandoned), which claims benefit of abandoned U.S. Ser. No. 60/013,833 filed Mar. 21, 1996; and U.S. Ser. No. 08/347,610 (abandoned), which is a CIP of U.S. Ser. No. 08/159,339, now U.S. Pat. No. 6,037,135, which is a CIP of abandoned U.S. Ser. No. 08/103,396, which is a CIP of abandoned U.S. Ser. No. 08/027,746, which is a CIP of abandoned U.S. Ser. No. 07/926,666. The present application is also related to U.S. Ser. No. 09/017,743 (abandoned), which is a CIP of abandoned U.S. Ser. No. 08/590,298; and U.S. Ser. No. 08/452,843 (abandoned), which is a CIP of U.S. Ser. No. 08/344,824 (abandoned), which is a CIP of abandoned U.S. Ser. No. 08/278,634. The present application is also related to PCT application PCT/US99/12066 filed May 28, 1999 which claims benefit of provisional U.S. Ser. No. 60/087,192, filed May 29, 1998 (now inactive), and U.S. Ser. No. 09/009,953 (abandoned), which is a CIP of abandoned U.S. Ser. No. 60/036,713 and abandoned U.S. Ser. No. 60/037,432. In addition, the present application is related to U.S. Ser. No. 09/098,584 (abandoned), U.S. Ser. No. 09/239,043 now U.S. Pat. No. 6,689,363, and to Provisional U.S. Patent Application 60/117,486 filed Jan. 27, 1999 (now inactive). The present application is also related to Ser. No. 09/350,401 filed Jul. 8, 1999, and U.S. Ser. No. 09/357,737 filed Jul. 19, 1999. All of the above applications are incorporated herein by reference.

FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

This invention was funded, in part, by the United States government under grants with the National Institutes of Health. The U.S. government has certain rights in this invention.

Provisional Applications (1)
Number Date Country
60013833 Mar 1996 US
Divisions (1)
Number Date Country
Parent 09390061 Sep 1999 US
Child 14980150 US
Continuation in Parts (11)
Number Date Country
Parent 09017743 Feb 1998 US
Child 09390061 US
Parent 08821739 Mar 1997 US
Child 09017743 US
Parent 08452843 May 1995 US
Child 08821739 US
Parent 08454033 May 1995 US
Child 08452843 US
Parent 08344824 Nov 1994 US
Child 08454033 US
Parent 08753615 Nov 1996 US
Child 09017743 US
Parent 08590298 Jan 1996 US
Child 08753615 US
Parent 08452843 May 1995 US
Child 08590298 US
Parent 08344824 Nov 1994 US
Child 08452843 US
Parent 08278634 Jul 1994 US
Child 08344824 US
Parent 08451913 May 1995 US
Child 08278634 US