Inducing desirable temperature effects on body tissue

Information

  • Patent Grant
  • 9974607
  • Patent Number
    9,974,607
  • Date Filed
    Thursday, October 18, 2007
    17 years ago
  • Date Issued
    Tuesday, May 22, 2018
    6 years ago
Abstract
Methods and systems are disclosed for treating diseased tissue by gentle heating. The method induces vasodilation on tissue disposed about an lumen having both healthy tissue and diseased tissue. The method includes coupling a probe surface to the luminal tissue at a target location and transmitting desired quantities of tissue remodeling energy from the coupled probe into each of a plurality of discrete remodeling zones in the luminal tissue so that the tissue remodeling energy heats the plurality of remodeling zones, the remodeling energy being configured to avoid muscular contraction and inhibit both acute and long-term occlusion of the lumen.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention is generally related to medical devices, systems, and methods. In exemplary embodiments, the invention provides catheter-based treatment for luminal diseases, particularly for atherosclerotic plaque, vulnerable or “hot” plaque, and the like. The structures of the invention allow remodeling artery tissue using heat.


Physicians use catheters to gain access to and repair interior tissues of the body, particularly within the lumens of the body such as blood vessels. For example, balloon angioplasty and other catheters often are used to open arteries that have been narrowed due to atherosclerotic disease.


Balloon angioplasty is often effective at opening an occluded blood vessel, but the trauma associated with balloon dilation can impose significant injury, so that the benefits of balloon dilation may be limited in time. Stents are commonly used to extend the beneficial opening of the blood vessel.


Stenting, in conjunction with balloon dilation, is often the preferred treatment for atherosclerosis. In stenting, a collapsed metal framework is mounted on a balloon catheter which is introduced into the body. The stent is manipulated into the site of occlusion and expanded in place by the dilation of the underlying balloon. Stenting has gained widespread acceptance, and produces generally acceptable results in many cases. Along with treatment of blood vessels (particularly the coronary arteries), stents can also be used in treating many other tubular obstructions within the body, such as for treatment of reproductive, gastrointestinal, and pulmonary obstructions.


Restenosis or a subsequent narrowing of the body lumen after stenting has occurred in a significant number of cases. More recently, drug coated stents (such as Johnson and Johnson's Cypher™ stent, the associated drug comprising Sirolimus™) have demonstrated a markedly reduced restenosis rate, and others are developing and commercializing alternative drug eluting stents. In addition, work has also been initiated with systemic drug delivery (intravenous or oral) which may also improve the procedural angioplasty success rates.


While drug eluting stents appear to offer significant promise for treatment of atherosclerosis in many patients, there remain many cases where stents either cannot be used or present significant disadvantages. Generally, stenting leaves an implant in the body. Such implants can present risks, including mechanical fatigue, corrosion, and the like, particularly when removal of the implant is difficult and involves invasive surgery. Stenting may have additional disadvantages for treating diffuse artery disease, for treating bifurcations, for treating areas of the body susceptible to crush, and for treating arteries subject to torsion, elongation, and shortening.


A variety of modified restenosis treatments or restenosis-inhibiting treatment modalities have also been proposed, including intravascular radiation, cryogenic treatments, ultrasound energy, and the like, often in combination with balloon angioplasty and/or stenting. While these and different approaches show varying degrees of promise for decreasing the subsequent degradation in blood flow following angioplasty and stenting, the trauma initially imposed on the tissues by angioplasty remains problematic.


A number of alternatives to stenting and balloon angioplasty so as to open stenosed arteries have also been proposed. For example, a wide variety of atherectomy devices and techniques have been disclosed and attempted. Despite the disadvantages and limitations of angioplasty and stenting, atherectomy has not gained the widespread use and success rates of dilation-based approaches. More recently, still further disadvantages of dilation have come to light. These include the existence of vulnerable plaque, which can rupture and release materials that may cause myocardial infarction or heart attack.


In light of the above, it would be advantageous to provide methods and systems for inducing vasodilation on artery tissue and remodeling of the lumens of the body. It would further be desirable to avoid significant cost or complexity while providing structures which could remodel body lumens without having to resort to the trauma of extreme dilation, and to allow the opening of blood vessels and other body lumens which are not suitable for stenting.


BRIEF SUMMARY OF THE INVENTION

The present invention generally provides methods and systems for inducing desirable temperature effects on artery tissue, particularly, diseased tissue.


In one embodiment, a method is disclosed for inducing vasodilation on artery tissue disposed about an arterial lumen having both healthy tissue and diseased tissue. The method includes coupling a probe surface to the artery tissue at a target location and transmitting desired quantities of energy intended to remodel the tissue (“tissue remodeling energy”) from the coupled probe into each of a plurality of discrete tissue volumes (“remodeling zones”) in the artery tissue so that the tissue remodeling energy heats the plurality of remodeling zones, the remodeling energy being configured to avoid muscular contraction and inhibit both acute and long-term occlusion of the lumen.


In another embodiment, a method is disclosed for remodeling artery tissue disposed about an arterial lumen using heat assisted balloon angioplasty. The method includes expanding a catheter balloon within the artery lumen in contact with the artery tissue, wherein a plurality of electrodes are disposed about the catheter balloon and coupled with the artery tissue so as to define a plurality of remodeling zones in the artery tissue when the balloon is in contact with the artery tissue. The plurality of electrode pairs are then energized with associated desired quantities of bipolar tissue remodeling energy so as to heat each of the plurality of remodeling zones with the associated desired tissue remodeling energy, the remodeling energy being configured to avoid muscular contraction and inhibit both acute and long-term occlusion of the lumen.


In still another embodiment, a method is disclosed for treating a treatment area within a blood vessel. The method includes providing a catheter having an energy delivery portion, inserting the energy delivery portion of the catheter into said blood vessel and positioning said catheter portion within the treatment area, using the catheter portion to deliver energy to the vessel at a plurality of energy delivery zones within the treatment area, each of which is small compared to the treatment area. Said delivery of energy comprises delivering energy from the catheter portion, such that in an eccentrically diseased vessel, the energy will heat both healthy tissue and diseased tissue, and using the energy to heat diseased tissue to a temperature sufficient to efficaciously alter the diseased tissue without causing sufficient thermal damage to the healthy tissue so as to induce a long-term occlusive response.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.



FIG. 1 shows temperature vs. time curves of various electrode energy settings to achieve surface temperatures between 50° C. and 65° C.



FIG. 2 shows time vs. temperature curves from a FEA computer modeling simulation compared with the curves of FIG. 1.



FIGS. 3 and 4 show finite element model composition.



FIG. 5 shows finite element model results of treatment power 0.5 Watts for 30 seconds into healthy tissue (Peak=51° C).



FIG. 6 shows finite element model results of treatment power 0.5 Watts for 30 seconds into vulnerable plaque (Peak=61° C.).



FIG. 7A illustrates diffuse atherosclerotic disease in which a substantial length of multiple blood vessels has limited effective diameters.



FIG. 7B illustrates vulnerable plaque within a blood vessel.



FIG. 7C illustrates the sharp bends or tortuosity of some blood vessels.



FIG. 7D illustrates atherosclerotic disease at a bifurcation.



FIG. 7E illustrates a dissection within a blood vessel.



FIG. 7F illustrates an artery wall around a healthy artery.



FIG. 7G illustrates a restenosed artery.



FIG. 8 schematically illustrates a balloon catheter system according to the present invention.



FIG. 9 schematically illustrates placement of electrode pairs for use in bipolar energy treatment.



FIG. 10 schematically illustrates placement of electrodes for use for monopolar energy treatment.



FIGS. 1A-1C illustrate a method of using a balloon catheter system treating artery tissue.



FIG. 12 illustrates frequency targeting of tissues.



FIG. 13 shows histological results for the application of 1 Watt for 8 seconds at seven days.



FIG. 14 shows histological results for the application of 2 Watts for 2 seconds at eight days.



FIGS. 15A and 15B show histological results for the application of 4 Watts for 1 second at seven days.



FIG. 15C shows histological results for the application of 4 Watts for 1 second at thirty days.



FIGS. 16A and 16B show histological results for the application of 2 Watts for 4 seconds at seven days.



FIG. 16C shows histological results for the application of 2 Watts for 4 seconds at thirty days.



FIG. 17A shows histological results for the application of 3 Watts for 2 seconds at seven days.



FIG. 17B shows histological results for the application of 3 Watts for 2 seconds at thirty days.



FIGS. 18A-18G show results of bench top testing.



FIG. 19 graphically illustrates advantageous treatment power and time ranges for different electrode geometries, for use in embodiments of the invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention provides systems and methods to affect vessel plaque with a controlled amount of thermal energy to reduce plaque burden, increase lumen blood flow, and decrease plaque embolic vulnerability. In eccentric disease with non-targeted plaque, a lower temperature may be used to concomitantly treat both plaque (“diseased tissue”) and non-diseased artery tissue (“healthy tissue”). In this scenario, a thermal therapy must be applied that reduces or eliminates recoil from balloon expansion or future vessel contraction. However, it must also impart enough thermal perturbation to promote tissue remodeling, debulking and stabilization without immediate collagen shrinkage and stenosis. You can render the smooth muscle contraction ineffective without actually killing or ablating it by heating it to 47-48° C. The actin and myosin proteins become denatured but vital oxidative metabolic enzymes remain intact. This can promote luminal dilation or at minimum, prevent constriction (i.e. angioplasty balloon expansion vessel recoil or vasospasms often linked as a contributor to acute anginal attacks). Also, thermal energy must be low enough to prevent “thermal fixation”. In this case, tissue is “fixed” analogous to formalin fixation that prevents a desired immune system activated tissue debulking. As a general guide to tissue-temperature effects, below is a list of correlations that fall within the 2-10 second duration range:


42° C.=protein denaturation


41°-44° C.=DNA susceptibility


43° C.=spontaneous depolarizations


45° C.=mitochondrial breakdown


47.5° C.=contractile protein breakdown


48° C.=depolarization incapable


50° C.=blood cells become amorphous


50° C.=intracellular toxicity


50° C.=irreversible cell death


>50° C.=oncosis


In the case of therapy for non-targeted eccentric disease, it can be deduced that most of the above tissue-temperature effects below 50° C. would be advantageous. While inducing a therapeutic temperature with radiofrequency energy (RF) for even a second can result in tissue temperatures with a longer duration of elevated temperatures due to the built-up “sensible” heat that continues to thermally diffuse into surrounding tissue. Irreversible cell death temperatures are suggested above but in reality comprise a wide range of temperatures capable of such effect. These temperatures can mathematically be described by a “line-fit” algorithm of (y=0.011x+55.01), whereas the y-axis is temperature in (° C.) and the x-axis is in time in (sec). This demonstrates irreversible cell death as a relationship of temperature vs. time with the above described slope starting from 55° C. at 1 second to 45° C. at 1000 seconds. At temperatures higher than 55° C., time for cell death is too short to be effectively measured, and below 45° C. the time required is too long to be useful.


There are other tissue-temperature effects that occur at higher temperatures but should be applied only to known and targeted diseased plaque without application to surrounding healthy tissue. Tissue temperatures above 60° C. become capable of immediate tissue debulking in plaque but could render healthy vessel stenosed, charred, perforated or vaporized. Examples of these tissue-temperature effects are:


72°-86° C.=type 1 collagen breakdown


85° C.=blood coagulation/clumping


82°-96° C.=type 3 collagen breakdown


100° C.=intracellular/interstitial fluid phase change—“popping”


>100° C.=tissue desiccation


100°-200° C.=tissue glucose sticks to electrode


>200° C.=rapid vaporization/cell explosions (cutting), carbonization


Some fats begin melting at a temperature as low as 51° C. while other fats require temperatures up to 90° C. Therefore, some fat can be melted and remodeled at the low temperature therapy while all of the fat can be melted at the high temperature.


Plaque that has a thin fibrous cap surrounding a larger lipid core (vulnerable plaque) should respond to a temperature around 50-55° C. and the tissue should be rendered irreversibly damaged without removing it. The consequent immune system response should be phagocytic tissue debulking and scar tissue genesis. Theoretically this could protect vulnerable plaque from future rupture and resultant cascade events leading to thrombus or acute myocardial infarction. This treatment also has the potential to open up the lumen to a modest degree via the debulking and remodeling processes.


Heat Shock proteins may play a role in tissue debulking after thermal therapy by activation of Heat Shock Proteins (HSP's). First, HSPs are proteins that exist in most living cells i.e. mammals, plants, and yeast. They often act like “chaperones” to ensure that a cell's normal functional proteins are in the right place at the right time. Their concentrations can increase in response to stress, such as heat, cold or lack of oxygen. Their increased presence can be a signal to the immune system for sick or necrotic cells that require removal, and therefore play a role in tissue debulking after a thermal treatment.


The present invention will be particularly useful for remodeling materials along a partially occluded body lumen or artery in order to open the lumen and increase blood flow. The devices, systems, and methods disclosed herein may be used in any body lumen, for example, artery lumens such as the femoral, popliteal, coronary and/or carotid arteries. While the disclosure focuses on the use of the technology in the vasculature, the technology would also be useful for any luminal obstruction. Other anatomical structures in which the present invention may be used are the esophagus, the oral cavity, the nasopharyngeal cavity, the auditory tube and tympanic cavity, the sinus of the brain, the arterial system, the venous system, the heart, the larynx, the trachea, the bronchus, the stomach, the duodenum, the ileum, the colon, the rectum, the bladder, the ureter, the ejaculatory duct, the vas deferens, the urethra, the uterine cavity, the vaginal canal, and the cervical canal.


Some embodiments described herein may be used to treat atherosclerotic disease by gentle heating in combination with gentle or standard dilation. (Gentle heating and dilatation to be defined below.) For example, an angioplasty balloon catheter structure having electrodes disposed thereon might apply electrical potentials to the vessel wall before, during, and/or after dilation, optionally in combination with dilation pressures which may allow significantly lower than standard, unheated angioplasty dilation pressures. Where balloon inflation pressures of 10-16 atmospheres may, for example, be appropriate for standard angioplasty dilation of a particular lesion, modified dilation treatments combined with appropriate electrical potentials may be effected with pressures of 6 atmospheres or less, and possibly as low as 1 to 2 atmospheres. One example of a suitable balloon catheter device is disclosed U.S. Provisional Application No. 60/976,733, filed on Oct. 1, 2007, entitled “System for Inducing Desirable Temperature Effects on Body Tissue”, the full disclosures of which are incorporated herein by reference.


In many embodiments, gentle heating energy added before, during, and/or after dilation of a blood vessel may increase dilation effectiveness while lowering complications. In some embodiments, such controlled heating with a balloon may exhibit a reduction in recoil, providing at least some of the benefits of a stent-like expansion without the disadvantages of an implant. Benefits of heating the artery may be enhanced (and/or complications inhibited) by limiting heating of the adventitial layer below a deleterious response threshold. Such heating of the intima and/or media may be provided using heating times of less than about 10 seconds, often being less than 3 (or even 2) seconds.


Remodeling of the tissue in the present invention is done in remodeling zones with the application of tissue remodeling energy, typically in the form of RF, microwave and/or ultrasound energy to tissue between electrode pairs. This energy will be controlled so as to limit a surface or bulk temperature of target and/or collateral tissues, for example, limiting the heating of a fibrous cap of a vulnerable plaque or the intimal layer of an artery structure to a maximum temperature in a range somewhere between 47° C. and 99° C.; more specifically described as follows. This temperature range may be divided into two dose treatment ranges, low or “gentle” surface temperature treatment between 50° C. to 65° C., and high surface temperature treatment between 65° C. to 99° C. ranges. The intent of low temperature treatment is to create a surface temperature between 50° C. to 65° C., such that the bulk tissue temperature remains mostly below 50° C.-55° C., which will not severely damage healthy tissue found in eccentric disease. The intended result is to reduce the recoil due to the balloon expansion. This low temperature treatment dose is safe for all tissues without the use of selectivity. The intent of high surface temperature treatment between 65° C. to 99° C. is to shrink, melt, and debulk the disease tissue. The intended result is to reduce and melt the plaque burden. This high temperature treatment dose is only intended to be used when selectivity of treatment site is available.


Limiting heating of a lipid-rich pool of a vulnerable plaque sufficiently to induce melting of the lipid pool while inhibiting heating of other tissues (such as an intimal layer or fibrous cap) to a surface temperature in a range from about 50° C. to about 65° C. may minimize or inhibit an immune response that might otherwise lead to restenosis, or the like, and may be sufficient to denature and break protein bonds during treatment, immediately after treatment, and/or more than one hour, more than one day, more than one week, or even more than one month after the treatment through a healing response of the tissue to the treatment so as to provide a bigger vessel lumen and improved blood flow.


To keep surface temperatures of the tissue in a range from about 50° C. to about 65° C., power is applied to remodeling zones (tissue between electrode pairs) using combinations of power and time that are calibrated to remain in this zone. FIG. 1 shows some results of testing done on a cadaver aorta showing various electrode energy settings and surface temperatures achieved versus time. By ranging the average power between 1 and 5 Watts for between 0.5 and 10 seconds, the surface temperature reached was between 50° C. and 65° C. Sample doses are shown below in Table 1.














TABLE 1










Approx.



Average


Surface



power

Time
Temp





















1 Watt
8
sec
50° C.



2 Watt
2
sec
50° C.



3 Watt
1.3
sec
50° C.



4 Watt
1
sec
50° C.



5 Watt
.5
sec
50° C.



2 Watt
4
sec
60° C.



3 Watt
2
sec
60° C.



4 Watt
1.5
sec
60° C.



5 Watt
1
sec
60° C.



3 Watt
3
sec
65° C.



4 Watt
2
sec
65° C.











FIG. 2 shows time vs. temperature curves of a computer simulation of the system showing a strong correlation between the bench top data (shown in FIG. 1) and a FEA computer model. The higher power settings show a stronger correlation than the lower power settings. This is believed to be attributed to the absence of longitudinal heat transfer in the 2D model and the bio-cooling effect that is also not included in the computer simulation of FIG. 2. Both modes would have a larger cooling effect at the lower power settings. Nonetheless, the correlation between the FEA models and the bench top experiments is very good.


The methods and systems described herein are accomplished with or without knowing the tissue type and can be used for treatment of both concentric and eccentric atherosclerosis. This non selective treatment is a particular advantage because atherosclerosis may be eccentric relative to an axis of the blood vessel over 50% of the time, possibly in as much as (or even more than) 75% of cases. The present invention may additionally take advantage of the differences in tissue properties. If one tissue has a better thermal conductivity (k) than another type of tissue, it will conduct heat away more rapidly. If one tissue has a lower specific heat capacity (cp) than another type of tissue, its temperature will increase more given the same amount of energy applied to the same mass (and volume, assuming relatively similar tissue density). If one type of tissue has denser vasculature, or is reliably in closer proximity to well-perfused areas, it will conduct heat away more rapidly.


The present invention allows one to preferentially heat a type of tissue that has one or more of the following characteristics: Relatively poor (lower) thermal conduction, lower specific heat capacity, less inate blood perfusion, and/or relatively larger distance away from well-perfused areas. Very importantly, the invention allows preferential heating to be accomplished without knowing the location of the different tissues.


In the case of artery disease, all of the above characteristics apply. The disease is generally comprised of lipidic fat-like diseased tissue and/or fibrous collagen-like tissue. Both have a lower specific heat capacity and lower thermal conductivity than healthy vascular tissue. Healthy vascular tissue also has more microvasculature, and is in closer proximity to well-perfused tissue, therefore healthy tissue can sink heat away more effectively.


One advantage of non selective treatment is that energy preferentially/selectively accumulates in a desired type of tissue because of innate differences between the diseased and healthy tissue, for example, “thermal inertia” and perfusion.


“Thermal inertia” is a concept mainly used in geology to describe how the temperature of rocks changes over time. Matter with a high thermal inertia takes longer to heat and cool, and vice-versa. The quantity is also known as the “thermal effusivity” and is defined as (k ρ cp)^½, where k is the specific thermal conductivity, cp is the specific heat capacity, and ρ is the mass density.


This same concept may be applied to tissue. Diseased arterial tissue has a lower k, cp, and ρ, compared to healthy artery tissue. Therefore, with all three quantities being lower, the thermal inertia is significantly lower for the diseased tissue, particularly fatty vulnerable plaque. (See Table 2.)









TABLE 2







Thermal Properties of Tissue and Related Components












Specific






Thermal



Conductivity
Specific Heat
Density
Thermal Inertia


Material
(W/m/K)
(J/kg/K)
(kg/m{circumflex over ( )}3)
(J/m{circumflex over ( )}2/K/s{circumflex over ( )}1/2)
















Intima
0.44
(1)
3587 (1)
1064
(1)
1288


Media (muscle)
0.59
(2)
3900 (1)
1060
(1)
1555


Adventitia (collagen)
0.49
(1)
3146 (1)
1162
(1)
1341


Adipose (fat)
0.23
(3, 6)
2300 (6)
900
(6, 8)
682


Vulnerable Plaque (fat)
0.23
(3, 6)
2300 (6)
900
(6, 8)
682


Fibrous Cap (collagen)
0.49
(1)
3146 (1)
1162
(1)
1341


Blood
0.51
(4)
3925 (1)
1018
(1)
1420


Saline/PBS
0.63
(5)
4178 (7)
998
(7)
1618









The difference in the thermal inertia between healthy arterial tissue (e.g. media and adventitia) and diseased tissue (e.g. vulnerable plaque), is significant—about a factor of 2 lower.


This concept of thermal “inertia” can also be thought of as a “thermal time constant”. The term “thermal time constant” is derived from an equivalent RC circuit's time constant. An RC circuit, one with a resistor and a capacitor in series, is one with a stored charge of energy and a dissipation mode (the resistor that turns electric current into heat). The example with tissue is an analogous case.


If one were to calculate a thermal resistance using the specific thermal resistivity of the material, along with approximate dimensions through which the conduction is happening, one can calculate an approximate R value. The capacitance is the stored energy, and can also be calculated using the specific heat capacity and an approximate volume or mass. This gives a value in seconds that is directly proportional to the thermal conductivity, specific heat capacity, and density of the material. And, this value can be compared relatively between two sets of properties without worrying about what exact dimensions were assumed, because the dimensions can be held constant while the tissue properties are varied.


The thermal inertia formula is similar, except it assumes no physical dimensions. It's therefore a “specific” thermal inertia—one that does not vary with geometry. In order to get the “thermal time constant” from the thermal inertia, one would need to square the thermal inertia term and multiply in a specified volume and dimensions for a thermal conduction path. These initial approximations have suggested healthy tissue and diseased arterial tissue to have thermal time constants of 7 and 14 seconds, respectively.


In addition to advantages in the thermal properties of the different tissues themselves, healthy vascular tissue also has more microvasculature, and is in closer proximity to well-perfused tissue, therefore healthy tissue can sink heat away more quickly. The difference in vascular perfusion between healthy and diseased arterial tissue is shown in Table 3, and its effect is quantified by the biological thermal transport equation by Pennes, shown in Equations 1 and 2.









TABLE 3







Perfusion Properties











Blood flow



Organ
(mL/min/g)







Left ventricle (pig)
1.45 (9)



Fat (pig)
0.21 (9)















ρ





c




T



t



=




(

k







T


)


+

q
s

+

q
p

+

q
m








    • Equation 1: Penne's Bio-Heat Equation

      qp=−ωbρbcbρ(T−Ta)

    • Equation 2: Blood Perfusion Term





The blood perfusion omega is approximately 7 times larger in healthy tissue. And, when the tissue reaches slightly elevated temperatures such as 43° C., they will dilate and improve blood flow further. This is an added benefit that makes healthier tissue more able to dissipate heat faster.


Several models were created to evaluate the potential advantages of this technology. Additional work may be done in order to optimize the heating parameters (power vs. time, possible inclusion of PWM, etc.). And, none of the models include cooling from blood perfusion. In the mean time, these models show a distinct advantage without optimization. Pulse width modulation (PWM) where the power is switched on and off at a rate referred to as duty cycle, or the ratio of on time to off time. This could reduce the chance of over heating, and allow for a more controlled dosing rate.


The FEA model composition is shown in FIGS. 3 and 4. In FIG. 5 shows a treatment power of 0.5 Watts for 30 seconds into healthy tissue (Peak=51° C.). FIG. 6 shows a treatment power of 0.5 Watts for 30 seconds into vulnerable plaque (Peak=61° C.). We can see the temperature differential between healthy tissue and vulnerable plaque. The difference in peak temperature is 10° C. This shows that a volume of tissue heated with the same energy reaches temperatures much higher in the diseased tissue than in the healthy tissue.


Note that these models do not adequately take advantage of differences in cooling or perfusion, only in heating. In a 3D model, the effect of higher thermal conductivity in the healthy tissue should be amplified due to increased losses down the artery's longitudinal direction.


Another important aspect of this technology is the relationship between time and temperature and how they affect cell death. The time-temperature relationship discovered is an exponential such that, as a general rule, for every 1° C. of increase in temperature, the amount of time required to cause cell death is half as long. For instance, at 45° C. it would require roughly 1000 seconds to cause cell death. At 55° C., it takes only 1 second. Therefore, a differential of 10° C. hotter is actually 1000× more effective.


Distinction from Prior Art


There is an important distinction to be made between the present invention and previous attempts at using thermal balloons. The present invention is administered in discrete doses in a localized manner and the energy is created within the tissue rather than simply applied to the surface, such as with a thermal balloon. As discussed here, the present invention uses the insulative properties of arterial disease (fat) as an advantage rather than a disadvantage. Previous attempts at thermal balloon angioplasty failed because they were attempting to push heat preferentially into an insulator (the fat that has poor conductivity). Instead of thermally conducting into the disease, the heat administered by previous thermal balloons was either indiscriminant or preferentially conducted into the healthy tissue.


While the present invention may be used in combination with stenting, and/or to treat in-stent restenosis, it is particularly well suited for increasing the open diameter of blood vessels in which stenting is not a viable option. Potential applications include treatment of diffuse disease, in which atherosclerosis is spread along a significant length of an artery rather than being localized in one area. The invention may also find advantageous use for treatment of tortuous, sharply-curved vessels, as no stent need be advanced into or expanded within the sharp bends of many blood vessel. Still further advantageous applications include treatment along bifurcations (where side branch blockage may be an issue) and in the peripheral extremities such as the legs, feet, arms, neck, abdomen (where crushing and/or stent fracture failure may be problematic).


Diffuse disease and vulnerable plaque are illustrated in FIGS. 7A and 7B, respectively. FIG. 7C illustrates vascular tortuosity. FIG. 7D illustrates atherosclerotic material at a bifurcation.


Arterial dissection and restenosis may be understood with reference to FIGS. 7E through 7G. The artery comprises three layers, an endothelial layer, a medial layer, and an adventitial layer. During traditional angioplasty, the inside layer may delaminate or detach partially from the wall so as to form a dissection as illustrated in FIG. 7E. Such dissections divert and may obstruct blood flow. As can be understood by comparing FIGS. 7F and 7G, traditional angioplasty is a relatively aggressive procedure which may injure the tissue of the blood vessel. In response to this injury, in response to the presence of foreign substances, such as a stent, and/or in the continuing progression of the original atherosclerotic disease, the opened artery may restenose or subsequently decrease in diameter as illustrated in FIG. 7G. While drug eluting stents have been shown to reduce restenosis, the efficacy of these new structures several years after implantation has not be fully studied, and such drug eluting stents are not applicable in many blood vessels.


To avoid some of the problems associated with traditional angioplasty, such as those shown in FIGS. 7E through 7G, the present invention discloses a method for remodeling artery tissue using a catheter system that uses mild heat to provide tissue surface temperatures in a range between about 50° C. and 65° C. to gently remodel the tissue, that may allow arteries to be opened. The method includes expanding a catheter balloon within the artery lumen with a first pressure that brings the balloon in contact with the artery tissue. The plurality of electrodes are coupled with the artery tissue so as to define a plurality of remodeling zones in the artery tissue when the balloon is in contact with the artery tissue. The plurality of electrode pairs are then energized with associated desired quantities of bipolar tissue remodeling energy so as to heat each of the plurality of remodeling zones with the associated desired tissue remodeling energy, the remodeling energy being configured to avoid muscular contraction and inhibit both acute and long-term occlusion of the lumen.


In some instances, it may be desirable to obtain baseline measurements of the tissues to be treated (which may be characterized via intravascular ultrasound, optical coherence tomography, or the like) may be taken to help differentiate adjacent tissues, as the tissue signatures and/or signature profiles may differ from person to person. Additionally, the tissue signatures and/or signature profile curves may be normalized to facilitate identification of the relevant slopes, offsets, and the like between different tissues. Any of the techniques disclosed in U.S. Patent Application No. 60/852,787, entitled “Tuned RF Energy And Electrical Tissue Characterization For Selective Treatment Of Target Tissues”; and U.S. Provisional Application No. 60/921,973, filed on Apr. 4, 2007, entitled “Tuned RF Energy And Electrical Tissue Characterization For Selective Treatment Of Target Tissues”, the full disclosures of which are incorporated herein by reference, may be combined with the present invention.


One embodiment of a catheter system for use in the present invention is shown in FIG. 8 and includes an angioplasty catheter with electrical contacts mounted on the exterior of a angioplasty balloon. A radiofrequency controller, generator or power source, and connecting cable provide energy to the catheter. Catheters are approximately 135 cm in length and initially are provided in 3.0 mm, 4.0 mm, 5.0 mm and 6.0 mm balloon diameters to accommodate the most common sizes of human femoral and popliteal arteries first. The catheter uses mechanical and radiant energy intended to modify arterial plaque and decrease plaque burden, resulting in a larger artery lumen. The temperature that is generated is low and the total application time is shorter than most angioplasty procedures performed today. The catheter device is compatible with standard angioplasty equipment, thereby allowing access of lower extremity peripheral vasculature via contralateral or ipsilateral common femoral approach using conventional angioplasty techniques.



FIG. 8 shows one embodiment of a catheter system 10 for inducing desirable temperature effects on artery tissue. The catheter system 10 includes a balloon catheter 12 having a catheter body 14 with a proximal end 16 and a distal end 18. Catheter body 14 is flexible and defines a catheter axis 15, and may include one or more lumens, such as a guidewire lumen and an inflation lumen. Still further lumens may be provided if desired for other treatments or applications, such as perfusion, fluid delivery, imaging, or the like. Catheter 12 includes an inflatable balloon 20. Housing 29 includes a first connector 26 in communication with a guidewire lumen and a second connector 28 in fluid communication with an inflation lumen. The inflation lumen extends between balloon 20 and second connector 28. Both first and second connectors 26, 28 may optionally comprise a standard connector, such as a Luer-Loc™ connector. Housing 29 also accommodates an electrical connector 38 electrically coupled to electrodes 34 via conductors 36. This allows electrodes 34 to be easily energized, the electrodes often being energized by a controller 40 and power source 42, such as bipolar or monopolar RF energy, microwave energy, ultrasound energy, or other suitable energy sources. In one embodiment, electrical connector 38 is coupled to an RF generator via a controller 40, with controller 40 allowing energy to be selectively directed to electrodes 38. When monopolar RF energy is employed, patient ground may (for example) be provided by an external electrode or an electrode on catheter body 14.


Electrodes 34 are mounted on a surface of balloon 20, with associated conductors 36 extending proximally from the electrodes. Electrodes 34 may be arranged in many different patterns or arrays on balloon 20. The system may be used for monopolar or bipolar application of energy. For delivery of monopolar energy, a ground electrode is used, either on the catheter shaft, or on the patients skin, such as a ground electrode pad. For delivery of bipolar energy, adjacent electrodes are spaced around the circumference to allow bipolar energy to be directed between adjacent electrodes. In other embodiments, electrodes may be arranged in bands around the balloon to allow bipolar energy to be directed between adjacent distal and proximal electrodes.



FIG. 9 schematically illustrates bipolar treatment of diseased tissue. Balloon 20 having electrode pairs 34A and 34B is positioned within an artery lumen having fatty disease/necrotic core 48, fibrous disease/fibrous cap 44, healthy tissue 45. Treatment is done to healthy tissue 45 and the fatty disease/necrotic core 48, fibrous disease/fibrous cap 44 by using bipolar energy between pairs 34A and 34B. The electrode pairs may be any electrode pairs on the balloon, for example, in some embodiments, the electrode pairs may be 34A and 34C, or 34A and 34D, or any combination of 34A-34D. This arrangement creates an energy path 50 through the tissue that delivers energy or heat (“tissue remodeling energy”) in particular treatment zones or segments 52 to the artery tissue between the electrode pairs (“remodeling zones”) having a volume between the electrode pairs at a specific depth. Using different combinations of electrode pairs may reduce or eliminate gaps between the remodeling zones by using overlapping pairs. Using electrode pairs with bipolar energy may avoid some potential issues of the monopolar approach. Diseased artery tissue 48 has a higher electrical resistivity than healthy artery tissue. By using pairs of electrodes 34A, 34B in a bipolar system, tissue remodeling energy will go through the healthy tissue, diseased tissue, or a combination of both healthy and diseased tissues between the electrode pairs in the remodeling zones. Any number of electrode pairs may be used in different patterns or arrays to create a number of remodeling zones. The controller may apply either constant power, constant current, or constant voltage, whichever has the most advantage.



FIG. 10 shows one embodiment of balloon catheter system for use for monopolar treatment of diseased tissue. Balloon 20 having electrode pairs 34A and 34B is positioned within an artery lumen having fatty disease/necrotic core 48, fibrous disease/fibrous cap 44, healthy tissue 45 and one or more electrical ground are used, such as positioned on the patients skin. When power is applied to the multiple monopolar electrodes 34 arranged around the circumference of the artery lumen, energy 54 is directed radially outward through the artery wall and treats both diseased and healthy artery tissue.


The use of catheter system 10 for remodeling artery tissue by heating can be understood with reference to FIGS. 11A-11C. As seen in FIG. 11A, accessing of a treatment site will often involve advancing a guidewire 56 within a blood vessel 58 at a target region of diseased tissue 48. Location of balloon 20 may be facilitated by radiopaque markers or by radiopaque structure (or corresponding radiopaque markers placed on or near) balloon 20, and/or by the use of radiopaque electrodes 34. Guidewire 56 may be positioned under fluoroscopic (or other) imaging.


Catheter 12 is advanced distally over guidewire 56 and positioned adjacent to atherosclerotic material 48. Balloon 20 expands radially within the lumen of the blood vessel so that electrodes 34, or electrodes 34A and 34B, radially engage artery tissue. As diseased tissue 48 may be distributed eccentrically about catheter 12, electrodes 34 may engage diseased tissue 48, healthy tissue 60, or a combination of both tissues, as can be understood with reference to FIGS. 9 and 10.


As discussed above, electrodes 34 are positioned circumferentially around the balloon 20. Energy, such as RF energy, is directed to electrodes 34, or adjacent pairs of electrodes 34A and 34B, treating both diseased tissue 48 and the healthy tissue 60. The controller 40 may energize the electrodes with about 0.25 to 5 Watts average power for 1 to 180 seconds, or with about 4 to 45 Joules. Higher energy treatments are done at lower powers and longer durations, such as 0.5 Watts for 90 seconds or 0.25 Watts for 180 seconds. Most treatments in the 2 to 4 Watt range are performed in 1 to 4 seconds. Using a wider electrode spacing, it would be appropriate to scale up the power and duration of the treatment, in which case the average power could be higher than 5 Watts, and the total energy could exceed 45 Joules. Likewise, using a shorter or smaller electrode pair would require scaling the average power down, and the total energy could be less than 4 Joules. The power and duration are calibrated to be less than enough to cause severe damage, and particularly less than enough to ablate diseased tissue 48 within a blood vessel. The mechanisms of ablating atherosclerotic material within a blood vessel have been well described, including by Slager et al. in an article entitled, “Vaporization of Atherosclerotic Plaque by Spark Erosion” in J. of Amer. Cardiol. (June, 1985), on pp. 1382-6; and by Stephen M. Fry in “Thermal and Disruptive Angioplasty: a Physician's Guide;” Strategic Business Development, Inc., (1990) the full disclosures of which are incorporated herein by reference.


Referring now to FIG. 11C, as described above, balloon 20 may be an angioplasty balloon that combines heating with opening the artery lumen. In some embodiments, injury caused to the atherosclerotic material with the energized electrodes or other energy directing surfaces may result in subsequent resorption of the injured tissue lesions so as to provide further opening of the vessel after termination of treatment as part of the healing process.


In some embodiments, balloon 20 may be repeatedly contracted, axial movement of the catheter 12 employed to reposition balloon 20, with subsequent expansion of balloon 20 at each of a plurality of treatment locations along diseased tissue.


Frequency targeting of tissues is illustrated in FIG. 12. Different tissue types have different characteristic electrical impedances that cause the tissue to absorb energy of certain frequencies or frequency ranges more readily than others. By applying energy at the specific frequency or range of frequencies that the tissue is more conductive, energy penetrates the tissue more readily. In general, it has been shown that samples of diseased tissue exhibit higher impedance characteristics than samples of healthy tissue. As illustrated in FIG. 12, in the case where a diseased area of tissue 78 is surrounded by relatively healthy tissue 80, the healthy tissue is likely to shield the diseased tissue from electrical current flow due to the lower impedance of the healthy tissue. Hence, minimal (or less than the desired) current flow 82 may pass through diseased tissue 78, and heavier current flow 84 may be seen in low impedance healthy tissue 80 when bipolar current is transmitted between electrodes 86A and 86B. Typically, the frequency ranges in which tissue impedance varies to a useful degree occur between 30 kilohertz and 30 Megahertz.


Frequency targeting seeks to deliver more energy to the diseased tissue by determining the frequency or range of frequencies at which the impedance of the diseased tissue is equal to or greater than that of the healthy tissue, such as by operation at or below a threshold frequency. Energy delivered at the specified frequency or range of frequencies will cause more heat to be dissipated in the diseased tissue than energy delivered outside of those specific frequencies.



FIGS. 13-17B show histological results of testing done in animal studies. FIG. 13 shows the application of 1 Watt for 8 seconds at seven days, which had a maximum surface temperature of 50° C. in bench top testing, showing mild shortening of smooth muscle at the sites of inserted arrows. FIG. 14 shows the application of 2 Watts for 2 seconds at eight days, which also had a maximum surface temperature of 50° C. in bench top testing. FIGS. 15A, 15B show the application of 4 Watts for 1 second at seven days and FIG. 15C at thirty days. There are obvious thermal applications corresponding to each electrode (black arrows). There also appears to be thermal alterations to some of the collagenous areas of the vessel wall. This suggests bulk tissue temperatures just slightly over 60° C. FIGS. 16A, 16B show the application of 2 Watts for 4 seconds at seven days and FIG. 16C at thirty days. The slide shows heat therapy at each electrode-tissue interface (black arrows show edges of treatment zones). There is also a corresponding thermal effect deep into the collagenous areas, and gross observations of tissue shrinkage. The figures also show some thermal diffusion into the tissue in-between treatment zones that also resulted in collagen denaturing. This indicates that the local areas of heat deposition under the electrodes may have reached 70° C. or higher. Of course, there is a temperature gradient that slopes off in-between electrodes and radially away from the electrodes, and deeper into the vessel and surrounding tissue. FIG. 17A shows the application of 3 Watts for 2 seconds at seven days and FIG. 17B at thirty days.



FIGS. 18A-18G show some results of bench top testing was conducted on a freshly excised human popliteal artery, 5 cm in length with an occlusion at the distal end. The artery was connected into a flow tank followed by a pre-treatment baseline IVUS scan of the entire artery to locate a suitable lesion for treatment, shown in FIGS. 18A and 18B. A site was chosen which had a luminal area of 4.5 mm2 with a minimum and maximum luminal diameter of 2.2 mm and 2.4 mm respectively and a native vessel area of 32.7 mm2 with a minimum and maximum diameter of 5.8 mm and 6.8 mm respectively.


For this experiment a catheter system having a 4 mm balloon for inducing desirable temperature effects on artery tissue was used. The catheter was inserted into the artery at the desired location and inflated to 6 atmospheres. The treatment was performed, and the catheter was deflated and removed from the artery. The treatment was applied at 4 Watts for 2 seconds. A post-treatment scan of the entire artery was then performed, shown in FIGS. 18C and 18D, which showed an increase in luminal area to 20.5 mm2 with a minimum and maximum diameter of 4.6 mm and 5.5 mm respectively, and a vessel area of 37.2 mm2 with a minimum and maximum diameter of 6.5 mm and 7.3 mm respectively. If this were a clinical situation rather than a bench top study, a 6 mm balloon would have been implemented to better match the native vessel diameter resulting in a greater luminal opening.


Following treatment, the artery was then stained, fixed in formalin, sectioned and photographed, shown in FIGS. 18E-18G. FIG. 18E is a control section taken proximal to the treatment area. FIGS. 18F and 18G are sections of the treatment area approximately 4 mm and 8 mm into the treatment area, respectively and show images of the sectioned artery after treatment, TTC staining and fixation.


Referring now to FIG. 19, suitable power ranges for providing the desired heating of the target tissue, and/or for limiting of heating to collateral tissues, may depend at least in part on the time for which energy is applied, on the electrode (or other energy transmitting surface) geometry, and the like. First, when applying the treatments described herein to tissues with electrodes, there may be preferred a load impedance range of the tissues within the circuit so as to avoid having to apply voltages and/or currents that are outside desirable ranges, particularly when applying powers within ranges described herein. Suitable load impedance ranges would generally be within a range from about 20 Ohms to about 4500 Ohms, more typically being in a range from about 40 Ohms to about 2250 Ohms, and preferably being in a range from about 50 to about 1000 Ohms.


The load impedance of the tissue within the circuit may depend on the characteristics of the tissue, and also (for example) on the geometry of a bipolar pair of electrodes that engage the tissue, as the electrodes geometries influence the geometry of the tissue effectively included within the circuit. The tissue to which energy is directed may have a specific conductivity in a range from about 0.2 Siemens per meter to about 0.5 Siemens per meter. Different types of diseased tissues may have specific conductivities in different ranges, with some types of diseased tissues having specific conductivities in a range from about 0.2 Siemens per meter to about 0.35 Siemens per meter, while others fall within a range from about 0.35 Siemens per to about 0.5 Siemens per meter. The spacing between the pair of electrodes and the length of electrodes (transverse to their spacing) will both have effects on the load impedance, with most embodiments having electrode pair spacings (adjacent edge-to-edge) of between 0.25 mm and 2.50 mm, exemplary embodiments having electrode pair spacing of between 0.50 and 2.00 mm, and preferred embodiments having electrode pair spacing of between 0.75 and 1.50 mm.


Regarding the length and spacing of the electrodes within a particular pair, these factors are inter-related with the power and impedance. As the length of the electrodes decreases, the impedance seen by the generator will go up, but the volume of tissue will go down, so that the power setting on the generator may be decreased. As the gap between the electrodes widens, the impedance seen by the generator will also go up, but the volume of tissue will go up as well, so that the power setting on the generator should be increased. Hence, there are roughly opposed effects on load impedance when you decrease electrode length and electrode spacing.


Desired power, energy, and time of the treatment are likewise inter-related, and may also be at least related with electrode geometry. Speaking very generally, lower power treatments applied for long times tends to result in treatments with relatively higher total energies, while higher power treatments for shorter times tends to result in lower energy treatments. More specifically, at relatively low average power (1 W or less) the total energy delivery per treatment may range from 8 to 45 Joules. At higher power (more than 1 W), the total energy delivery per treatment may range from 4 to 15 Joules. If the electrode spacing were doubled, power may increase by four times. The power transmitted into the tissue can be calibrated and scaled to the particular electrode configuration, often in order to keep the power and energy density in a desirable range. Exemplary power ranges may be, for example from about 1 to 5 Watts. The duration is longer for the lower power settings, and typically varies from about 1 to 8 seconds. Very low power settings less than 1 Watt are also possible, using durations much longer than 10 seconds.


It is also possible to scale the power settings significantly by varying the electrode configuration. If, for instance, the inner edge-to-edge spacing of the electrodes were doubled, roughly 4 times the power may be applied because the volume of tissue becomes roughly 4 times larger. As such, an electrode configuration that is somewhat different from the exemplary embodiments described herein could be used within a power range of roughly 4 to 20 Watts. Shortening the electrodes, and thus shortening and reducing the volume of the remodeling zones, would also affect the magnitude of the power that is appropriate to apply to the tissue volume.


Referring still to FIG. 19, in order to quantify this complex set of relationships, and bound the space within which the exemplary treatment device can operate, an empirical relationship between safe values of several of these parameters may be generated and provided graphically, in table form, or by a mathematical relationships. An exemplary equation describing a particularly advantageous relationship is:

power=b*x^2*L*(t^(−0.59))

where b is a parameter in the range of 0.2 to 0.6, x is the inner edge-to-edge spacing of the electrodes in millimeters, L is the length of the electrodes in millimeters (and also the approximate length of the remodeling zone), the power is in Watts, and t is time in seconds. b has units of Watts/(mm^3)*(seconds^ 0.59). Exemplary treatments in the range described by this equation includes treatments such as 4 Watts for 2 seconds, 3 Watts for 3 seconds, 2 Watts for 4 seconds, and 1 Watt for 12 seconds with the exemplary electrode geometries described herein. Additionally, very low power long duration treatments such as 0.25 Watts for 180 seconds are covered as well. Alternative suitable treatment range falls within or near the set of curves shown in FIG. 19, which shows approximate numbers for maximum power and time by electrode dimensions. Still further alternative treatment parameter values can be understood with reference to Table 4, which shows total energies for different combinations of power and time for a few different electrode pair geometries.












TABLE 4








Alternative I
Alternative II



Exemplary Peripheral
Peripheral Treatment
Peripheral Treatment
Exemplary Coronary


Treatment Catheter
Catheter
Catheter
Treatment Catheter














X = 1 mm,

X = 2 mm,

X = 2 mm,

X = 0.5 mm,



L = 16 mm
Total
L = 16 mm
Total
L = 8 mm
Total
L = 8 mm
Total


















Time
Power
Energy
Time
Power
Energy
Time
Power
Energy
Time
Power
Energy


(s)
(W)
(J)
(s)
(W)
(J)
(s)
(W)
(J)
(s)
(W)
(J)





















1
5
5
1
20
20
1
10
10
1
0.625
0.625


2
4
8
2
16
32
2
8
16
2
0.5
1


3
3
9
3
12
36
3
6
18
3
0.375
1.125


4
2
8
4
8
32
4
4
16
4
0.25
1


12
1
12
12
4
48
12
2
24
12
0.125
1.5


30
0.5
15
30
2
60
30
1
30
30
0.0625
1.875


180
0.25
45
180
1
180
180
0.5
90
180
0.03125
5.625









As the energies and powers for characterizing and/or treating tissues are relatively low, the power source may optionally make use of energy stored in a battery, with the power source and/or associated controller optionally being contained within a hand-held housing. Use of such battery-powered systems may have benefits within crowded operating rooms, and may also help avoid inadvertent over treatment. The batteries may be disposable structures suitable to be included in a kit with a single-use catheter, while the processor circuitry may be re-useable. In other embodiments, the batteries may be rechargeable.


Remodeling of atherosclerotic materials may comprise shrinkage, melting, and the like of atherosclerotic and other plaques. Atherosclerotic material within the layers of an artery may be denatured, melted and/or the treatment may involve a shrinking of atherosclerotic materials within the artery layers so as to improve blood flow. The invention may also provide particular advantages for treatment of vulnerable plaques or blood vessels in which vulnerable plaque is a concern, which may comprise eccentric lesions. The invention will also find applications for mild heating of the cap structure (to induce thickening of the cap and make the plaque less vulnerable to rupture) and/or heating of the lipid-rich pool of the vulnerable plaque (so as to remodel, denature, melt, shrink, and/or redistribute the lipid-rich pool).


While the exemplary embodiments have been described in some detail, by way of example and for clarity of understanding, those of skill in the art will recognize that a variety of modification, adaptations, and changes may be employed. Hence, the scope of the present invention should be limited solely by the appending claims.

Claims
  • 1. A method of treating a target tissue within a treatment area disposed about a body lumen, comprising: providing a catheter having a catheter body and an energy delivery portion mounted on the catheter body, wherein the energy delivery portion comprises a balloon having a plurality of electrodes spaced apart about a circumference of the balloon, the plurality of electrodes including a first electrode, a second electrode, a third electrode, and a fourth electrode;inserting the energy delivery portion of the catheter into the body lumen, positioning the energy delivery portion adjacent the treatment area, and expanding the balloon so that the plurality of electrodes radially engage the body lumen and contact between the plurality of electrodes and the body lumen defines a plurality of energy delivery zones within the treatment area, wherein the treatment area includes the target tissue and a healthy tissue;delivering energy to the body lumen at the plurality of energy delivery zones, each of which is small compared to the treatment area so that the plurality of energy delivery zones are separated about the balloon, wherein the delivering energy comprises energizing the first, second, third, and fourth electrodes, wherein the plurality of electrodes comprise a plurality of electrode pairs, wherein the delivering energy further comprises energizing selected electrode pairs of said plurality of electrode pairs with a bipolar energy, wherein the bipolar energy is delivered from the selected electrode pairs according to a formula as follows: power=b*x^2*L*(t^(−0.59))
  • 2. The method of claim 1, wherein the delivering energy heats the healthy tissue to a maximum healthy tissue temperature and heats the target tissue to a maximum target tissue temperature, and wherein the maximum healthy tissue temperature is significantly lower than the maximum target tissue temperature.
  • 3. The method of claim 1, wherein the delivering energy comprises introducing into the treatment area entirely through the healthy tissue, wherein all of the plurality of electrodes are in contact with the healthy tissue so that heat is generated volumetrically in the target tissue, beneath a surface of the healthy tissue.
  • 4. The method of claim 1, wherein the bipolar energy delivered during the delivering energy to the body lumen is sufficiently low that differences in tissue properties, including thermal conduction, heat capacity, innate blood perfusion, and distance from well perfused tissue, cause heat to be drawn from the healthy tissue at a rate that avoids significant thermal damage to the healthy tissue, while allowing heat to build up in the target tissue.
  • 5. The method of claim 4, wherein the delivering energy to the body lumen heats the target tissue to a temperature sufficient to efficaciously alter the target tissue without causing sufficient thermal damage to the healthy tissue by heating both the healthy tissue and the target tissue so that a temperature of the healthy tissue temperature exceeds a given temperature at which the healthy tissue can dissipate the heat in a steady state such that heat is retained sufficiently to treat the target tissue while avoiding significant thermal damage to the healthy tissue by allowing the tissue properties of the healthy tissue to draw heat away from the healthy tissue.
  • 6. The method of claim 1, wherein the delivering energy to the body lumen heats both the healthy tissue and the target tissue so as to cause a difference between a temperature of the healthy tissue and a temperature of the target tissue, the temperature of the healthy tissue being less than the temperature of the target tissue, wherein the difference in temperature is due at least in part to a difference between a thermal time constant of the healthy tissue and a thermal time constant of the target tissue.
  • 7. The method of claim 1, wherein the bipolar energy is delivered in the form of pulses.
  • 8. The method of claim 1, wherein the delivering energy has an average rate of delivery to the treatment area and the healthy tissue has a rate of energy dissipation, wherein an order of magnitude corresponding to the average rate of delivery is about the same as an order of magnitude corresponding to the rate of energy dissipation of the healthy tissue.
  • 9. The method of claim 1, wherein the delivering energy to the body lumen includes heating the target tissue to a temperature between about 50° C. and about 65° C.
  • 10. The method of claim 1, wherein the energizing the selected electrode pairs includes energizing each selected electrode pair with between 0.625 and 180 Joules.
  • 11. The method of claim 10, wherein the energizing the selected electrode pairs includes energizing each selected electrode pair with between 4 and 15 Joules.
  • 12. The method of claim 1, wherein the energizing the selected electrode pairs comprises energizing each selected electrode pair for 0.5 to 180 seconds.
  • 13. The method of claim 1, wherein the delivering energy to the body lumen with the plurality of energy delivery zones is done for less than 90 seconds in each of the plurality of energy delivery zones.
  • 14. The method of claim 1, wherein the plurality of electrodes are energized with a generator, the method further comprising: measuring a characteristic of the target tissue or the healthy tissue with the plurality of electrode pairs energized by the generator, wherein the delivering energy comprises applying a given treatment energy based on the measured characteristic.
  • 15. The method of claim 14, wherein the characteristic comprises a load impedance of the target or healthy tissue of the body lumen engaged with the plurality of electrodes.
  • 16. The method of claim 14, the given treatment energy is within a desired range of voltages or currents applied in response to a measured load impedance being within a preferred range of impedances.
  • 17. The method of claim 14, wherein the generator is an RF generator and the energy is RF energy, and wherein the delivery of energy with the plurality of electrodes is controlled with a controller of the RF energy by selectively directing RF energy to multiple electrodes of the plurality of electrode pairs that include electrodes in contact with the healthy tissue.
  • 18. The method of claim 1, wherein, x ranges from 0.50 to 2.00 mm.
  • 19. The method of claim 1, wherein, x ranges from 0.75 to 1.50 mm.
  • 20. A method of treating a target tissue within a treatment area disposed about a body lumen, comprising: providing a catheter having a catheter body and an energy delivery portion mounted on the catheter body, wherein the energy delivery portion comprises a balloon having a plurality of electrodes spaced apart about a circumference of the balloon;inserting the energy delivery portion of the catheter into the body lumen, positioning the energy delivery portion adjacent the treatment area, and expanding the balloon so that the plurality of electrodes radially engage the body lumen and contact between the plurality of electrodes and the body lumen defines a plurality of separate energy delivery zones within the treatment area, wherein the treatment area includes the target tissue and a healthy tissue;delivering energy to the body lumen at the plurality of energy delivery zones, each of which is small compared to the treatment area so that each of the plurality of energy delivery zones are separated about the balloon, wherein delivering energy comprises energizing the plurality of electrodes so as to therapeutically heat the target tissue through the healthy tissue so that the target tissue is heated sufficiently to efficaciously alter the target tissue without causing sufficient thermal damage to the healthy tissue, wherein at least some electrodes of the plurality heat the healthy tissue without therapeutically heating the target tissue, wherein the plurality of electrodes are energized without identifying which of the plurality of electrodes heat the target tissue, wherein the plurality of electrodes are spaced apart around the circumference, wherein the delivering energy further comprises energizing selected electrode pairs of the plurality of electrodes with a bipolar energy, and wherein the bipolar energy is delivered from the selected electrode pairs of the plurality of electrodes according to a formula as follows: power=b*x^2*L*(t^(—0.59))
  • 21. The method of claim 20 wherein the body lumen comprises an artery and wherein the treatment area extends along a length of an artery.
  • 22. The method of claim 21, wherein each of the plurality of energy delivery zones is defined by an electrical energy path between the selected electrode pairs of the plurality of electrodes and wherein delivering energy to the treatment area comprises delivering energy from a plurality of differing electrical energy paths through the healthy tissue from a first differing electrode pair of the selected electrode pairs and subsequently energizing or multiplexing between a second differing electrode pair of the selected electrode pairs.
  • 23. The method of claim 21, wherein the treatment area extends circumferentially about the body lumen.
  • 24. The method of claim 21, wherein the plurality of energy delivery zones extends partly and circumferentially about the body lumen such that, in combination, the plurality of energy delivery zones extend about the circumference of the body lumen.
  • 25. The method of claim 20, wherein, x ranges from 0.50 to 2.00 mm.
  • 26. The method of claim 20, wherein, x ranges from 0.75 to 1.50 mm.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims the benefit under 35 USC 119(e) of U.S. Provisional Application No. 60/852,787, filed on Oct. 18, 2006, and entitled “Tuned RF Energy And Electrical Tissue Characterization For Selective Treatment Of Target Tissues”; U.S. Provisional Application No. 60/921,973, filed on Apr. 4, 2007, and entitled “Tuned RF Energy And Electrical Tissue Characterization For Selective Treatment Of Target Tissues”, and U.S. Provisional Application No. 60/976,752, filed on Oct. 1, 2007, entitled “Inducing Desirable Temperature Effects On Body Tissue”, the full disclosures of which are incorporated herein by reference. This application is related to U.S. patent application Ser. No. 11/392,231, filed on Mar. 28, 2006, entitled “Tuned RF Energy for Selective Treatment of Atheroma and Other Target Tissues and/or Structures”; U.S. patent application Ser. No. 10/938,138, filed on Sep. 10, 2004, and entitled “Selectable Eccentric Remodeling and/or Ablation of Atherosclerotic Material”; U.S. Patent Application No. 60/852,787, filed on Oct. 18, 2006, entitled “Tuned RF Energy And Electrical Tissue Characterization For Selective Treatment Of Target Tissues”; U.S. Provisional Application No. 60/921,973, filed on Apr. 4, 2007, entitled “Tuned RF Energy And Electrical Tissue Characterization For Selective Treatment Of Target Tissues”; and U.S. Provisional Application No. 60/976,733, filed on Oct. 1, 2007, entitled “System for Inducing Desirable Temperature Effects on Body Tissue”, the full disclosures of which are incorporated herein by reference.

US Referenced Citations (1555)
Number Name Date Kind
164184 Kiddee Jun 1875 A
1167014 O'Brien Jan 1916 A
2505358 Gusberg et al. Apr 1950 A
2701559 Cooper Feb 1955 A
3108593 Glassman Oct 1963 A
3108594 Glassman Oct 1963 A
3540431 Mobin Nov 1970 A
3952747 Kimmell Apr 1976 A
3996938 Clark, III Dec 1976 A
4046150 Schwartz et al. Sep 1977 A
4290427 Chin Sep 1981 A
4402686 Medel Sep 1983 A
4483341 Witteles et al. Nov 1984 A
4531943 Van Tassel Jul 1985 A
4574804 Kurwa Mar 1986 A
4587975 Salo et al. May 1986 A
4646737 Hussein et al. Mar 1987 A
4649936 Ungar et al. Mar 1987 A
4682596 Bales et al. Jul 1987 A
4709698 Johnston Dec 1987 A
4765331 Petruzzi et al. Aug 1988 A
4770653 Shturman Sep 1988 A
4784132 Fox et al. Nov 1988 A
4784162 Ricks et al. Nov 1988 A
4785806 Deckelbaum et al. Nov 1988 A
4788975 Shturman et al. Dec 1988 A
4790310 Ginsburg et al. Dec 1988 A
4799479 Spears Jan 1989 A
4823791 D'Amelio et al. Apr 1989 A
4830003 Wolff et al. May 1989 A
4849484 Heard Jul 1989 A
4862886 Clarke et al. Sep 1989 A
4887605 Angelsen et al. Dec 1989 A
4890623 Cook Jan 1990 A
4920979 Bullara et al. May 1990 A
4938766 Jarvik Jul 1990 A
4955377 Lennox et al. Sep 1990 A
4976711 Parins et al. Dec 1990 A
5034010 Kittrell et al. Jul 1991 A
5052402 Bencini et al. Oct 1991 A
5053033 Clarke et al. Oct 1991 A
5071424 Reger et al. Dec 1991 A
5074871 Groshong et al. Dec 1991 A
5098429 Sterzer et al. Mar 1992 A
5098431 Rydell Mar 1992 A
5102402 Dror et al. Apr 1992 A
RE33925 Bales et al. May 1992 E
5109859 Jenkins May 1992 A
5125928 Parins Jun 1992 A
5129396 Rosen et al. Jul 1992 A
5139496 Hed Aug 1992 A
5143836 Hartman et al. Sep 1992 A
5156151 Imran Oct 1992 A
5156610 Reger et al. Oct 1992 A
5158564 Schnepp-Pesch Oct 1992 A
5170802 Mehra Dec 1992 A
5178620 Eggers et al. Jan 1993 A
5178625 Groshong et al. Jan 1993 A
5190540 Lee Mar 1993 A
5191883 Lennox et al. Mar 1993 A
5211651 Reger et al. May 1993 A
5234407 Teirstein et al. Aug 1993 A
5242441 Avitall Sep 1993 A
5251634 Weinberg et al. Oct 1993 A
5254098 Ulrich et al. Oct 1993 A
5255679 Imran Oct 1993 A
5263493 Avitall Nov 1993 A
5267954 Nita et al. Dec 1993 A
5277201 Stern et al. Jan 1994 A
5282484 Reger et al. Feb 1994 A
5286254 Shapland et al. Feb 1994 A
5295484 Marcus Mar 1994 A
5297564 Love et al. Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5301683 Durkan Apr 1994 A
5304115 Pflueger et al. Apr 1994 A
5304121 Sahatjian Apr 1994 A
5304171 Gregory et al. Apr 1994 A
5304173 Kittrell et al. Apr 1994 A
5306250 March et al. Apr 1994 A
5312328 Nita et al. May 1994 A
5314466 Stern et al. May 1994 A
5322064 Lundquist Jun 1994 A
5324255 Passafaro et al. Jun 1994 A
5326341 Lew et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5330518 Neilson et al. Jul 1994 A
5333614 Feiring Aug 1994 A
5342292 Nita et al. Aug 1994 A
5344395 Whalen et al. Sep 1994 A
5345936 Pomeranz et al. Sep 1994 A
5364392 Warner et al. Nov 1994 A
5365172 Hrovat et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5368558 Nita et al. Nov 1994 A
5380274 Nita et al. Jan 1995 A
5380319 Saito et al. Jan 1995 A
5382228 Nita et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383917 Desai et al. Jan 1995 A
5397301 Pflueger et al. Mar 1995 A
5397339 Desai Mar 1995 A
5401272 Perkins et al. Mar 1995 A
5403311 Abele et al. Apr 1995 A
5405318 Nita et al. Apr 1995 A
5405346 Grundy et al. Apr 1995 A
5409000 Imran Apr 1995 A
5417672 Nita et al. May 1995 A
5419767 Eggers et al. May 1995 A
5427118 Nita et al. Jun 1995 A
5432876 Appeldorn et al. Jul 1995 A
5441498 Perkins et al. Aug 1995 A
5447509 Mills et al. Sep 1995 A
5451207 Yock et al. Sep 1995 A
5453091 Taylor et al. Sep 1995 A
5454788 Walker et al. Oct 1995 A
5454809 Janssen Oct 1995 A
5455029 Hartman et al. Oct 1995 A
5456682 Edwards et al. Oct 1995 A
5457042 Hartman et al. Oct 1995 A
5471982 Edwards et al. Dec 1995 A
5474530 Passafaro et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5496311 Abele et al. Mar 1996 A
5496312 Klicek et al. Mar 1996 A
5498261 Strul Mar 1996 A
5505201 Grill et al. Apr 1996 A
5505730 Edwards Apr 1996 A
5507744 Tay et al. Apr 1996 A
5522873 Jackman et al. Jun 1996 A
5531520 Grimson et al. Jul 1996 A
5540656 Pflueger et al. Jul 1996 A
5540679 Fram et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5542917 Nita et al. Aug 1996 A
5545161 Imran Aug 1996 A
5562100 Kittrell et al. Oct 1996 A
5571122 Kelly et al. Nov 1996 A
5571151 Gregory Nov 1996 A
5573531 Gregory et al. Nov 1996 A
5573533 Strul Nov 1996 A
5584831 McKay Dec 1996 A
5584872 Lafontaine et al. Dec 1996 A
5588962 Nicholas et al. Dec 1996 A
5599346 Edwards et al. Feb 1997 A
5601526 Chapelon et al. Feb 1997 A
5609606 O'Boyle et al. Mar 1997 A
5626576 Janssen May 1997 A
5630837 Crowley May 1997 A
5637090 McGee et al. Jun 1997 A
5643255 Organ Jul 1997 A
5643297 Nordgren et al. Jul 1997 A
5647847 Lafontaine et al. Jul 1997 A
5649923 Gregory et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653684 Laptewicz et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5665062 Houser Sep 1997 A
5665098 Kelly et al. Sep 1997 A
5666964 Meilus Sep 1997 A
5667490 Keith et al. Sep 1997 A
5672174 Gough et al. Sep 1997 A
5676693 Lafontaine Oct 1997 A
5678296 Fleischhacker et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
RE35656 Feinberg et al. Nov 1997 E
5687737 Branham Nov 1997 A
5688266 Edwards et al. Nov 1997 A
5693015 Walker et al. Dec 1997 A
5693029 Leonhardt et al. Dec 1997 A
5693043 Kittrell et al. Dec 1997 A
5693082 Warner et al. Dec 1997 A
5695504 Gifford et al. Dec 1997 A
5697369 Long, Jr. et al. Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5702433 Taylor et al. Dec 1997 A
5706809 Littmann et al. Jan 1998 A
5713942 Stern et al. Feb 1998 A
5715819 Svenson et al. Feb 1998 A
5735846 Panescu et al. Apr 1998 A
5741214 Ouchi et al. Apr 1998 A
5741248 Stern et al. Apr 1998 A
5741249 Moss et al. Apr 1998 A
5743903 Stern et al. Apr 1998 A
5748347 Erickson May 1998 A
5749914 Janssen May 1998 A
5755682 Knudson et al. May 1998 A
5755715 Stern et al. May 1998 A
5755753 Knowlton et al. May 1998 A
5769847 Panescu et al. Jun 1998 A
5769880 Truckai et al. Jun 1998 A
5775338 Hastings Jul 1998 A
5776174 Van Tassel Jul 1998 A
5779698 Clayman et al. Jul 1998 A
5782760 Schaer Jul 1998 A
5785702 Murphy et al. Jul 1998 A
5792105 Lin et al. Aug 1998 A
5797849 Vesely et al. Aug 1998 A
5797903 Swanson et al. Aug 1998 A
5800484 Gough et al. Sep 1998 A
5800494 Campbell et al. Sep 1998 A
5807306 Shapland et al. Sep 1998 A
5810802 Panescu et al. Sep 1998 A
5810803 Moss et al. Sep 1998 A
5810810 Tay et al. Sep 1998 A
5817092 Behl Oct 1998 A
5817113 Gifford et al. Oct 1998 A
5817144 Gregory et al. Oct 1998 A
5823956 Roth et al. Oct 1998 A
5827203 Nita et al. Oct 1998 A
5827268 Laufer Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5830213 Panescu et al. Nov 1998 A
5830222 Makower Nov 1998 A
5832228 Holden et al. Nov 1998 A
5833593 Liprie Nov 1998 A
5836874 Swanson et al. Nov 1998 A
5840076 Swanson et al. Nov 1998 A
5843016 Lugnani et al. Dec 1998 A
5846238 Jackson et al. Dec 1998 A
5846239 Swanson et al. Dec 1998 A
5846245 McCarthy et al. Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5853411 Whayne et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5860974 Abele Jan 1999 A
5865801 Houser Feb 1999 A
5868735 Lafontaine et al. Feb 1999 A
5868736 Swanson et al. Feb 1999 A
5869127 Zhong Feb 1999 A
5871483 Jackson et al. Feb 1999 A
5871524 Knowlton et al. Feb 1999 A
5875782 Ferrari et al. Mar 1999 A
5876369 Houser Mar 1999 A
5876374 Alba et al. Mar 1999 A
5876397 Edelman et al. Mar 1999 A
5879348 Owens et al. Mar 1999 A
5891114 Chien et al. Apr 1999 A
5891135 Jackson et al. Apr 1999 A
5891136 McGee et al. Apr 1999 A
5891138 Tu et al. Apr 1999 A
5895378 Nita Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5902328 Lafontaine et al. May 1999 A
5904651 Swanson et al. May 1999 A
5904667 Falwell et al. May 1999 A
5904697 Gifford et al. May 1999 A
5904709 Arndt et al. May 1999 A
5906614 Stern et al. May 1999 A
5906623 Peterson May 1999 A
5906636 Casscells et al. May 1999 A
5916192 Nita et al. Jun 1999 A
5916227 Keith et al. Jun 1999 A
5916239 Geddes et al. Jun 1999 A
5919219 Knowlton et al. Jul 1999 A
5924424 Stevens et al. Jul 1999 A
5925038 Panescu et al. Jul 1999 A
5934284 Plaia et al. Aug 1999 A
5935063 Nguyen Aug 1999 A
5938670 Keith et al. Aug 1999 A
5947977 Slepian et al. Sep 1999 A
5948011 Knowlton et al. Sep 1999 A
5951494 Wang et al. Sep 1999 A
5951539 Nita et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957941 Ream et al. Sep 1999 A
5957969 Warner et al. Sep 1999 A
5961513 Swanson et al. Oct 1999 A
5964757 Ponzi et al. Oct 1999 A
5967976 Larsen et al. Oct 1999 A
5967978 Littmann et al. Oct 1999 A
5967984 Chu et al. Oct 1999 A
5971975 Mills et al. Oct 1999 A
5972026 Laufer et al. Oct 1999 A
5980563 Tu et al. Nov 1999 A
5989208 Nita et al. Nov 1999 A
5989284 Laufer Nov 1999 A
5993462 Pomeranz et al. Nov 1999 A
5997497 Nita et al. Dec 1999 A
5999678 Murphy et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6004316 Laufer et al. Dec 1999 A
6007514 Nita Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6013033 Berger et al. Jan 2000 A
6014590 Whayne et al. Jan 2000 A
6019757 Scheldrup Feb 2000 A
6022309 Celliers et al. Feb 2000 A
6024740 Lesh Feb 2000 A
6030611 Gorecki et al. Feb 2000 A
6032675 Rubinsky et al. Mar 2000 A
6033357 Ciezki et al. Mar 2000 A
6033397 Laufer et al. Mar 2000 A
6033398 Farley et al. Mar 2000 A
6036687 Laufer et al. Mar 2000 A
6036689 Tu et al. Mar 2000 A
6041260 Stern et al. Mar 2000 A
6050994 Sherman et al. Apr 2000 A
6056744 Edwards May 2000 A
6056746 Goble et al. May 2000 A
6063085 Tay et al. May 2000 A
6066096 Smith et al. May 2000 A
6066139 Ryan et al. May 2000 A
6068638 Makower May 2000 A
6068653 Lafontaine May 2000 A
6071277 Farley et al. Jun 2000 A
6071278 Panescu et al. Jun 2000 A
6071303 Laufer Jun 2000 A
6078839 Carson Jun 2000 A
6079414 Roth Jun 2000 A
6080171 Keith et al. Jun 2000 A
6081749 Ingle et al. Jun 2000 A
6083159 Driscoll et al. Jul 2000 A
6086581 Reynolds et al. Jul 2000 A
6091995 Ingle Jul 2000 A
6093166 Knudson et al. Jul 2000 A
6096021 Helm et al. Aug 2000 A
6099526 Whayne et al. Aug 2000 A
6102908 Tu et al. Aug 2000 A
6106477 Miesel et al. Aug 2000 A
6110187 Donlon et al. Aug 2000 A
6110192 Ravenscroft Aug 2000 A
6114311 Parmacek et al. Sep 2000 A
6117101 Diederich et al. Sep 2000 A
6117128 Gregory Sep 2000 A
6120476 Fung et al. Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6121775 Pearlman Sep 2000 A
6123679 Lafaut et al. Sep 2000 A
6123682 Knudson et al. Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6123703 Tu et al. Sep 2000 A
6123718 Tu et al. Sep 2000 A
6129725 Tu et al. Oct 2000 A
6135997 Laufer et al. Oct 2000 A
6142991 Schatzberger et al. Nov 2000 A
6142993 Whayne et al. Nov 2000 A
6149647 Tu et al. Nov 2000 A
6152899 Farley et al. Nov 2000 A
6152912 Jansen et al. Nov 2000 A
6156046 Passafaro et al. Dec 2000 A
6158250 Tibbals et al. Dec 2000 A
6159187 Park et al. Dec 2000 A
6159225 Makower Dec 2000 A
6161048 Sluijter et al. Dec 2000 A
6162184 Swanson et al. Dec 2000 A
6165163 Chien et al. Dec 2000 A
6165172 Farley et al. Dec 2000 A
6165187 Reger et al. Dec 2000 A
6168594 Lafontaine et al. Jan 2001 B1
6171321 Gifford, III et al. Jan 2001 B1
6179832 Jones et al. Jan 2001 B1
6179835 Panescu et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6183468 Swanson et al. Feb 2001 B1
6183486 Snow et al. Feb 2001 B1
6190379 Heuser et al. Feb 2001 B1
6191862 Swanson et al. Feb 2001 B1
6197021 Panescu et al. Mar 2001 B1
6200266 Shokrollahi et al. Mar 2001 B1
6203537 Adrian Mar 2001 B1
6203561 Ramee et al. Mar 2001 B1
6210406 Webster Apr 2001 B1
6211247 Goodman Apr 2001 B1
6216704 Ingle et al. Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6219577 Brown, III et al. Apr 2001 B1
6228076 Winston et al. May 2001 B1
6228109 Tu et al. May 2001 B1
6231516 Keilman et al. May 2001 B1
6231587 Makower May 2001 B1
6235044 Root et al. May 2001 B1
6236883 Ciaccio et al. May 2001 B1
6237605 Vaska et al. May 2001 B1
6238389 Paddock et al. May 2001 B1
6238392 Long May 2001 B1
6241666 Pomeranz et al. Jun 2001 B1
6241753 Knowlton Jun 2001 B1
6245020 Moore et al. Jun 2001 B1
6245045 Stratienko Jun 2001 B1
6248126 Lesser et al. Jun 2001 B1
6251128 Knopp et al. Jun 2001 B1
6258087 Edwards et al. Jul 2001 B1
6273886 Edwards et al. Aug 2001 B1
6280466 Kugler et al. Aug 2001 B1
6283935 Laufer et al. Sep 2001 B1
6283959 Lalonde et al. Sep 2001 B1
6284743 Parmacek et al. Sep 2001 B1
6287323 Hammerslag Sep 2001 B1
6290696 Lafontaine Sep 2001 B1
6292695 Webster, Jr. et al. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6293943 Panescu et al. Sep 2001 B1
6296619 Brisken et al. Oct 2001 B1
6298256 Meyer Oct 2001 B1
6299379 Lewis Oct 2001 B1
6299623 Wulfman Oct 2001 B1
6309379 Willard et al. Oct 2001 B1
6309399 Barbut et al. Oct 2001 B1
6311090 Knowlton Oct 2001 B1
6315776 Edwards et al. Nov 2001 B1
6317615 KenKnight et al. Nov 2001 B1
6319242 Patterson et al. Nov 2001 B1
6319251 Tu et al. Nov 2001 B1
6322559 Daulton Nov 2001 B1
6325797 Stewart et al. Dec 2001 B1
6325799 Goble Dec 2001 B1
6328699 Eigler et al. Dec 2001 B1
6346074 Roth Feb 2002 B1
6346104 Daly et al. Feb 2002 B2
6350248 Knudson et al. Feb 2002 B1
6350276 Knowlton Feb 2002 B1
6353751 Swanson et al. Mar 2002 B1
6355029 Joye et al. Mar 2002 B1
6357447 Swanson et al. Mar 2002 B1
6361519 Knudson et al. Mar 2002 B1
6364840 Crowley Apr 2002 B1
6371965 Gifford, III et al. Apr 2002 B2
6375668 Gifford et al. Apr 2002 B1
6377854 Knowlton Apr 2002 B1
6377855 Knowlton Apr 2002 B1
6379352 Reynolds et al. Apr 2002 B1
6379373 Sawhney et al. Apr 2002 B1
6381497 Knowlton Apr 2002 B1
6381498 Knowlton Apr 2002 B1
6383151 Diederich et al. May 2002 B1
6387105 Gifford, III et al. May 2002 B1
6387380 Knowlton May 2002 B1
6389311 Whayne et al. May 2002 B1
6389314 Feiring May 2002 B2
6391024 Sun et al. May 2002 B1
6394096 Constantz May 2002 B1
6394956 Chandrasekaran et al. May 2002 B1
6398780 Farley et al. Jun 2002 B1
6398782 Pecor et al. Jun 2002 B1
6398792 O'Connor Jun 2002 B1
6401720 Stevens et al. Jun 2002 B1
6402719 Ponzi et al. Jun 2002 B1
6405090 Knowlton Jun 2002 B1
6409723 Edwards Jun 2002 B1
6413255 Stern Jul 2002 B1
6421559 Pearlman Jul 2002 B1
6423057 He et al. Jul 2002 B1
6425867 Vaezy et al. Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6427089 Knowlton Jul 2002 B1
6427118 Suzuki Jul 2002 B1
6428534 Joye et al. Aug 2002 B1
6428536 Panescu et al. Aug 2002 B2
6430446 Knowlton Aug 2002 B1
6432102 Joye et al. Aug 2002 B2
6436056 Wang et al. Aug 2002 B1
6438424 Knowlton Aug 2002 B1
6440125 Rentrop Aug 2002 B1
6442413 Silver Aug 2002 B1
6443965 Gifford, III et al. Sep 2002 B1
6445939 Swanson et al. Sep 2002 B1
6447505 McGovern et al. Sep 2002 B2
6447509 Bonnet et al. Sep 2002 B1
6451034 Gifford, III et al. Sep 2002 B1
6451044 Naghavi et al. Sep 2002 B1
6453202 Knowlton Sep 2002 B1
6454737 Nita et al. Sep 2002 B1
6454757 Nita et al. Sep 2002 B1
6454775 Demarais et al. Sep 2002 B1
6458098 Kanesaka Oct 2002 B1
6461378 Knowlton Oct 2002 B1
6468276 McKay Oct 2002 B1
6468297 Williams et al. Oct 2002 B1
6468462 Bouchier et al. Oct 2002 B1
6470216 Knowlton Oct 2002 B1
6470219 Edwards et al. Oct 2002 B1
6471696 Berube et al. Oct 2002 B1
6475213 Whayne et al. Nov 2002 B1
6475215 Tanrisever Nov 2002 B1
6475238 Fedida et al. Nov 2002 B1
6477426 Fenn et al. Nov 2002 B1
6480745 Nelson et al. Nov 2002 B2
6481704 Koster et al. Nov 2002 B1
6482202 Goble et al. Nov 2002 B1
6484052 Visuri et al. Nov 2002 B1
6485489 Teirstein et al. Nov 2002 B2
6488679 Swanson et al. Dec 2002 B1
6489307 Phillips et al. Dec 2002 B1
6491705 Gifford, III et al. Dec 2002 B2
6494891 Cornish et al. Dec 2002 B1
6497711 Plaia et al. Dec 2002 B1
6500172 Panescu et al. Dec 2002 B1
6500174 Maguire et al. Dec 2002 B1
6508765 Suorsa et al. Jan 2003 B2
6508804 Sarge et al. Jan 2003 B2
6508815 Strul et al. Jan 2003 B1
6511478 Burnside et al. Jan 2003 B1
6511496 Huter et al. Jan 2003 B1
6511500 Rahme Jan 2003 B1
6514236 Stratienko Feb 2003 B1
6514245 Williams et al. Feb 2003 B1
6514248 Eggers et al. Feb 2003 B1
6517534 McGovern et al. Feb 2003 B1
6517572 Kugler et al. Feb 2003 B2
6522913 Swanson et al. Feb 2003 B2
6522926 Kieval et al. Feb 2003 B1
6524274 Rosenthal et al. Feb 2003 B1
6524299 Tran et al. Feb 2003 B1
6527765 Kelman et al. Mar 2003 B2
6527769 Langberg et al. Mar 2003 B2
6540761 Houser Apr 2003 B2
6542781 Koblish et al. Apr 2003 B1
6544780 Wang Apr 2003 B1
6546272 MacKinnon et al. Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6549800 Atalar et al. Apr 2003 B1
6552796 Magnin et al. Apr 2003 B2
6554780 Sampson et al. Apr 2003 B1
6558381 Ingle et al. May 2003 B2
6558382 Jahns et al. May 2003 B2
6564096 Mest May 2003 B2
6565582 Gifford, III et al. May 2003 B2
6569109 Sakurai et al. May 2003 B2
6569177 Dillard et al. May 2003 B1
6570659 Schmitt May 2003 B2
6572551 Smith et al. Jun 2003 B1
6572612 Stewart et al. Jun 2003 B2
6577902 Laufer et al. Jun 2003 B1
6579308 Jansen et al. Jun 2003 B1
6579311 Makower Jun 2003 B1
6582423 Thapliyal et al. Jun 2003 B1
6589238 Edwards et al. Jul 2003 B2
6592526 Lenker Jul 2003 B1
6592567 Levin et al. Jul 2003 B1
6595959 Stratienko Jul 2003 B1
6600956 Maschino et al. Jul 2003 B2
6602242 Fung Aug 2003 B1
6602246 Joye et al. Aug 2003 B1
6605061 Vantassel et al. Aug 2003 B2
6605084 Acker et al. Aug 2003 B2
6623452 Chien et al. Sep 2003 B2
6623453 Guibert et al. Sep 2003 B1
6632193 Davison et al. Oct 2003 B1
6632196 Houser Oct 2003 B1
6645223 Boyle et al. Nov 2003 B2
6648854 Patterson et al. Nov 2003 B1
6648878 Lafontaine Nov 2003 B2
6648879 Joye et al. Nov 2003 B2
6651672 Roth Nov 2003 B2
6652513 Panescu et al. Nov 2003 B2
6652515 Maguire et al. Nov 2003 B1
6656136 Weng et al. Dec 2003 B1
6658279 Swanson et al. Dec 2003 B2
6659981 Stewart et al. Dec 2003 B2
6666858 Lafontaine Dec 2003 B2
6666863 Wentzel et al. Dec 2003 B2
6669655 Acker et al. Dec 2003 B1
6669692 Nelson et al. Dec 2003 B1
6673040 Samson et al. Jan 2004 B1
6673064 Rentrop Jan 2004 B1
6673066 Werneth Jan 2004 B2
6673090 Root et al. Jan 2004 B2
6673101 Fitzgerald et al. Jan 2004 B1
6673290 Whayne et al. Jan 2004 B1
6676678 Gifford, III et al. Jan 2004 B2
6679268 Stevens et al. Jan 2004 B2
6681773 Murphy et al. Jan 2004 B2
6682541 Gifford, III et al. Jan 2004 B1
6684098 Oshio et al. Jan 2004 B2
6685732 Kramer Feb 2004 B2
6685733 Dae et al. Feb 2004 B1
6689086 Nita et al. Feb 2004 B1
6689148 Sawhney et al. Feb 2004 B2
6690181 Dowdeswell et al. Feb 2004 B1
6692490 Edwards Feb 2004 B1
6695830 Vigil et al. Feb 2004 B2
6695857 Gifford, III et al. Feb 2004 B2
6699241 Rappaport et al. Mar 2004 B2
6699257 Gifford, III et al. Mar 2004 B2
6702748 Nita et al. Mar 2004 B1
6702811 Stewart et al. Mar 2004 B2
6706010 Miki et al. Mar 2004 B1
6706011 Murphy-Chutorian et al. Mar 2004 B1
6706037 Zvuloni et al. Mar 2004 B2
6709431 Lafontaine Mar 2004 B2
6711429 Gilboa et al. Mar 2004 B1
6712815 Sampson et al. Mar 2004 B2
6714822 King et al. Mar 2004 B2
6716184 Vaezy et al. Apr 2004 B2
6720350 Kunz et al. Apr 2004 B2
6723043 Kleeman et al. Apr 2004 B2
6723064 Babaev Apr 2004 B2
6736811 Panescu et al. May 2004 B2
6743184 Sampson et al. Jun 2004 B2
6746401 Panescu Jun 2004 B2
6746464 Makower Jun 2004 B1
6746474 Saadat Jun 2004 B2
6748953 Sherry et al. Jun 2004 B2
6749607 Edwards et al. Jun 2004 B2
6752805 Maguire et al. Jun 2004 B2
6760616 Hoey et al. Jul 2004 B2
6763261 Casscells, III et al. Jul 2004 B2
6764501 Ganz Jul 2004 B2
6769433 Zikorus et al. Aug 2004 B2
6770070 Balbierz Aug 2004 B1
6771996 Bowe et al. Aug 2004 B2
6773433 Stewart et al. Aug 2004 B2
6786900 Joye et al. Sep 2004 B2
6786901 Joye et al. Sep 2004 B2
6786904 Döscher et al. Sep 2004 B2
6788977 Fenn et al. Sep 2004 B2
6790206 Panescu Sep 2004 B2
6790222 Kugler et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
6797933 Mendis et al. Sep 2004 B1
6797960 Spartiotis et al. Sep 2004 B1
6800075 Mische et al. Oct 2004 B2
6802857 Walsh et al. Oct 2004 B1
6807444 Tu et al. Oct 2004 B2
6811550 Holland et al. Nov 2004 B2
6813520 Sampson et al. Nov 2004 B2
6814730 Li Nov 2004 B2
6814733 Schwartz et al. Nov 2004 B2
6823205 Jara Nov 2004 B1
6824516 Batten et al. Nov 2004 B2
6827726 Parodi Dec 2004 B2
6827926 Robinson et al. Dec 2004 B2
6829497 Mogul Dec 2004 B2
6830568 Kesten et al. Dec 2004 B1
6837886 Collins et al. Jan 2005 B2
6837888 Ciarrocca et al. Jan 2005 B2
6845267 Harrison Jan 2005 B2
6847848 Sterzer Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6849075 Bertolero et al. Feb 2005 B2
6853425 Kim et al. Feb 2005 B2
6855123 Nita Feb 2005 B2
6855143 Davison Feb 2005 B2
6869431 Maguire Mar 2005 B2
6872183 Sampson et al. Mar 2005 B2
6884260 Kugler et al. Apr 2005 B2
6889694 Hooven May 2005 B2
6893436 Woodard et al. May 2005 B2
6895077 Karellas et al. May 2005 B2
6895265 Silver May 2005 B2
6898454 Atalar et al. May 2005 B2
6899711 Stewart et al. May 2005 B2
6899718 Gifford, III et al. May 2005 B2
6905494 Yon et al. Jun 2005 B2
6908462 Joye et al. Jun 2005 B2
6909009 Koridze Jun 2005 B2
6911026 Hall et al. Jun 2005 B1
6915806 Pacek et al. Jul 2005 B2
6923805 LaFontaine et al. Aug 2005 B1
6926246 Ginggen Aug 2005 B2
6926713 Rioux et al. Aug 2005 B2
6926716 Baker Aug 2005 B2
6929009 Makower et al. Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929639 Lafontaine Aug 2005 B2
6932776 Carr Aug 2005 B2
6936047 Nasab et al. Aug 2005 B2
6942620 Nita et al. Sep 2005 B2
6942657 Sinofsky et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6942692 Landau et al. Sep 2005 B2
6949097 Stewart et al. Sep 2005 B2
6949121 Laguna Sep 2005 B1
6952615 Satake Oct 2005 B2
6953425 Brister Oct 2005 B2
6955174 Joye et al. Oct 2005 B2
6955175 Stevens et al. Oct 2005 B2
6958075 Mon et al. Oct 2005 B2
6959711 Murphy et al. Nov 2005 B2
6960207 Vanney et al. Nov 2005 B2
6962584 Stone et al. Nov 2005 B1
6964660 Maguire Nov 2005 B2
6966908 Maguire et al. Nov 2005 B2
6972015 Joye et al. Dec 2005 B2
6972024 Kilpatrick et al. Dec 2005 B1
6974456 Edwards et al. Dec 2005 B2
6978174 Gelfand et al. Dec 2005 B2
6979329 Burnside et al. Dec 2005 B2
6979420 Weber Dec 2005 B2
6984238 Gifford, III et al. Jan 2006 B2
6985774 Kieval et al. Jan 2006 B2
6986739 Warren et al. Jan 2006 B2
6989009 Lafontaine Jan 2006 B2
6989010 Francischelli et al. Jan 2006 B2
6991617 Hektner et al. Jan 2006 B2
7001378 Yon et al. Feb 2006 B2
7006858 Silver et al. Feb 2006 B2
7008667 Chudzik et al. Mar 2006 B2
7011508 Lum Mar 2006 B2
7022105 Edwards Apr 2006 B1
7022120 Lafontaine Apr 2006 B2
7025767 Schaefer et al. Apr 2006 B2
7033322 Silver Apr 2006 B2
7033372 Cahalan Apr 2006 B1
7041098 Farley et al. May 2006 B2
7050848 Hoey et al. May 2006 B2
7063670 Sampson et al. Jun 2006 B2
7063679 Maguire et al. Jun 2006 B2
7063719 Jansen et al. Jun 2006 B2
7066895 Podany Jun 2006 B2
7066900 Botto et al. Jun 2006 B2
7066904 Rosenthal et al. Jun 2006 B2
7072720 Puskas Jul 2006 B2
7074217 Strul et al. Jul 2006 B2
7081112 Joye et al. Jul 2006 B2
7081114 Rashidi Jul 2006 B2
7083614 Fjield et al. Aug 2006 B2
7084276 Vu et al. Aug 2006 B2
7087026 Callister et al. Aug 2006 B2
7087051 Bourne et al. Aug 2006 B2
7087052 Sampson et al. Aug 2006 B2
7087053 Vanney Aug 2006 B2
7089065 Westlund et al. Aug 2006 B2
7097641 Arless et al. Aug 2006 B1
7100614 Stevens et al. Sep 2006 B2
7101368 Lafontaine Sep 2006 B2
7104983 Grasso, III et al. Sep 2006 B2
7104987 Biggs et al. Sep 2006 B2
7108715 Lawrence-Brown et al. Sep 2006 B2
7112196 Brosch et al. Sep 2006 B2
7112198 Satake Sep 2006 B2
7112211 Gifford, III et al. Sep 2006 B2
7122019 Kesten et al. Oct 2006 B1
7122033 Wood Oct 2006 B2
7134438 Makower et al. Nov 2006 B2
7137963 Nita et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7153315 Miller Dec 2006 B2
7155271 Halperin et al. Dec 2006 B2
7157491 Mewshaw et al. Jan 2007 B2
7157492 Mewshaw et al. Jan 2007 B2
7158832 Kieval et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7162303 Levin et al. Jan 2007 B2
7165551 Edwards et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7172589 Lafontaine Feb 2007 B2
7172610 Heitzmann et al. Feb 2007 B2
7181261 Silver et al. Feb 2007 B2
7184811 Phan et al. Feb 2007 B2
7184827 Edwards Feb 2007 B1
7189227 Lafontaine Mar 2007 B2
7192427 Chapelon et al. Mar 2007 B2
7192586 Bander Mar 2007 B2
7197354 Sobe Mar 2007 B2
7198632 Lim et al. Apr 2007 B2
7200445 Dalbec et al. Apr 2007 B1
7201749 Govari et al. Apr 2007 B2
7203537 Mower Apr 2007 B2
7214234 Rapacki et al. May 2007 B2
7220233 Nita et al. May 2007 B2
7220239 Wilson et al. May 2007 B2
7220257 Lafontaine May 2007 B1
7220270 Sawhney et al. May 2007 B2
7232458 Saadat Jun 2007 B2
7232459 Greenberg et al. Jun 2007 B2
7238184 Megerman et al. Jul 2007 B2
7241273 Maguire et al. Jul 2007 B2
7241736 Hunter et al. Jul 2007 B2
7247141 Makin et al. Jul 2007 B2
7250041 Chiu et al. Jul 2007 B2
7250440 Mewshaw et al. Jul 2007 B2
7252664 Nasab et al. Aug 2007 B2
7252679 Fischell et al. Aug 2007 B2
7264619 Venturelli Sep 2007 B2
7279600 Mewshaw et al. Oct 2007 B2
7280863 Shachar Oct 2007 B2
7282213 Schroeder et al. Oct 2007 B2
7285119 Stewart et al. Oct 2007 B2
7285120 Im et al. Oct 2007 B2
7288089 Yon et al. Oct 2007 B2
7288096 Chin Oct 2007 B2
7291146 Steinke et al. Nov 2007 B2
7293562 Malecki et al. Nov 2007 B2
7294125 Phalen et al. Nov 2007 B2
7294126 Sampson et al. Nov 2007 B2
7294127 Leung et al. Nov 2007 B2
7297131 Nita Nov 2007 B2
7297475 Koiwai et al. Nov 2007 B2
7300433 Lane et al. Nov 2007 B2
7301108 Egitto et al. Nov 2007 B2
7310150 Guillermo et al. Dec 2007 B2
7313430 Urquhart et al. Dec 2007 B2
7314483 Landau et al. Jan 2008 B2
7317077 Averback et al. Jan 2008 B2
7323006 Andreas et al. Jan 2008 B2
7326206 Paul et al. Feb 2008 B2
7326226 Root et al. Feb 2008 B2
7326235 Edwards Feb 2008 B2
7326237 DePalma et al. Feb 2008 B2
7329236 Kesten et al. Feb 2008 B2
7335180 Nita et al. Feb 2008 B2
7335192 Keren et al. Feb 2008 B2
7338467 Lutter Mar 2008 B2
7341570 Keren et al. Mar 2008 B2
7343195 Strommer et al. Mar 2008 B2
7347857 Anderson et al. Mar 2008 B2
7348003 Salcedo et al. Mar 2008 B2
7352593 Zeng et al. Apr 2008 B2
7354927 Vu Apr 2008 B2
7359732 Kim et al. Apr 2008 B2
7361341 Salcedo et al. Apr 2008 B2
7364566 Elkins et al. Apr 2008 B2
7367970 Govari et al. May 2008 B2
7367975 Malecki et al. May 2008 B2
7371231 Rioux et al. May 2008 B2
7387126 Cox et al. Jun 2008 B2
7393338 Nita Jul 2008 B2
7396355 Goldman et al. Jul 2008 B2
7402151 Rosenman et al. Jul 2008 B2
7402312 Rosen et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7406970 Zikorus et al. Aug 2008 B2
7407502 Strul et al. Aug 2008 B2
7407506 Makower Aug 2008 B2
7407671 McBride et al. Aug 2008 B2
7408021 Averback et al. Aug 2008 B2
7410486 Fuimaono et al. Aug 2008 B2
7413556 Zhang et al. Aug 2008 B2
7425212 Danek et al. Sep 2008 B1
7426409 Casscells, III et al. Sep 2008 B2
7435248 Taimisto et al. Oct 2008 B2
7447453 Kim et al. Nov 2008 B2
7449018 Kramer Nov 2008 B2
7452538 Ni et al. Nov 2008 B2
7473890 Grier et al. Jan 2009 B2
7476384 Ni et al. Jan 2009 B2
7479157 Weber et al. Jan 2009 B2
7481803 Kesten et al. Jan 2009 B2
7485104 Kieval Feb 2009 B2
7486805 Krattiger Feb 2009 B2
7487780 Hooven Feb 2009 B2
7493154 Bonner et al. Feb 2009 B2
7494485 Beck et al. Feb 2009 B2
7494486 Mische et al. Feb 2009 B2
7494488 Weber Feb 2009 B2
7494661 Sanders Feb 2009 B2
7495439 Wiggins Feb 2009 B2
7497858 Chapelon et al. Mar 2009 B2
7499745 Littrup et al. Mar 2009 B2
7500985 Saadat Mar 2009 B2
7505812 Eggers et al. Mar 2009 B1
7505816 Schmeling et al. Mar 2009 B2
7507233 Littrup et al. Mar 2009 B2
7507235 Keogh et al. Mar 2009 B2
7511494 Wedeen Mar 2009 B2
7512445 Truckai et al. Mar 2009 B2
7527643 Case et al. May 2009 B2
7529589 Williams et al. May 2009 B2
7540852 Nita et al. Jun 2009 B2
7540870 Babaev Jun 2009 B2
RE40863 Tay et al. Jul 2009 E
7556624 Laufer et al. Jul 2009 B2
7558625 Levin et al. Jul 2009 B2
7563247 Maguire et al. Jul 2009 B2
7566319 McAuley et al. Jul 2009 B2
7569052 Phan et al. Aug 2009 B2
7582111 Krolik et al. Sep 2009 B2
7584004 Caparso et al. Sep 2009 B2
7585835 Hill et al. Sep 2009 B2
7591996 Hwang et al. Sep 2009 B2
7597704 Frazier et al. Oct 2009 B2
7598228 Hattori et al. Oct 2009 B2
7599730 Hunter et al. Oct 2009 B2
7603166 Casscells, III et al. Oct 2009 B2
7604608 Nita et al. Oct 2009 B2
7604633 Truckai et al. Oct 2009 B2
7615015 Coleman Nov 2009 B2
7615072 Rust et al. Nov 2009 B2
7617005 Demarais et al. Nov 2009 B2
7620451 Demarais et al. Nov 2009 B2
7621902 Nita et al. Nov 2009 B2
7621929 Nita et al. Nov 2009 B2
7626015 Feinstein et al. Dec 2009 B2
7626235 Kinoshita Dec 2009 B2
7632268 Edwards et al. Dec 2009 B2
7632845 Vu et al. Dec 2009 B2
7635383 Gumm Dec 2009 B2
7640046 Pastore et al. Dec 2009 B2
7641633 Laufer et al. Jan 2010 B2
7641679 Joye et al. Jan 2010 B2
7646544 Batchko et al. Jan 2010 B2
7647115 Levin et al. Jan 2010 B2
7653438 Deem et al. Jan 2010 B2
7655006 Sauvageau et al. Feb 2010 B2
7662114 Seip et al. Feb 2010 B2
7664548 Amurthur et al. Feb 2010 B2
7670279 Gertner Mar 2010 B2
7670335 Keidar Mar 2010 B2
7671084 Mewshaw et al. Mar 2010 B2
7678104 Keidar Mar 2010 B2
7678106 Lee Mar 2010 B2
7678108 Chrisitian et al. Mar 2010 B2
7691080 Seward et al. Apr 2010 B2
7699809 Urmey Apr 2010 B2
7706882 Francischelli et al. Apr 2010 B2
7715912 Rezai et al. May 2010 B2
7717853 Nita May 2010 B2
7717909 Strul et al. May 2010 B2
7717948 Demarais et al. May 2010 B2
7722539 Carter et al. May 2010 B2
7725157 Dumoulin et al. May 2010 B2
7727178 Wilson et al. Jun 2010 B2
7736317 Stephens et al. Jun 2010 B2
7736360 Mody et al. Jun 2010 B2
7736362 Eberl et al. Jun 2010 B2
7738952 Yun et al. Jun 2010 B2
7740629 Anderson et al. Jun 2010 B2
7741299 Feinstein et al. Jun 2010 B2
7742795 Stone et al. Jun 2010 B2
7744594 Yamazaki et al. Jun 2010 B2
7753907 DiMatteo et al. Jul 2010 B2
7756583 Demarais et al. Jul 2010 B2
7758510 Nita et al. Jul 2010 B2
7758520 Griffin et al. Jul 2010 B2
7759315 Cuzzocrea et al. Jul 2010 B2
7766833 Lee et al. Aug 2010 B2
7766878 Tremaglio, Jr. et al. Aug 2010 B2
7766892 Keren et al. Aug 2010 B2
7767844 Lee et al. Aug 2010 B2
7769427 Shachar Aug 2010 B2
7771372 Wilson Aug 2010 B2
7771421 Stewart et al. Aug 2010 B2
7776967 Perry et al. Aug 2010 B2
7777486 Hargreaves et al. Aug 2010 B2
7780660 Bourne et al. Aug 2010 B2
7789876 Zikorus et al. Sep 2010 B2
7792568 Zhong et al. Sep 2010 B2
7799021 Leung et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7806871 Li et al. Oct 2010 B2
7811265 Hering et al. Oct 2010 B2
7811281 Rentrop Oct 2010 B1
7811313 Mon et al. Oct 2010 B2
7816511 Kawashima et al. Oct 2010 B2
7818053 Kassab Oct 2010 B2
7819866 Bednarek Oct 2010 B2
7822460 Halperin et al. Oct 2010 B2
7828837 Khoury Nov 2010 B2
7832407 Gertner Nov 2010 B2
7833220 Mon et al. Nov 2010 B2
7837676 Sinelnikov et al. Nov 2010 B2
7837720 Mon Nov 2010 B2
7841978 Gertner Nov 2010 B2
7846157 Kozel Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7846172 Makower Dec 2010 B2
7849860 Makower et al. Dec 2010 B2
7850685 Kunis et al. Dec 2010 B2
7853333 Demarais Dec 2010 B2
7854734 Biggs et al. Dec 2010 B2
7857756 Warren et al. Dec 2010 B2
7862565 Eder et al. Jan 2011 B2
7863897 Slocum, Jr. et al. Jan 2011 B2
7869854 Shachar et al. Jan 2011 B2
7873417 Demarais et al. Jan 2011 B2
7887538 Bleich et al. Feb 2011 B2
7894905 Pless et al. Feb 2011 B2
7896873 Hiller et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901402 Jones et al. Mar 2011 B2
7901420 Dunn Mar 2011 B2
7905862 Sampson Mar 2011 B2
7918850 Govari et al. Apr 2011 B2
7927370 Webler et al. Apr 2011 B2
7937143 Demarais et al. May 2011 B2
7938830 Saadat et al. May 2011 B2
7942874 Eder et al. May 2011 B2
7942928 Webler et al. May 2011 B2
7946976 Gertner May 2011 B2
7950397 Thapliyal et al. May 2011 B2
7955293 Nita et al. Jun 2011 B2
7956613 Wald Jun 2011 B2
7959627 Utley et al. Jun 2011 B2
7962854 Vance et al. Jun 2011 B2
7967782 Laufer et al. Jun 2011 B2
7967808 Fitzgerald et al. Jun 2011 B2
7972327 Eberl et al. Jul 2011 B2
7972330 Alejandro et al. Jul 2011 B2
7983751 Zdeblick et al. Jul 2011 B2
8001976 Gertner Aug 2011 B2
8007440 Magnin et al. Aug 2011 B2
8012147 Lafontaine Sep 2011 B2
8019435 Hastings et al. Sep 2011 B2
8021362 Deem et al. Sep 2011 B2
8021413 Dierking et al. Sep 2011 B2
8025661 Arnold et al. Sep 2011 B2
8027718 Spinner et al. Sep 2011 B2
8031927 Karl et al. Oct 2011 B2
8033284 Porter et al. Oct 2011 B2
8048144 Thistle et al. Nov 2011 B2
8052636 Moll et al. Nov 2011 B2
8052700 Dunn Nov 2011 B2
8062289 Babaev Nov 2011 B2
8075580 Makower Dec 2011 B2
8080006 Lafontaine et al. Dec 2011 B2
8088127 Mayse et al. Jan 2012 B2
8116883 Williams et al. Feb 2012 B2
8119183 O'Donoghue et al. Feb 2012 B2
8120518 Jang et al. Feb 2012 B2
8123741 Marrouche et al. Feb 2012 B2
8128617 Bencini et al. Mar 2012 B2
8131371 Demarals et al. Mar 2012 B2
8131372 Levin et al. Mar 2012 B2
8131382 Asada Mar 2012 B2
8137274 Weng et al. Mar 2012 B2
8140170 Rezai et al. Mar 2012 B2
8143316 Ueno Mar 2012 B2
8145316 Deem et al. Mar 2012 B2
8145317 Demarais et al. Mar 2012 B2
8150518 Levin et al. Apr 2012 B2
8150519 Demarais et al. Apr 2012 B2
8150520 Demarais et al. Apr 2012 B2
8152830 Gumm Apr 2012 B2
8162933 Francischelli et al. Apr 2012 B2
8175711 Demarais et al. May 2012 B2
8187261 Watson May 2012 B2
8190238 Moll et al. May 2012 B2
8192053 Owen et al. Jun 2012 B2
8198611 LaFontaine et al. Jun 2012 B2
8214056 Hoffer et al. Jul 2012 B2
8221407 Phan et al. Jul 2012 B2
8226637 Satake Jul 2012 B2
8231617 Satake Jul 2012 B2
8241217 Chiang et al. Aug 2012 B2
8257724 Cromack et al. Sep 2012 B2
8257725 Cromack et al. Sep 2012 B2
8260397 Ruff et al. Sep 2012 B2
8263104 Ho et al. Sep 2012 B2
8273023 Razavi Sep 2012 B2
8277379 Lau et al. Oct 2012 B2
8287524 Siegel Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8292881 Brannan et al. Oct 2012 B2
8293703 Averback et al. Oct 2012 B2
8295902 Salahieh et al. Oct 2012 B2
8295912 Gertner Oct 2012 B2
8308722 Ormsby et al. Nov 2012 B2
8317776 Ferren et al. Nov 2012 B2
8317810 Stangenes et al. Nov 2012 B2
8329179 Ni et al. Dec 2012 B2
8336705 Okahisa Dec 2012 B2
8343031 Gertner Jan 2013 B2
8343145 Brannan Jan 2013 B2
8347891 Demarais et al. Jan 2013 B2
8353945 Andreas et al. Jan 2013 B2
8364237 Stone et al. Jan 2013 B2
8366615 Razavi Feb 2013 B2
8382697 Brenneman et al. Feb 2013 B2
8388680 Starksen et al. Mar 2013 B2
8396548 Perry et al. Mar 2013 B2
8398629 Thistle Mar 2013 B2
8401667 Gustus et al. Mar 2013 B2
8403881 Ferren et al. Mar 2013 B2
8406877 Smith et al. Mar 2013 B2
8409172 Moll et al. Apr 2013 B2
8409193 Young et al. Apr 2013 B2
8409195 Young Apr 2013 B2
8418362 Zerfas et al. Apr 2013 B2
8452988 Wang May 2013 B2
8454594 Demarais et al. Jun 2013 B2
8460358 Andreas et al. Jun 2013 B2
8465452 Kassab Jun 2013 B2
8469919 Ingle et al. Jun 2013 B2
8473067 Hastings et al. Jun 2013 B2
8480663 Ingle et al. Jul 2013 B2
8485992 Griffin et al. Jul 2013 B2
8486060 Kotmel et al. Jul 2013 B2
8486063 Werneth et al. Jul 2013 B2
8488591 Miali et al. Jul 2013 B2
20010007070 Stewart et al. Jul 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20010051774 Littrup et al. Dec 2001 A1
20020022864 Mahvi et al. Feb 2002 A1
20020042639 Murphy-Chutorian et al. Apr 2002 A1
20020045811 Kittrell et al. Apr 2002 A1
20020045890 Celliers et al. Apr 2002 A1
20020062123 McClurken et al. May 2002 A1
20020062146 Makower et al. May 2002 A1
20020065542 Lax et al. May 2002 A1
20020072686 Hoey et al. Jun 2002 A1
20020077592 Barry Jun 2002 A1
20020082552 Ding et al. Jun 2002 A1
20020087151 Mody et al. Jul 2002 A1
20020087156 Maguire et al. Jul 2002 A1
20020091381 Edwards Jul 2002 A1
20020095197 Lardo et al. Jul 2002 A1
20020107511 Collins et al. Aug 2002 A1
20020107536 Hussein Aug 2002 A1
20020143324 Edwards Oct 2002 A1
20020147480 Mamayek Oct 2002 A1
20020169444 Mest et al. Nov 2002 A1
20020198520 Coen et al. Dec 2002 A1
20030004510 Wham et al. Jan 2003 A1
20030028114 Casscells, III et al. Feb 2003 A1
20030050635 Truckai Mar 2003 A1
20030060857 Perrson et al. Mar 2003 A1
20030060858 Kieval et al. Mar 2003 A1
20030065317 Rudie et al. Apr 2003 A1
20030069619 Fenn et al. Apr 2003 A1
20030092995 Thompson May 2003 A1
20030114791 Rosenthal et al. Jun 2003 A1
20030139689 Shturman et al. Jul 2003 A1
20030195501 Sherman et al. Oct 2003 A1
20030199747 Michlitsch et al. Oct 2003 A1
20030212394 Pearson et al. Nov 2003 A1
20030220639 Chapelon et al. Nov 2003 A1
20030229340 Sherry Dec 2003 A1
20030229384 Mon Dec 2003 A1
20030233099 Danaek Dec 2003 A1
20040000633 Casper et al. Jan 2004 A1
20040006359 Laguna Jan 2004 A1
20040010118 Zerhusen et al. Jan 2004 A1
20040019348 Stevens et al. Jan 2004 A1
20040024371 Plicchi et al. Feb 2004 A1
20040043030 Griffiths et al. Mar 2004 A1
20040062852 Schroeder et al. Apr 2004 A1
20040064090 Keren et al. Apr 2004 A1
20040064093 Hektner et al. Apr 2004 A1
20040073206 Foley et al. Apr 2004 A1
20040088002 Boyle et al. May 2004 A1
20040093055 Bartorelli et al. May 2004 A1
20040106871 Hunyor et al. Jun 2004 A1
20040111016 Casscells, III et al. Jun 2004 A1
20040117032 Roth Jun 2004 A1
20040122421 Wood Jun 2004 A1
20040147915 Hasebe Jul 2004 A1
20040162555 Farley et al. Aug 2004 A1
20040167506 Chen Aug 2004 A1
20040181165 Hoey et al. Sep 2004 A1
20040186356 O'Malley et al. Sep 2004 A1
20040186468 Edwards Sep 2004 A1
20040187875 He et al. Sep 2004 A1
20040193211 Voegele et al. Sep 2004 A1
20040220556 Cooper et al. Nov 2004 A1
20040243022 Carney et al. Dec 2004 A1
20040243199 Mon et al. Dec 2004 A1
20040253304 Gross et al. Dec 2004 A1
20040267250 Yon et al. Dec 2004 A1
20050010095 Stewart et al. Jan 2005 A1
20050010208 Winston et al. Jan 2005 A1
20050015125 Mioduski et al. Jan 2005 A1
20050033136 Govari et al. Feb 2005 A1
20050080374 Esch et al. Apr 2005 A1
20050090820 Cornelius et al. Apr 2005 A1
20050096647 Steinke May 2005 A1
20050129616 Salcedo et al. Jun 2005 A1
20050137180 Robinson et al. Jun 2005 A1
20050143817 Hunter et al. Jun 2005 A1
20050148842 Wang et al. Jul 2005 A1
20050149069 Bertolero et al. Jul 2005 A1
20050149080 Hunter et al. Jul 2005 A1
20050149158 Hunter et al. Jul 2005 A1
20050149173 Hunter et al. Jul 2005 A1
20050149175 Hunter et al. Jul 2005 A1
20050154277 Tang et al. Jul 2005 A1
20050154445 Hunter et al. Jul 2005 A1
20050154453 Hunter et al. Jul 2005 A1
20050154454 Hunter et al. Jul 2005 A1
20050165389 Swain et al. Jul 2005 A1
20050165391 Maguire et al. Jul 2005 A1
20050165467 Hunter et al. Jul 2005 A1
20050165488 Hunter et al. Jul 2005 A1
20050175661 Hunter et al. Aug 2005 A1
20050175662 Hunter et al. Aug 2005 A1
20050175663 Hunter et al. Aug 2005 A1
20050177103 Hunter et al. Aug 2005 A1
20050177225 Hunter et al. Aug 2005 A1
20050181004 Hunter et al. Aug 2005 A1
20050181008 Hunter et al. Aug 2005 A1
20050181011 Hunter et al. Aug 2005 A1
20050181977 Hunter et al. Aug 2005 A1
20050182479 Bonsignore et al. Aug 2005 A1
20050183728 Hunter et al. Aug 2005 A1
20050186242 Hunter et al. Aug 2005 A1
20050186243 Hunter et al. Aug 2005 A1
20050191331 Hunter et al. Sep 2005 A1
20050203410 Jenkins Sep 2005 A1
20050203434 Kassab Sep 2005 A1
20050203498 Mon et al. Sep 2005 A1
20050209587 Joye et al. Sep 2005 A1
20050214205 Salcedo et al. Sep 2005 A1
20050214207 Salcedo et al. Sep 2005 A1
20050214208 Salcedo et al. Sep 2005 A1
20050214209 Salcedo et al. Sep 2005 A1
20050214210 Salcedo et al. Sep 2005 A1
20050214268 Cavanagh et al. Sep 2005 A1
20050228286 Messerly et al. Oct 2005 A1
20050228415 Gertner Oct 2005 A1
20050228460 Levin et al. Oct 2005 A1
20050232921 Rosen et al. Oct 2005 A1
20050234312 Suzuki et al. Oct 2005 A1
20050245862 Seward Nov 2005 A1
20050251116 Steinke et al. Nov 2005 A1
20050252553 Ginggen Nov 2005 A1
20050256398 Hastings et al. Nov 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20050283195 Pastore et al. Dec 2005 A1
20060004323 Chang et al. Jan 2006 A1
20060018949 Ammon et al. Jan 2006 A1
20060024564 Manclaw Feb 2006 A1
20060025765 Landman et al. Feb 2006 A1
20060062786 Salcedo et al. Mar 2006 A1
20060083194 Dhrimaj et al. Apr 2006 A1
20060085054 Zikorus Apr 2006 A1
20060089637 Werneth et al. Apr 2006 A1
20060089638 Carmel et al. Apr 2006 A1
20060095096 DeBenedictis et al. May 2006 A1
20060106375 Werneth et al. May 2006 A1
20060142790 Gertner Jun 2006 A1
20060147492 Hunter et al. Jul 2006 A1
20060149166 Zvuloni Jul 2006 A1
20060167106 Zhang et al. Jul 2006 A1
20060167498 DiLorenzo Jul 2006 A1
20060171895 Bucay-Couto Aug 2006 A1
20060182873 Klisch Aug 2006 A1
20060184060 Belalcazar et al. Aug 2006 A1
20060184221 Stewart et al. Aug 2006 A1
20060195139 Gertner Aug 2006 A1
20060206150 Demarais et al. Sep 2006 A1
20060224153 Fischell et al. Oct 2006 A1
20060235286 Stone et al. Oct 2006 A1
20060239921 Mangat et al. Oct 2006 A1
20060240070 Cromack et al. Oct 2006 A1
20060246143 Ege Nov 2006 A1
20060247266 Yamada et al. Nov 2006 A1
20060247760 Ganesan et al. Nov 2006 A1
20060263393 Demopulos et al. Nov 2006 A1
20060269555 Salcedo et al. Nov 2006 A1
20060271111 Demarais et al. Nov 2006 A1
20060280858 Kokish Dec 2006 A1
20060287644 Inganas et al. Dec 2006 A1
20070016184 Cropper et al. Jan 2007 A1
20070016274 Boveja et al. Jan 2007 A1
20070027390 Maschke et al. Feb 2007 A1
20070043077 Mewshaw et al. Feb 2007 A1
20070043409 Brian et al. Feb 2007 A1
20070049924 Rahn Mar 2007 A1
20070066972 Ormsby et al. Mar 2007 A1
20070073151 Lee Mar 2007 A1
20070078498 Rezai et al. Apr 2007 A1
20070093710 Maschke Apr 2007 A1
20070100405 Thompson et al. May 2007 A1
20070106247 Burnett et al. May 2007 A1
20070112327 Yun et al. May 2007 A1
20070118107 Francischelli et al. May 2007 A1
20070129720 Demarais Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070129761 Demarais et al. Jun 2007 A1
20070135875 Demarais et al. Jun 2007 A1
20070149963 Matsukuma et al. Jun 2007 A1
20070162109 Davila et al. Jul 2007 A1
20070173805 Weinberg et al. Jul 2007 A1
20070173899 Levin et al. Jul 2007 A1
20070179496 Swoyer et al. Aug 2007 A1
20070197891 Shachar et al. Aug 2007 A1
20070203480 Mody et al. Aug 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208134 Hunter et al. Sep 2007 A1
20070208210 Gelfand et al. Sep 2007 A1
20070208256 Marilla Sep 2007 A1
20070208301 Evard et al. Sep 2007 A1
20070219576 Cangialosi Sep 2007 A1
20070225781 Saadat et al. Sep 2007 A1
20070233170 Gertner Oct 2007 A1
20070239062 Chopra et al. Oct 2007 A1
20070248639 Demopulos et al. Oct 2007 A1
20070249703 Mewshaw et al. Oct 2007 A1
20070254833 Hunter et al. Nov 2007 A1
20070265687 Deem et al. Nov 2007 A1
20070278103 Hoerr et al. Dec 2007 A1
20070282302 Wachsman et al. Dec 2007 A1
20070292411 Salcedo et al. Dec 2007 A1
20070293782 Marino Dec 2007 A1
20070299043 Hunter et al. Dec 2007 A1
20080004673 Rossing et al. Jan 2008 A1
20080009927 Vilims Jan 2008 A1
20080015501 Gertner Jan 2008 A1
20080021408 Jacobsen et al. Jan 2008 A1
20080033049 Mewshaw Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080039830 Munger et al. Feb 2008 A1
20080051454 Wang Feb 2008 A1
20080064957 Spence Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080071306 Gertner Mar 2008 A1
20080082109 Moll et al. Apr 2008 A1
20080086072 Bonutti et al. Apr 2008 A1
20080091193 Kauphusman et al. Apr 2008 A1
20080097251 Babaev Apr 2008 A1
20080097426 Root et al. Apr 2008 A1
20080108867 Zhou May 2008 A1
20080119879 Brenneman et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080132450 Lee et al. Jun 2008 A1
20080140002 Ramzipoor et al. Jun 2008 A1
20080147002 Gertner Jun 2008 A1
20080161662 Golijanin et al. Jul 2008 A1
20080161717 Gertner Jul 2008 A1
20080161801 Steinke et al. Jul 2008 A1
20080171974 Lafontaine et al. Jul 2008 A1
20080172035 Starksen et al. Jul 2008 A1
20080172104 Kieval et al. Jul 2008 A1
20080188912 Stone et al. Aug 2008 A1
20080188913 Stone et al. Aug 2008 A1
20080208162 Joshi Aug 2008 A1
20080208169 Boyle et al. Aug 2008 A1
20080213331 Gelfand et al. Sep 2008 A1
20080215117 Gross Sep 2008 A1
20080221448 Khuri-Yakub et al. Sep 2008 A1
20080234790 Bayer et al. Sep 2008 A1
20080243091 Humphreys et al. Oct 2008 A1
20080245371 Gruber Oct 2008 A1
20080249525 Lee et al. Oct 2008 A1
20080249547 Dunn Oct 2008 A1
20080255550 Bell Oct 2008 A1
20080255642 Zarins et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080275484 Gertner Nov 2008 A1
20080281312 Werneth et al. Nov 2008 A1
20080281347 Gertner Nov 2008 A1
20080287918 Rosenman et al. Nov 2008 A1
20080294037 Richter Nov 2008 A1
20080300618 Gertner Dec 2008 A1
20080312644 Fourkas et al. Dec 2008 A1
20080312673 Viswanathan et al. Dec 2008 A1
20080317818 Griffith et al. Dec 2008 A1
20090018486 Goren et al. Jan 2009 A1
20090018609 DiLorenzo Jan 2009 A1
20090024194 Arcot-Krishnamurthy et al. Jan 2009 A1
20090030312 Hadjicostis Jan 2009 A1
20090036948 Levin et al. Feb 2009 A1
20090043372 Northrop et al. Feb 2009 A1
20090054082 Kim et al. Feb 2009 A1
20090062873 Wu et al. Mar 2009 A1
20090069671 Anderson Mar 2009 A1
20090074828 Alexis et al. Mar 2009 A1
20090076409 Wu et al. Mar 2009 A1
20090088735 Abboud et al. Apr 2009 A1
20090105631 Kieval Apr 2009 A1
20090112202 Young Apr 2009 A1
20090118620 Tgavalekos et al. May 2009 A1
20090118726 Auth et al. May 2009 A1
20090125099 Weber et al. May 2009 A1
20090131798 Minar et al. May 2009 A1
20090143640 Saadat et al. Jun 2009 A1
20090156988 Ferren et al. Jun 2009 A1
20090157057 Ferren et al. Jun 2009 A1
20090157161 Desai et al. Jun 2009 A1
20090171333 Hon Jul 2009 A1
20090192558 Whitehurst et al. Jul 2009 A1
20090198223 Thilwind et al. Aug 2009 A1
20090203962 Miller et al. Aug 2009 A1
20090203993 Mangat et al. Aug 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090210953 Moyer et al. Aug 2009 A1
20090216317 Cromack et al. Aug 2009 A1
20090221955 Babaev Sep 2009 A1
20090226429 Salcedo et al. Sep 2009 A1
20090240249 Chan et al. Sep 2009 A1
20090247933 Maor et al. Oct 2009 A1
20090247966 Gunn et al. Oct 2009 A1
20090248012 Maor et al. Oct 2009 A1
20090253974 Rahme Oct 2009 A1
20090264755 Chen et al. Oct 2009 A1
20090270850 Zhou et al. Oct 2009 A1
20090281533 Ingle et al. Nov 2009 A1
20090287137 Crowley Nov 2009 A1
20090318749 Stolen et al. Dec 2009 A1
20100009267 Chase et al. Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100048983 Ball et al. Feb 2010 A1
20100049099 Thapliyal et al. Feb 2010 A1
20100049186 Ingle et al. Feb 2010 A1
20100049188 Nelson et al. Feb 2010 A1
20100049191 Habib et al. Feb 2010 A1
20100049283 Johnson Feb 2010 A1
20100069837 Rassat et al. Mar 2010 A1
20100076299 Gustus et al. Mar 2010 A1
20100076425 Carroux Mar 2010 A1
20100087782 Ghaffari et al. Apr 2010 A1
20100106005 Karczmar et al. Apr 2010 A1
20100114244 Manda et al. May 2010 A1
20100125239 Perry et al. May 2010 A1
20100125268 Gustus et al. May 2010 A1
20100130836 Malchano et al. May 2010 A1
20100137860 Demarais et al. Jun 2010 A1
20100137952 Demarais et al. Jun 2010 A1
20100160903 Krespi Jun 2010 A1
20100160906 Jarrard Jun 2010 A1
20100168624 Sliwa Jul 2010 A1
20100168731 Wu et al. Jul 2010 A1
20100168739 Wu et al. Jul 2010 A1
20100174282 Demarais et al. Jul 2010 A1
20100191112 Demarais et al. Jul 2010 A1
20100191232 Boveda Jul 2010 A1
20100204560 Salahieh et al. Aug 2010 A1
20100217162 Hissong et al. Aug 2010 A1
20100222786 Kassab Sep 2010 A1
20100222851 Deem et al. Sep 2010 A1
20100222854 Demarais et al. Sep 2010 A1
20100228122 Keenan et al. Sep 2010 A1
20100249604 Hastings et al. Sep 2010 A1
20100249702 Magana et al. Sep 2010 A1
20100249773 Clark et al. Sep 2010 A1
20100256616 Katoh et al. Oct 2010 A1
20100268217 Habib Oct 2010 A1
20100268307 Demarais et al. Oct 2010 A1
20100284927 Lu et al. Nov 2010 A1
20100286684 Hata et al. Nov 2010 A1
20100298821 Garbagnati Nov 2010 A1
20100305036 Barnes et al. Dec 2010 A1
20100312141 Keast et al. Dec 2010 A1
20100324472 Wulfman Dec 2010 A1
20110009750 Taylor et al. Jan 2011 A1
20110021976 Li et al. Jan 2011 A1
20110034832 Cioanta et al. Feb 2011 A1
20110040324 McCarthy et al. Feb 2011 A1
20110044942 Puri et al. Feb 2011 A1
20110060324 Wu et al. Mar 2011 A1
20110071400 Hastings et al. Mar 2011 A1
20110071401 Hastings et al. Mar 2011 A1
20110077498 McDaniel Mar 2011 A1
20110092781 Gertner Apr 2011 A1
20110092880 Gertner Apr 2011 A1
20110104061 Seward May 2011 A1
20110112400 Emery et al. May 2011 A1
20110118598 Gertner May 2011 A1
20110118600 Gertner May 2011 A1
20110118726 De La Rama et al. May 2011 A1
20110130708 Perry et al. Jun 2011 A1
20110137155 Weber et al. Jun 2011 A1
20110144479 Hastings et al. Jun 2011 A1
20110146673 Keast et al. Jun 2011 A1
20110166499 Demarais et al. Jul 2011 A1
20110178403 Weng et al. Jul 2011 A1
20110178570 Demarais Jul 2011 A1
20110200171 Beetel et al. Aug 2011 A1
20110202098 Demarais et al. Aug 2011 A1
20110207758 Sobotka et al. Aug 2011 A1
20110208096 Demarais et al. Aug 2011 A1
20110257523 Hastings et al. Oct 2011 A1
20110257564 Demarais et al. Oct 2011 A1
20110257622 Salahieh et al. Oct 2011 A1
20110257641 Hastings et al. Oct 2011 A1
20110257642 Griggs, III Oct 2011 A1
20110263921 Vrba et al. Oct 2011 A1
20110264011 Wu et al. Oct 2011 A1
20110264075 Leung et al. Oct 2011 A1
20110264086 Ingle Oct 2011 A1
20110264116 Kocur et al. Oct 2011 A1
20110270238 Rizq et al. Nov 2011 A1
20110306851 Wang Dec 2011 A1
20110307034 Hastings et al. Dec 2011 A1
20110319809 Smith Dec 2011 A1
20120029496 Smith Feb 2012 A1
20120029500 Jenson Feb 2012 A1
20120029505 Jenson Feb 2012 A1
20120029509 Smith Feb 2012 A1
20120029510 Haverkost Feb 2012 A1
20120029511 Smith et al. Feb 2012 A1
20120029512 Willard et al. Feb 2012 A1
20120029513 Smith et al. Feb 2012 A1
20120059241 Hastings et al. Mar 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120065506 Smith Mar 2012 A1
20120065554 Pikus Mar 2012 A1
20120095461 Herscher et al. Apr 2012 A1
20120101413 Beetel et al. Apr 2012 A1
20120101490 Smith Apr 2012 A1
20120101538 Ballakur et al. Apr 2012 A1
20120109021 Hastings et al. May 2012 A1
20120116382 Ku et al. May 2012 A1
20120116383 Mauch et al. May 2012 A1
20120116392 Willard May 2012 A1
20120116438 Salahieh et al. May 2012 A1
20120116486 Naga et al. May 2012 A1
20120123243 Hastings May 2012 A1
20120123258 Willard May 2012 A1
20120123261 Jenson et al. May 2012 A1
20120123303 Sogard et al. May 2012 A1
20120123406 Edmunds et al. May 2012 A1
20120130289 Demarais et al. May 2012 A1
20120130345 Levin et al. May 2012 A1
20120130359 Turovskiy May 2012 A1
20120130360 Buckley et al. May 2012 A1
20120130362 Hastings et al. May 2012 A1
20120130368 Jenson May 2012 A1
20120130458 Ryba et al. May 2012 A1
20120136344 Buckley et al. May 2012 A1
20120136349 Hastings May 2012 A1
20120136350 Goshgarian et al. May 2012 A1
20120136417 Buckley et al. May 2012 A1
20120136418 Buckley et al. May 2012 A1
20120143181 Demarais et al. Jun 2012 A1
20120143293 Mauch et al. Jun 2012 A1
20120143294 Clark et al. Jun 2012 A1
20120150267 Buckley et al. Jun 2012 A1
20120157986 Stone et al. Jun 2012 A1
20120157987 Steinke et al. Jun 2012 A1
20120157988 Stone et al. Jun 2012 A1
20120157989 Stone et al. Jun 2012 A1
20120157992 Smith et al. Jun 2012 A1
20120157993 Jenson et al. Jun 2012 A1
20120158101 Stone et al. Jun 2012 A1
20120158104 Huynh et al. Jun 2012 A1
20120172837 Demarais et al. Jul 2012 A1
20120172870 Jenson et al. Jul 2012 A1
20120184952 Jenson et al. Jul 2012 A1
20120197198 Demarais et al. Aug 2012 A1
20120197252 Deem et al. Aug 2012 A1
20120232409 Stahmann et al. Sep 2012 A1
20120265066 Crow et al. Oct 2012 A1
20120265198 Crow et al. Oct 2012 A1
20130012844 Demarais et al. Jan 2013 A1
20130012866 Deem et al. Jan 2013 A1
20130012867 Demarais et al. Jan 2013 A1
20130013024 Levin et al. Jan 2013 A1
20130023865 Steinke et al. Jan 2013 A1
20130035681 Subramaniam et al. Feb 2013 A1
20130066316 Steinke et al. Mar 2013 A1
20130085489 Fain et al. Apr 2013 A1
20130090563 Weber Apr 2013 A1
20130090578 Smith et al. Apr 2013 A1
20130090647 Smith Apr 2013 A1
20130090649 Smith et al. Apr 2013 A1
20130090650 Jenson et al. Apr 2013 A1
20130090651 Smith Apr 2013 A1
20130090652 Jenson Apr 2013 A1
20130096550 Hill Apr 2013 A1
20130096553 Hill et al. Apr 2013 A1
20130096554 Groff et al. Apr 2013 A1
20130096604 Hanson et al. Apr 2013 A1
20130110106 Richardson May 2013 A1
20130116687 Willard May 2013 A1
20130165764 Scheuermann et al. Jun 2013 A1
20130165844 Shuros et al. Jun 2013 A1
20130165916 Mathur et al. Jun 2013 A1
20130165917 Mathur et al. Jun 2013 A1
20130165920 Weber et al. Jun 2013 A1
20130165923 Mathur et al. Jun 2013 A1
20130165924 Mathur et al. Jun 2013 A1
20130165925 Mathur et al. Jun 2013 A1
20130165926 Mathur et al. Jun 2013 A1
20130165990 Mathur et al. Jun 2013 A1
20130172815 Perry et al. Jul 2013 A1
20130172872 Subramaniam et al. Jul 2013 A1
20130172877 Subramaniam et al. Jul 2013 A1
20130172878 Smith Jul 2013 A1
20130172879 Sutermeister Jul 2013 A1
20130172880 Willard Jul 2013 A1
20130172881 Hill et al. Jul 2013 A1
Foreign Referenced Citations (167)
Number Date Country
2384866 May 2001 CA
101583323 Nov 2009 CN
102271607 Dec 2011 CN
10038737 Feb 2002 DE
102005041601 Apr 2007 DE
102008048616 Apr 2010 DE
0360582 Mar 1990 EP
558297 Sep 1993 EP
647435 Apr 1995 EP
634910 Aug 1997 EP
868884 Oct 1998 EP
1005838 Jun 2000 EP
1053720 Nov 2000 EP
1064886 Jan 2001 EP
1180004 Feb 2002 EP
1181895 Feb 2002 EP
1297795 Jun 2002 EP
1264613 Dec 2002 EP
1286625 Mar 2003 EP
1332724 Aug 2003 EP
1335677 Aug 2003 EP
866675 Oct 2003 EP
1433448 Jun 2004 EP
1442719 Aug 2004 EP
1547537 Jun 2005 EP
1634542 Mar 2006 EP
1698296 Jun 2006 EP
1709922 Oct 2006 EP
1874211 Jan 2008 EP
1906853 Apr 2008 EP
1946712 Jul 2008 EP
1961394 Aug 2008 EP
1715798 Apr 2009 EP
1620156 Jul 2009 EP
2076193 Jul 2009 EP
2091455 Aug 2009 EP
2092957 Aug 2009 EP
2197533 Jun 2010 EP
2208506 Jul 2010 EP
1579889 Aug 2010 EP
2241279 Oct 2010 EP
2092957 Jan 2011 EP
2329859 Jun 2011 EP
2349044 Aug 2011 EP
2027882 Oct 2011 EP
2378956 Oct 2011 EP
2037840 Dec 2011 EP
2204134 Apr 2012 EP
2455034 May 2012 EP
2320821 Oct 2012 EP
2313062 Nov 1997 GB
2453601 Apr 2009 GB
2456301 Jul 2009 GB
1995-213621 Aug 1995 JP
1995-313603 Dec 1995 JP
2003-510126 Mar 2003 JP
WO 9103207 Mar 1991 WO
WO 9117731 Nov 1991 WO
WO 9222239 Dec 1992 WO
WO 9320747 Oct 1993 WO
WO 9320770 Oct 1993 WO
WO 9418896 Sep 1994 WO
WO 9428809 Dec 1994 WO
WO 9501751 Jan 1995 WO
9531142 Nov 1995 WO
WO 9634559 Nov 1996 WO
WO 9703604 Feb 1997 WO
WO 9717104 May 1997 WO
WO 9720510 Jun 1997 WO
WO 9732532 Sep 1997 WO
WO 9740760 Nov 1997 WO
WO 9745156 Dec 1997 WO
WO 9818393 May 1998 WO
WO 9829030 Jul 1998 WO
WO 9834565 Aug 1998 WO
WO 9835638 Aug 1998 WO
WO 9840023 Sep 1998 WO
9858588 Dec 1998 WO
9900060 Jan 1999 WO
WO 9900060 Jan 1999 WO
WO 9916370 Apr 1999 WO
WO 9921608 May 1999 WO
WO 9934741 Jul 1999 WO
WO 9944522 Sep 1999 WO
WO 0001313 Jan 2000 WO
WO 0010475 Mar 2000 WO
0047118 Aug 2000 WO
WO 0051513 Sep 2000 WO
WO 0059394 Oct 2000 WO
WO 0062727 Oct 2000 WO
WO 0064387 Nov 2000 WO
WO 0069376 Nov 2000 WO
WO 0072909 Dec 2000 WO
WO 0122897 Apr 2001 WO
WO 0137746 May 2001 WO
WO 0187172 May 2001 WO
WO 0174255 Oct 2001 WO
WO 0187154 Nov 2001 WO
WO 0195820 Dec 2001 WO
WO 0215807 Feb 2002 WO
WO 0228475 Apr 2002 WO
WO 0239915 May 2002 WO
WO 02058549 Aug 2002 WO
WO 02080766 Oct 2002 WO
WO 02087679 Nov 2002 WO
WO 02089686 Nov 2002 WO
03026525 Apr 2003 WO
WO 03077781 Sep 2003 WO
WO 2004047659 Jun 2004 WO
WO 2004049976 Jun 2004 WO
WO 2004064606 Aug 2004 WO
WO 2004069300 Aug 2004 WO
WO 2004076146 Sep 2004 WO
2004100813 Nov 2004 WO
WO 2004098694 Nov 2004 WO
2004110258 Dec 2004 WO
WO 2004105807 Dec 2004 WO
WO 2005007000 Jan 2005 WO
WO 2005037070 Apr 2005 WO
WO 2005041748 May 2005 WO
WO 2005074829 Aug 2005 WO
2005037070 Oct 2005 WO
WO 2006041881 Apr 2006 WO
2006105121 Oct 2006 WO
2006105121 Oct 2006 WO
WO 2006116198 Nov 2006 WO
WO 2007011634 Jan 2007 WO
WO 2007014063 Feb 2007 WO
WO 2007047870 Apr 2007 WO
WO 2007113865 Oct 2007 WO
WO 2007135431 Nov 2007 WO
WO 2007146215 Dec 2007 WO
2008014465 Jan 2008 WO
WO 2008003058 Jan 2008 WO
WO 2008009972 Jan 2008 WO
WO 2008010150 Jan 2008 WO
WO 2008036281 Mar 2008 WO
WO 2008049084 Apr 2008 WO
WO 2008061152 May 2008 WO
WO 2008102363 Aug 2008 WO
WO 2009036471 Mar 2009 WO
WO 2009082635 Jul 2009 WO
WO 2009088678 Jul 2009 WO
WO 2009113064 Sep 2009 WO
2009121017 Oct 2009 WO
WO 2009121017 Oct 2009 WO
WO 2009137819 Nov 2009 WO
WO 2010042653 Apr 2010 WO
WO 2010048007 Apr 2010 WO
WO 2010056771 May 2010 WO
WO 2010057043 May 2010 WO
2010067360 Jun 2010 WO
WO 2010070766 Jun 2010 WO
2010102310 Sep 2010 WO
WO 2010099207 Sep 2010 WO
WO 2010120944 Oct 2010 WO
WO 2010134503 Nov 2010 WO
2011005901 Jan 2011 WO
2011053757 May 2011 WO
2011053772 May 2011 WO
WO 2011055143 May 2011 WO
WO 2011060339 May 2011 WO
2011091069 Jul 2011 WO
2011130534 Oct 2011 WO
WO 2011126580 Oct 2011 WO
2012019156 Feb 2012 WO
2013049601 Apr 2013 WO
Non-Patent Literature Citations (154)
Entry
US 8,398,630, 03/2013, Demarais et al. (withdrawn)
Brown et al., “Radiofrequencey capacitivie heaters: the effect of coupling medium resistivity on power absorption along a mouse leg,” Phys. Med. Biol., 1993, 38:1-12, abstract.
Carrington, “Future of CVI: it's all about the plaque,” Diagnostic Imaging Special Edition Forum, retrieved online on Sep. 3, 2003, <http://dimag.com/specialedition/cardiacimg.html>, 5 pgs.
Cimino, “Preventing plaque attack,” retrieved online on Sep. 3, 2003, <http://Masshightech.com/displayarticledetail.ap?art_id=52283&cat_id=10>, 3 pgs.
Dahm et al., “Relation of degree of laser debulking of in-stent restenosis as a predictor of restenosis rate,” Am. J. Cardiol., 90:68-70, 2002.
De Korte et al., “Characterization of placque components with intravascular ultrasounds elastography in human femoral and coronary arteries in vitro,” Circulation 2000, 102:617-23.
Durney et al., Radiofrequency Radiation Dosimetry Handbook (with table of contents), Oct. 1986, 4th ed., 7 pages, Armstrong Laboratory (AFMC) Occupational and Environmental Health Directorate Radiofrequency Radiation Division, USAF School of Aerospace Medicine, Aerospace Medical Division (AFSC), Brooks Air Force Base, http://www.brooks.af.mil/AFRL/HED/hedr/reports/handbook/home.html.
Fournier-Desseux et al. “Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography”, Physiol. Meas. (2005) 26:337-349.
Fujimori et al., “Significant prevention of in-stent restenosis by evans blue in patients with acute myocardial infarction,” Abstract #2925, AHA, 2002, 1 pg.
Fujita, “Sarpogrelate, an antagonist of 5-HT2a receptor treatment reduces restenosis after coronary stenting,” Abstract #2927, AHA, 2002, 1 pg.
Gabriel et al., Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies (with table of contents), Jun. 1996, 17 pages, Armstrong Laboratory (AFMC) Occupational and Environmental Health Directorate Radiofrequency Radiation Division, USAF School of Aerospace Medicine, Aerospace Medical Division (AFSC), Brooks Air Force Base, http://www.brooks.af.mil/AFRL/HED/hedf/reports/dielectric/Report/Report.html.
Gabriel et al., Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies, Appendix A, Jun. 1996, 21 pages, Armstrong Laboratory (AFMC) Occupational and Environmental Health Directorate Radiofrequency Radiation Division, USAF School of Aerospace Medicine, Aerospace Medical Division (AFSC), Brooks Air Force Base, http://www.brooks.af.mil/AFRL/HED/hedf/reports/dielectric/Appendix.A/AppendixA.html.
Gabriel et al., Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies, Appendix C, Jun. 1996, 6 pages, Armstrong Laboratory (AFMC) Occupational and Environmental Health Directorate Radiofrequency Radiation Division, USAF School of Aerospace Medicine, Aerospace Medical Division (AFSC), Brooks Air Force Base, http://www.brooks.af.mil/AFRL/HED/hedr/reports/dielectric/Appendix.C/AppendixC.html.
Gregory et al., “Liquid core light guide for laser angioplasty,” Journal of Quantum Electronics, 26(12):2289-96, Dec. 1990.
Intrluminal, “Product description,” retrieved online on Sep. 3, 2003, <http://www.intraluminal.com/products/index.html>, 1 pg.
Kaplan et al., “Healing after arterial dilation with radiofrequency thermal and nonthermal balloon angioplasty systems,” J Invest Surg. Jan.-Feb. 1993;6(1):33-52.
Kolata, “New studies question value of opening arteries,” New York Times, retrieved online retrieved on Jan. 25, 2005, <http://nytimes.com/2004/03/21/health/21HEAR.html?ei=5070&en=641bc03214e&ex=11067>, 5 pgs.
Konings et al., “Development of an intravascular impedance catheter for detection of fatty lesions in arteries,” IEEE Transcriptions on medical imaging, vol. 16, No. 4, Aug. 1997.
Kurtz et al., “Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes,” J. Refract. Surg. 14:541-8, Sep./Oct. 1998.
Lightlab Imaging Technology, “Advantages of OCT,” retrieved online on Sep. 3, 2003, <http:www.lightlabimaging.com/advantage.html>, 2 pgs.
Lightlab Imaging Technology, “Image gallery,” retrieved online on Sep. 3, 2003, <http:lightlabimaging.com/gallery/cvpstill.html>, 4 pgs.
Lightlab Imaging Technology, “Lightlab imaging starts US cardiology clinical investigations,” Lightlab Company Press Release, retrieved online on Sep. 3, 2003, <http://www.lightlabimaging.com/press/cardtrails.html>, 2 pgs.
Lightlab Imaging Technology, “Lightlab sees bright prospects for cardiac applications of OCT technology,” The Graysheet Medical Devices Diagnostics & Instrumentation, vol. 27, No. 35, retrieved online on Sep. 3, 2003, <http://www.lightlabimaging.com/press/graysheet.html>, 1 pg.
Lightlab Imaging Technology, “What is OCT?,” retrieved online on Sep. 3, 2003,<http:lightlabimaging.com/oct.html>, 2 pgs.
Lightlab Imaging Technology, “Why use OCT?,” retrieved online on Sep. 3, 2003, <http:lightlabimaging.com/whyoct.html>, 2 pgs.
Lima et al., “Efficacy and safety of oral sirolimus to treat and prevent in-stent restenosis: a pilot study results,” Abstract #2929, AHA, 2002, 1 pg.
Lima et al., “Systemic immunosuppression inhibits in-stent coronary intimal proliferation in renal transplant patients,” Abstract #2928, AHA, 2002, 1 pg.
MIT TechTalk, “Laser catheter to aid coronary surgery,” Jan. 9, 1991, retrieved online on Feb. 7, 2005, <http://web.mit.edu/newsoffice/tt/1991/jan09/24037.html>, 4 pgs.
Muller-Leisse et al., “Effectiveness and safety of ultrasonic atherosclerotic plaque ablation: in vitro investigation,” CardioVas. Intervent. Radiol., 1993, 16:303-7.
Nair A. et al., “Regularized autoregressive analysis of intravascular ultrasound backscatter. Improvement in spatial accuracy of tissue maps,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 51, No. 4, Apr. 2004.
Popma et al., “Chapter 38—Percutaneous coronary and valvular intervention,” Heart Disease: A Textbook of Cardiovascular Medicine, 6th ed., 2001, W.B. Saunders Company, pp. 1364-1405.
Scheller, “Intracoronary paclitaxel added to contrast media inhibits in-stent restenosis of porcine coronary arteries,” Abstract #2227, AHA, 2002, 1 pg.
Shaffer, “Scientific basis of laser energy,” Clin. Sports Med., 2002, 21(4):585-98.
Shmatukha, “MRI temperature mapping during thermal balloon angioplasty,” Phys. Med. Biol. 51, 2006, N163-N171.
Slager et al., “Vaporization of atherosclerotic plaques by spark erosion,” J. Am. Coll. Cardiol., 5(6):1382-6, Jun. 1985.
Stiles et al., “Simulated characterization of atherosclerotic lesions in the coronary arteries by measurement of bioimpedance,” IEEE Transactions on Biomedical Engineering, vol. 50, No. 4, Jul. 2003.
Süselbeck et al. “Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance system”, Basic Res Cardiol (2005) 100:446-452.
Suselbeck et al., “In vivo intravascular electrical impedance spectroscopy using a new catheter with integrated microelectrodes,” Basic Res. Cardiol. 100:28-34, 2005.
Van Den Berg, “Light echoes image the human body,” OLE, Oct. 2001, pp. 35-37.
Romer et al., “Histopathology of Human Coronary Atherosclerosis by Quantifying its Chemical Composition with Raman Spectroscopy,” Circulation. (1998) 97: 878-885.
Volcano Therapeutics, “Product—Functional Measurement”, [online] [retrieved on Mar. 9, 2003]. Retrieved from the Internet: <http://www.volcanotherapeutics.com/pages/products/functional_measurement-us.html> 2 pages total.
Supplementary Partial European Search Report of Application No. 04816863.7, dated May 5, 2009, 7 pages total.
European Search Report and Search Opinion of EP Patent Application No. 07844417.1, dated Nov. 5, 2009, 10 pages total.
Cardiovascular Technologies, Inc., “Heated Balloon Device Technology” [Presentation], 2007-2008, 11 pages total. Retrieved from: <<http://www.cvtechinc.com/pr/presoCVT_Heated_Balloon_Tech.pdf>>.
Morice et al., “A Randomized Comparison of a Sirolimus-Eluting Stent With a Standard Stent for Coronary Revascularization,” The New England Journal of Medicine, 346(23): 1773-1780 (Jun. 6, 2002).
Van Den Berg, “Light echoes image the human body,” OLE, Oct. 2001, p. 35-37.
“IntraLuminal: Products,” IntraLuminal Therapeutics, Inc., 2003, p. 1-9.
“Laser Catheter to Aid Coronary Surgery,” TechTalk: MIT, Jan. 9, 1991, p. 1-4.
“Optical Coherence Tomography: LightLab Imaging Starts US Cardiology Investigations,” LightLab Imaging Technology, 2002.
“Optical Coherence Tomography: LightLab Sees Bright Prospects for Cardiac Application of OCT Technology,” LightLab Imaging Technology, 2001, vol. 27, No. 35.
“Products—Functional Measurement,” VOLCANO Functional Measurement Products US, Mar. 24, 2003, p. 1-2.
Brown et al., “Radiofrequency capacitive heaters: the effect of coupling medium resistivity on power absorption along a mouse leg,” Physics in Medicine and Biology, 1993, p. 1-12, vol. 38.
Carrington, “Future of CVI: It's all about plaque: Identification of vulnerable lesions, not ‘rusty pipes,’ could become cornerstone of preventive cardiology,” Diagnostic Imaging, 2001, p. 1-8.
Chen et al., “Percutaneous pulmonary artery denervation completely abolishes experimental pulmonary arterial hypertension in vivo,” EuroIntervention, 2013, p. 1-8.
Cimino, “Preventing plaque attack,” Mass High Tech, 2001, p. 1-2.
Dahm et al., “Relation of Degree of Laser Debulking of In-Stent Restenosis as a Predictor of Restenosis Rate,” The American Journal of Cardiology, 2002, p. 68-70, vol. 90.
De Korte et al., “Characterization of Plaque Components With Intravascular Ultrasound Elastography in Human Femoral and Coronary Arteries In Vitro,” Circulation, Aug. 8, 2000, p. 617-623.
Durney et al., “Radiofrequency Radiation Dosimetry Handbook,” Oct. 1986, p. 1-2, Fourth Edition.
Durney et al., “Radiofrequency Radiation Dosimetry Handbook: Contents,” Oct. 1986, p. 1-5, Fourth Edition.
Fournier-Desseux et al., “Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography,” Physiological Measurement, 2005, p. 337-349. Vo. 26, Institute of Physics Publishing.
Fram et al., “Feasibility of Radiofrequency Powered, Thermal Balloon Ablation of Atrioventricular Bypass Tracts Via the Coronary Sinus: In Vivo Canine Studies,” PACE, Aug. 1995, p. 1518-1530, vol. 18.
Fram et al., “Low Pressure Radiofrequency Balloon Angioplasty: Evaluation in Porcine Peripheral Arteries,” JACC, 1993, p. 1512-1521, vol. 21, No. 6, American College of Cardiology.
Fujimori et al., “Significant Prevention of In-Stent Restenosis by Evans Blue in Patients with Acute Myocardial Infarction,” American Heart Association, 2002.
Fujita et al., “Sarpogrelate, An Antagonist of 5-HT(2A) Receptor, Treatment Reduces Restenosis After Coronary Stenting,” American Heart Association, 2002.
Gabriel, “Appendix A: Experimental Data,” 1999, p. 1-21.
Gregory et al., “Liquid Core Light Guide for Laser Angioplasty,” The Journal of Quantum Electronics, Dec. 1990, p. 2289-2296, vol. 26, No. 12.
Kaplan et al., “Healing after Arterial Dilatation with Radiofrequency Thermal and Nonthermal Balloon Angioplasty Sytems,” Journal of Investigative Surgery, 1993, p. 33-52, vol. 6.
Kolata, “New Studies Question Value of Opening Arteries,” The New York Times, Mar. 21, 2004, p. 1-5.
Konings et al., “Development of an Intravascular Impedance Catheter for Detection of Fatty Lesions in Arteries,” IEEE Transactions on Medical Imaging, Aug. 1997, p. 439-446, vol. 16, No. 4.
Kurtz et al., “Lamellar Refractive Surgery with Scanned Intrastromal Picosecond and Femtosecond Laser Pulses in Animal Eyes,” Journal of Refractive Surgery, Sep./Oct. 1998, p. 541-548.
Lee et al., “Thermal Compression and Molding of Atherosclerotic Vascular Tissue With Use of Radiofrequency Energy: Implications for Radiofrequency Balloon Angioplasty,” JACC, 1989, p. 1167-1175, vol. 13, No. 5, American College of Cardiology.
Lima et al., “Efficacy and Safety of Oral Sirolimus to Treat and Prevent In-Stent Restenosis: A Pilot Study Results,” American Heart Association, 2002, p. 2929.
Lima et al., “Systemic Immunosuppression Inhibits In-Stent Coronary Intimal Proliferation in Renal Transplant Patients,” American Heart Association, 2002, p. 2928.
Morice et al., “A Randomized Comparison of a Sirolimus-Eluting Stent With a Standard Stent for Coronary Revascularization,” The New England Journal of Medicine, Jun. 6, 2012, p. 1773-1780, vol. 346, No. 23.
Muller-Leisse et al., “Effectiveness and Safety of Ultrasonic Atherosclerotic Plaque Ablation: In Vitro Investigation,” CardioVascular and Interventional Radiology, 1993, p. 303-307, vol. 16.
Nair et al., “Regularized Autoregressive Analysis of Intravascular Ultrasound Backscatter: Improvement in Spatial Accuracy of Tissue Maps,” IEEE Transactions on Ultrasonics, Apr. 2004, p. 420-431, vol. 51, No. 4.
Resar et al., “Endoluminal Sealing of Vascular Wall Disruptions With Radiofrequency-Heated Balloon Angioplasty,” Catheterization and Cardiovascular Diagnosis, 1993, p. 161-167, vol. 29.
Romer et al., “Histopathology of Human Coronary Atherosclerosis by Quantifying Its Chemical Composition With Raman Spectroscopy,” Circulation, 1998, p. 878-885, vol. 97.
Schauerte et al., “Catheter Ablation of Cardiac Autonomic Nerves for Prevention of Vagal Atrial Fibrillation,” Circulation, 2000, p. 2774-2780, vol. 102.
Scheller et al., “Intracoronary Paclitaxel Added to Contrast Media Inhibits In-Stent Restenosis of Porcine Coronary Arteries,” American Heart Association, 2002, p. 2227.
Scheller et al., “Potential solutions to the current problem: coated balloon,” EuroIntervention, 2008, p. C63-C66, vol. 4 (Supplement C).
Shaffer, “Scientific basis of laser energy,” Clinics in Sports Medicine, 2002, p. 585-598, vol. 21.
Shmatukha et al., “MRI temperature mapping during thermal balloon angioplasty,” Physics in Medicine and Biology, 2006, p. N163-N171, vol. 51.
Slager et al., “Vaporization of Atherosclerotic Plaques by Spark Erosion,” J Am Coll Cardiol, 1985, p. 21-25.
Stiles et al., “Simulated Characterization of Atherosclerotic Lesions in the Coronary Arteries by Measurement of Bioimpedance,” IEEE Transactions on Biomedical Engineering, Jul. 2003, p. 916-921, vol. 50, No. 7.
Suselbeck et al., “In vivo intravascular electric impedance spectroscopy using a new catheter with integrated microelectrodes,” Basic Res Cardiol, 2005, p. 28-34, vol. 100.
Suselbeck et al., “Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system,” Basic Res Cardiol, 2005, p. 446-452, vol. 100.
Tepe et al., “Local Delivery of Paclitaxel to Inhibit Restenosis during Angioplasty of the Leg,” The New England Journal of Medicine, 2008, p. 689-699, vol. 358.
Brown et al., “Observations on the shrink temperature of collagen and its variations with age and disease,” Ann Rheum Dis, Jun. 1, 1958, 17(2):196-208.
Office Action issued in Chinese Patent Application No. 20111031923.X, dated May 22, 2012, 10 pages total.
Notice of the Reason for Refusal issued in Japanese Patent Application No. 2009-533544, dated Jun. 19, 2012, 3 pages total.
Summons to Attend Oral Proceedings of EP Patent Application No. 07844424.7, dated Jul. 5, 2012, 7 pages total.
European Search Report and Search Opinion of EP Patent Application No. 11191822.3, dated Jun. 13, 2012, 13 pages total.
Office Action issued in European Application No. 07844421.3, dated Aug. 23, 2012, 5 total pages.
Notice of the Reason for Refusal issued in Japanese Patent Application No. 2009-533546, dated Jun. 19, 2012, 6 pages total.
Extended European Search Report and Search Opinion of EP Patent Application No. 12154069.4, dated Sep. 17, 2012, 13 pages total.
Notice of the Reason for Refusal issued in Japanese Patent Application No. 2006-526351, dated Sep. 18, 2012, 20 pages total.
Office Action issued in Chinese Patent Application No. 201110031923.X, dated Sep. 6, 2012, 11 pages total.
Office Action issued in Australian Patent Application No. 2010248955, dated Sep. 13, 2012, 4 pages total.
CardioVascular Technologies Inc., “Heated Balloon Device Technology,” 11 pages, 2008.
Strategic Business Development, Inc., “Thermal and Disruptive Angioplasty: A Physician's Guide,” 8 pages, 1990.
Zhang et al., “Non-contact Radio-Frequency Ablation for Obtaining Deeper Lesions,” IEEE Transaction on Biomedical Engineering, vol. 50, No. 2, 6 pages, Feb. 2003.
Lazebnik et al., “Tissue Strain Analytics Virtual Touch Tissue Imaging and Qualification,” Siemens Whitepaper, Oct. 2008, 7 pages.
Zhou et al., “Mechanism Research of Cryoanalgesia,” Forefront Publishing Group, 1995.
Florete, “Cryoblative Procedure for Back Pain,” Jacksonville Medicine, Oct. 1998, 10 pages.
Stevenson, “Irrigated RF Ablation: Power Titration and Fluid Management for Optimal Safety Efficacy,” 2005, 4 pages.
Giliatt et al., “The Cause of Nerve Damage in Acute Compression,” Trans Am Neurol Assoc, 1974: 99; 71-4.
Baun, “Interaction with Soft Tissue,” Principles of General & Vascular Sonography, Chapter 2, pp. 23-24, Before Mar. 2012.
Blue Cross Blue Shield Medicaly Policy, “Surgery Section—MRI-Guided Focused Ultrasound (MRgFUS) for the Treatment of Uterine Fibroids and Other Tumors,” 2005, 5 pages.
Gentry et al., “Combines 3D Intracardiac Echo and Ultrasound Ablation,” Medical Imaging 2003: Ultrasonic and Signal Processing, vol. 5035, 2003, pp. 166-173.
Lafon et al., “Optmizing the Shape of Ultrasound Transducers for Interstitial Thermal Ablations,” MEd Phys. Mar. 2002; 29(3): 290-7 (abstract only).
G. Ter Haar, “Ultrasound Focal Beam Surgery,” Ultrasound in Med. & Biol., 1995, vol. 21, No. 9, pp. 1089-1100.
Seip et al., “Transurethral High Intensity Focused Ultrasound: Catheter Based Prototypes and Experimental Results,” IEEE Ultrasonics Symposium Proceeding, 2000, 4 pages.
Toytman et al., “Tissue Dissection with Ultrafast Laser Using Extended and Multiple Foci,” SPIE Proceeding, Optical Interactions with Tissues and Cells XXI, vol. 7562, 2010, 10 pages.
Zhoue et al., “Non-Thermal Ablation of Rabbit Liver VX2 Tumore by Pulsed High Intensity Focused Ultrasound Contrast Agent: Pathological Characteristics,” World Journal of Gastroenterology, vol. 14(43), Nov. 21, 2008, pp. 6743-6747.
Scheller et al., “Potential Solutions to the Current Problem: Coated Balloon,” EuroIntervention, Aug. 2008; 4 Suppl C: C63-66.
Tepe et al., “Local Delivery of Paclitaxel to Inhibit Restenosis During Angioplasty of the Leg,” N Engl J Med, Feb. 14, 2008; 358(7): 689-699; retrieved from the Internet: <<http://content.nejm.org/cgi/reprint/358/7/689.pdf>>.
Examiner's Report of Canadian Patent Application No. 2,539,026, dated Feb. 6, 2012, 4 total pages.
Office Action issued in Chinese Patent Application No. 200480030163.9, dated Jan. 16, 2009, 8 pages total.
Office Action issued in Chinese Patent Application No. 200480030163.9, dated Mar. 28, 2008, 7 pages total.
Office Action issued in Chinese Patent Application No. 200480030163.9, dated Aug. 31, 2007, 8 pages total.
Office Action issued in Chinese Patent Application No. 200480030163.9, dated Jul. 31, 2009, 5 pages total.
Office Action issued in European Application No. 04816863.7, dated Jun. 4, 2010, 5 pages total.
Office Action issued in European Application No. 04816863.7, dated Dec. 5, 2011, 4 pages total.
Office Action issued in European Application No. 04816863.7, dated Jan. 22, 2010, 6 pages total.
Formal Inquiry issued in Japanese Patent Application No. 2006-526351, dated Jan. 17, 2012, 5 pages total.
Notice of the Reason for Refusal issued in Japanese Patent Application No. 2006-526351, dated Apr. 27, 2010, 6 pages total.
Final Decision of Rejection issued in Japanese Patent Application No. 2006-526351, dated Jan. 18, 2011, 4 pages total.
European Search Report and Search Opinion of EP Patent Application No. 12151957.3, mailed Apr. 16, 2012, 8 pages total.
Office Action issued in Chinese Patent Application No. 200680016424.0, dated Apr. 13, 2010, 10 pages total.
European Search Report and Search Opinion of EP Patent Application No. 06748830.4, dated Nov. 16, 2009, 12 pages total.
Partial European Search Report of EP Patent Application No. 11191822.3, dated Mar. 19, 2012, 7 pages total.
Office Action issued in Chinese Patent Application No. 20111031923.X, dated Nov. 17, 2011, 16 pages total.
Examiner's First Report of Australian Patent Application No. 2007310988, dated May 23, 2012, 4 pages total.
European Search Report and Search Opinion of EP Patent Application No. 07844421.3, dated Jan. 4, 2010, 15 pages total.
European Search Report and Search Opinion of EP Patent Application No. 12155447.1, dated May 10, 2012, 6 pages total.
International Search Report and Written Opinion of PCT Application No. PCT/US2009/064027, dated Jan. 19, 2010, 9 pages total.
European Search Report and Search Opinion of EP Patent Application No. 12154120.5, dated May 8, 2012, 8 pages total.
European Search Report and Search Opinion of EP Patent Application no. 07844424.7, dated Nov. 11, 2009, 11 pages total.
Partial European Search Report of EP Patent Application No. 12154069.4, dated May 10, 2012, 5 pages total.
International Search Report and Written Opinion of PCT Application No. PCT/US2009/064465, dated Jan. 13, 2010, 13 pages total.
International Search Report of PCT Application No. PCT/US09/57728, dated Nov. 30, 2009, 10 pages total.
International Search Report and Written Opinion of PCT/US2010/034789, dated Jul. 9, 2010, 13 pages total.
International Search Report and Written Opinion of PCT/US2011/00661, dated Nov. 18, 2011, 14 pages total.
Gabriel, “Appendix C: Modeling the frequency dependence of the dielectric properties to a 4 dispersions spectrum,” p. 1-49, Nov. 6, 1997.
Han et al., “Third-Generation Cryosurgery for Primary and Recurrent Prostate Caner,” BJU International, vol. 93, pp. 14-18, 2004.
Omura et al., “A Mild Acute Compression Induces Neurapraxia in Rat Sciatic Nerve,” The International Journal of Neuroscience, vol. 114 (12), pp. 1561-1572, Dec. 2004.
“Optical Coherence Tomography: Advantages of OCT,” LightLab Imaging Technology, printed Sep. 3, 2003.
“Optical Coherence Tomography: Image Gallery Cardiovascular Procedures,” LightLab Imaging Technology, printed Sep. 3, 2003.
“Optical Coherence Tomography: What is OCT?,” LightLab Imaging Technology, printed Sep. 3, 2003.
“Optical Coherence Tomography: Why Use OCT?,” LightLab Imaging Technology, printed Sep. 3, 2003.
Popma et al., “Percutaneous Coronary and Valvular Intervention,” Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, 7th edition, p. 1364-1405, 2005.
Pieper et al., “Design and Implementation of a New Computerized System for Intraoperative Cardiac Mapping”; Journal of the American Physiological Society, 1991; pp. 1529-1539.
Stone et al., “EP Opposition EP 07844424.7-EP2076194” (Opening briefs dated Jan. 23, 2014; responsive briefs dated Sep. 15, 2014; listing of references dated Jul. 16, 2015; and observations prior to hearing dated Mar. 14, 2016) (94 pages).
Related Publications (1)
Number Date Country
20080188913 A1 Aug 2008 US
Provisional Applications (3)
Number Date Country
60976752 Oct 2007 US
60921973 Apr 2007 US
60852787 Oct 2006 US