This invention relates to a method of conditioning a long horizontal open-hole water injection well in a tight formation prior to acid stimulation to improve the contact of the acid with the rock as well as the penetration of the acidic materials into the reservoir rock and thereby enhance the permeability of the formation and the flow rate of the injected water.
It is a common practice to employ acid stimulation of low-permeability or damaged carbonate reservoir formations in order to enhance the flow and production of hydrocarbon fluids from the formation surrounding the wellbore. Acid treatment of water injection wells is similarly employed to enhance the permeability of the reservoir. However, the effectiveness of the acid treatment can be seriously reduced if the wellbore contains formation damage caused by incursions of drilling fluids, or mud, and other foreign matter. This problem is particularly pronounced in water injection wells through tight carbonate reservoir formations and results in acid treatments that are less successful than those carried out in relatively high permeability water injection wells.
The effectiveness of the acid treatment is directly proportional to the injection rate (e.g., barrels of water/minute) and inversely proportional to the injection pressure, i.e., a lower pressure is required for a given injection rate following an effective acid treatment.
It has been found that hydrochloric acid which can effectively dissolve the calcium carbonate minerals present in both the filter cake and the formation is not capable of dissolving or degrading some of the formation-damaging polymer components present in the drilling fluid, such as xanthan gum and starch. The xanthan gum is used to increase viscosity and the starch to control fluid loss. Three different damage mechanisms associated with drilling fluids are filtrate invasion, solid invasion (internal filtercake) and external filtercake. Other materials used in assembling the drilling pipe can also cause damage to the surrounding formation. Pipe dope applied to the couplings and other fittings used in assembling the drilling pipes and associated components can also cause damage to the surrounding formation.
As used herein, the term “undesirable materials” will be understood to refer to formation-damaging polymers, other chemical substances, debris and other materials which interfere with the flow of formation fluids from the walls and adjacent reservoir rock of the well bore and thereby reduce the productivity/injectivity of the well. The inherent formation pressure is the pressure of the fluids in the pores of a reservoir created by the weight of the overburden, water injection and any underground withdrawal.
As used herein, the term “wellbore” if not otherwise modified, will be understood to mean the combined vertical section and the open-hole horizontal section of the well.
It is therefore an object of the present invention to provide a method of substantially eliminating or greatly reducing the presence of formation-damaging materials, such as polymer components and pipe dope residue that interfere with the effectiveness of an acid stimulation treatment in an open-bore horizontal water injection well, to thereby render the subsequent acid treatment of the formation more efficient and effective.
The method of the present invention comprehends the inclusion of an additional step or pre-treatment stage prior to the introduction of the pressurized acid treatment of a water injection well in which the injection portion of the horizontal open-hole wellbore is subjected to flowback of the formation fluids for a period of time that is sufficient to remove a substantial portion of the undesired materials from the walls of the wellbore and from the adjacent formation. In some formations, the flowback stage can be achieved as a result of the inherent reservoir pressure and once the application of pressure on the drilling fluid is discontinued at the surface, the formation fluids will flow into the open-hole bore with sufficient force to displace the introduced wellbore fluids back up through the vertical wellbore and produce the formation fluids and the undesirable materials to the surface through the production/injection tubing.
The rate and time allowed for the flowback is controlled at the wellhead. In such a case, the flowback can be achieved by depressurizing the wellbore fluid to atmospheric and opening the wellhead valve to discharge the wellbore fluid.
The formation fluids produced during the flowback step can include brine, hydrocarbon liquids and/or gases and will initially include damaging mud-induced solids introduced under pressure into the wellbore during the drilling of the wellbore and the liquid that was forced into the pores of the reservoir rock. The portion of the reservoir occupied by solids faulted on the horizontal open-hole bore surface and the solids and liquid penetrating the formation around the bore are referred to herein as the infiltration zone.
In the event that the inherent reservoir pressure is not sufficient to raise the wellbore fluid, formation fluids, debris and undesirable materials to the wellhead at the earth's surface, the flowback is achieved by reducing the hydrostatic pressure of the completion fluid in the production zone to a pressure that is less than the inherent pressure of the formation fluids proximate to the production zone. The hydrostatic pressure of the fluid is reduced by displacing a portion of the fluid from the vertical section of the wellbore to the earth's surface.
In one preferred embodiment of this aspect of the method of the invention, the wellbore fluid is displaced by the use of a “nitrogen lift” process in which nitrogen gas is circulated through the production/injection conduit and into the wellbore to displace liquids and to thereby reduce the hydrostatic pressure created by the fluid column that extends to the wellhead at the earth's surface. Nitrogen lifting is well known and is a commonly used technique for initiating production in a well following acidizing treatments or over-balanced completions.
The quality of the completion fluid, debris and undesirable materials, along with any produced formation fluid(s) are monitored at the wellhead during the flowback stage. Samples of the formation fluids are subjected to periodic physical inspections. When the amount of undesirable materials is reduced to a predetermined acceptable level, the flowback stage is terminated.
Following termination of the flowback stage, the wellbore is prepared for the acidizing treatment stage in accordance with standard and customary procedures. This typically includes a preflush step which consists of water, a mutual solvent and water-borne wetting surfactant is next used to condition the wellbore for the acid treatment. The acidizing treatment stage of the process can include a 20% by weight emulsified HCl solution injected under pressure followed by a spacer of non-emulsified HCl and appropriate additives, which is then followed by a diverting agent.
The invention will be described below in further detail and with reference to the attached drawings in which:
Referring to
The horizontal section 20 of the open-hole well bore is also of indeterminate length and is defined by the curved transitional heel portion 22 and the completion end, or toe, 24. Note that the casing 14 terminates at region 15 which defines the beginning of the open-hole portion of the well in the carbonate formation 40.
Also shown in
The problem of mud damage mechanisms is illustrated in the enlarged cross-sectional schematic diagram of
As a result of the over-balanced pressure, an internal filtercake 54 as represented by the small particles in
In accordance with the method of the invention, the reduction of the wellbore fluids overpressure, i.e., by the use of the nitrogen lift that is described in more detail below, will allow the inherent reservoir pressure on the reservoir fluids 42 in the injection zone to cause the reservoir fluids to flow-back into the open-hole bore 20 and thereby flush the filtrate 56, and most, if not all of the internal filtercake 54 and external filtercake 52 from the surrounding reservoir rock.
The formation fluids produced during the flow-back stage of the process of the present invention can include brine, hydrocarbon liquids and/or gases, in addition to the drilling fluid filtrate. As schematically illustrated in
As previously noted, nitrogen lifting is an operation that is known and that has been commonly used to enable a well to flow initially or to bring a previously flowing well back into production. The nitrogen is introduced into the vertical section of the well bore at the desired location using coiled tubing. The nitrogen gas functions to “unload” or reduce the hydrostatic pressure upstream of the production zone to thereby under-balance the well so that it will flow naturally as a result of the inherent reservoir pressure.
Utilizing a simple calculation employing the known reservoir pressure at the production zone and along with the weight or density of the completion fluid in the well, the vertical depth of the well and its average diameter, the amount of overbalance can be estimated and the corresponding minimum depth for application of the nitrogen lift can be identified. The nitrogen can be introduced from a pressurized source at the earth's surface at a rate of from 300 to 900 SCF/bbl, the pressure being dependent upon the response achieved in the well during the nitrogen lift operation.
Referring now to
A source of liquefied nitrogen 130 is also disposed in the proximity of the wellhead and connected to pump 140, which in turn is connected to the inlet end 124 of the coiled tubing which is typically retained on the vehicle 110.
Once the apparatus has been positioned and secured, the liquefied nitrogen is pumped from its container 130 and through the coiled tubing 120 to be discharged into the vertical section 10 of the wellbore. When the liquefied nitrogen has been discharged from the open end 122 of the submerged tubing 120, it rapidly expands to fill the wellbore and rises as an essentially continuous plug or block of gas towards the earth's surface, lifting the well completion fluid/mud out of the wellbore 10. With this reduction in the hydrostatic pressure, the inherent formation pressure of the reservoir is able to displace the filtrate 56 and the reservoir fluids begin their backflow into the horizontal open-hole wellbore 20. In addition to displacing the liquid filtrate 56, the moving fluids also displace the internal filtercake 54 and the external filtercake 52, respectively, from the adjacent formation and the surface of the open-hole bore. These materials will also be carried to the surface where they can be sampled and physically inspected for their content.
In some cases, the inherent reservoir pressure is sufficient to lift the reservoir fluids and any remaining undesired materials and completion fluid/mud to the surface and the injection of the liquefied nitrogen into the vertical wellbore 10 can be discontinued. In the event that the inherent reservoir pressure is not sufficient for this purpose, the nitrogen lift process can be continued while the fluids are inspected at the surface until the desired quality has been observed, after which the nitrogen injection is terminated and the coil tubing withdrawn. Thereafter, the acidizing treatment is initiated and completed as described above.
The method of the invention reduces polymer penetration of the tight carbonate formation 40 during the acid treatment, which is one of the main causes of injectivity loss, especially in tight carbonate formations. Laboratory tests have shown that the injection of a reacted solution of 20 wt % HCl acid and the components of a typical fluid used in the drilling of horizontal water injection wells resulted in a loss of more than 80% of the base core permeability.
Application of the method of the invention in three water injection wells produced a significant improvement in their injectivity. A field study was undertaken for the post treatment injection test results for six wells in the same formation in which three of the wells (1, 2, 3) were treated with the industry standard acid treatment and the other three wells (4, 5, 6) were treated using the method of the invention. The results of these comparative tests showed that the wells treated using the flowback method of the invention had a more than 2-fold increase in injectivity at lower injection pressure as compared to those subjected to the same acid treatment, but without the prior flowback stage.
The results of the tests on the six wells are set forth in the following tables, where Table 1 represents the post-acid stimulation treatment injection test without the flowback stage and Table 2 shows the improved results for the series of post-acid stimulation treatment injection tests with the prior flowback stage. In the tables, IWHP is the injection wellhead pressure.
While the process of the invention has been described in detail above and illustrated in the accompanying drawings, modifications and variations will be apparent to those of ordinary skill in the art from this description and the scope of the protection to be accorded the invention is to be determined by the claims which follow.
Number | Name | Date | Kind |
---|---|---|---|
2811209 | Elkins | Oct 1957 | A |
3902523 | Gaut | Sep 1975 | A |
4187911 | Hutchison et al. | Feb 1980 | A |
4630679 | Reeves et al. | Dec 1986 | A |
5203413 | Zerhboub | Apr 1993 | A |
5385206 | Thomas | Jan 1995 | A |
5655605 | Matthews | Aug 1997 | A |
5862869 | Michael | Jan 1999 | A |
5937949 | Lezzi et al. | Aug 1999 | A |
6131661 | Conner et al. | Oct 2000 | A |
6192985 | Hinkel et al. | Feb 2001 | B1 |
6250389 | Sudol | Jun 2001 | B1 |
6443245 | Michael | Sep 2002 | B2 |
6494262 | Chitty | Dec 2002 | B1 |
6527050 | Sask | Mar 2003 | B1 |
6719054 | Cheng et al. | Apr 2004 | B2 |
6722438 | Sask | Apr 2004 | B2 |
6968898 | Todd et al. | Nov 2005 | B2 |
6978838 | Parlar et al. | Dec 2005 | B2 |
7090018 | Livingstone | Aug 2006 | B2 |
7114581 | Aronstam et al. | Oct 2006 | B2 |
7514390 | Chan | Apr 2009 | B2 |
7514391 | Chan | Apr 2009 | B2 |
7618924 | Al-Yami | Nov 2009 | B2 |
7621324 | Atencio | Nov 2009 | B2 |
7703529 | Robinson et al. | Apr 2010 | B2 |
7712536 | Pirolli et al. | May 2010 | B2 |
7992656 | Dusterhoft et al. | Aug 2011 | B2 |
20030141073 | Kelley | Jul 2003 | A1 |
20060137879 | Chan | Jun 2006 | A1 |
20070227722 | Atencio | Oct 2007 | A1 |
20080066910 | Alary et al. | Mar 2008 | A1 |
20090090158 | Davidson et al. | Apr 2009 | A1 |
20090126929 | Vinegar | May 2009 | A1 |
20090173501 | Kotsonis et al. | Jul 2009 | A1 |
20090321071 | Zhang et al. | Dec 2009 | A1 |
20100071904 | Burns et al. | Mar 2010 | A1 |
20100089462 | Atencio | Apr 2010 | A1 |
20120247785 | Schmitt | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
2009114745 | May 2009 | JP |
Entry |
---|
International Search Report and Written Opinion mailed Mar. 28, 2012 by the International Search Authority in International Application No. PCT/US2011/061342 (6 pages). |
Number | Date | Country | |
---|---|---|---|
20120152551 A1 | Jun 2012 | US |