This application claims the benefit of Chinese Patent Application No. 201610407870.X, filed on Jun. 11, 2016, which is incorporated herein by reference in its entirety.
1. Field of the Invention
The present disclosure relates to the field of electrical power transmission, and particularly to an induction coil assembly and a wireless power transfer system.
2. Description of the Related Art
A magnetic resonance wireless power transfer system is shown in
According to the abovementioned magnetic coupling process, an alternating magnetic field is generated by the coupling of the receiving coil of the receiving side and the transmitting coil, an induced voltage Ud of the alternating magnetic field is expressed by the following equation:
Ud=ω0*Ip*k*√{square root over (Ls*Ld)}
Wherein, ω0 denotes a resonance frequency, Ip denotes a current in the transmitting coil, k denotes a coupling coefficient between the transmitting coil and the receiving coil, Ls denotes an inductance value of the transmitting coil, and Ld denotes an inductance value of the receiving coil.
As can be seen from the abovementioned equation, in a case where the operation frequency is fixed and the transmitting current in the transmitting coil is constant, in order to increase the voltage induced by the receiving coil, it is necessary to optimize the structure of coil, in particular the structure of the receiving coil, so as to improve the magnetic field coupling ability of the receiving coil. Therefore, designers have to, within an effective range, on the one hand improve the inductance value Ld of the receiving coil, and on the other hand improve the coupling coefficient k between the transmitting coil and the receiving coil.
In view of this, the present disclosure provides an induction coil assembly and a wireless power transfer system. By optimizing the winding manner of the induction coil, a higher inductance value may be achieved with relatively small coil dimensions, and the coupling coefficient k between the transmitting coil and the receiving coil may satisfy an efficiency requirement.
According to a first aspect of the present disclosure, an induction coil assembly is provided which comprises: at least one substrate, each including at least one through hole; a first part of a wire of the induction coil assembly wound on a first surface of the substrate; and a second part of the wire extended to a second surface of the substrate via one of the through holes of the substrate and wound on the second surface of the substrate.
Preferably, the wire forms a N-turn coil, the first part of the wire forms A windings, and the second part of the wire forms B windings, wherein when N is an even number, A is equal to N/2 and B is equal to N/2; when N is an odd number, A is equal to (N+1)/2, B is equal to (N−1)/2; or, A is equal to (N−1)/2, B is equal to (N+1)/2.
Preferably, locations of the windings on the first surface of the substrate and locations of the windings on the second surface of the substrate are overlapped by each other up and down.
Preferably, locations of the windings on the first surface of the substrate and locations of the windings on the second surface of the substrate are mutually staggered with each other up and down.
Preferably, the wire forms a N-turn coil, wherein a first winding of the coil is wound on the first surface of the substrate, the wire are extended to the second surface of the substrate via a first through hole and wound on the second surface of the substrate to form a i th winding and a (i+1)th winding of the coil; the wire are extended to the first surface of the substrate via a second through hole and wound on the first surface of the substrate to form a (i+2)th turn and a (i+3)th turn of the coil; and wherein i is equal to 2*j, j is an odd number greater than or equal to 1.
Preferably, the wire of the induction coil assembly comprises M strands of sub wires placed together, wherein M is a positive integer.
According to a second aspect of the present disclosure, an induction coil assembly is provided, which comprises: a substrate, each including at least one through hole and N layers; and a wire forming a N-turn coil with N windings wound on the N layers of the substrate, respectively; wherein each of the N windings is wound on a first surface of a layer, and the wire is extended to an adjacent next layer via the through hole and wounded on the first surface of the adjacent next layer to form a next windings.
Preferably, a location of a winding on the first surface of one layer and a location of a winding on the first surface of an adjacent layer are overlapped by each other up and down.
Preferably, a location of a winding on the first surface of one layer and a location of a winding on the first surface of an adjacent layer are mutually staggered with each other up and down.
Preferably, wherein the wire of the induction coil assembly comprises M strands of sub wires placed together, wherein M is a positive integer.
According to a third aspect of the present disclosure, a wireless power transfer system is provided, which comprises: a power transmitting terminal receiving an externally inputted electrical power supply so as to generate a spatial magnetic field; and a power receiving terminal including a receiving coil and a voltage conversion circuit, wherein the receiving coil is coupled to the spatial magnetic field so as to obtain a high frequency voltage, and the voltage conversion circuit receives the high frequency voltage so as to generate an output voltage and supply the output voltage to a load, and wherein a structure of the receiving coil adopts the abovementioned induction coil assembly.
Preferably, the electrical power transmitting terminal includes: an inverter circuit receiving the externally inputted electrical power supply so as to generate a primary side alternating voltage; a transmitting coil receiving the primary side alternating voltage so as to generate the spatial magnetic field, and wherein a structure of the transmitting coil adopts the abovementioned induction coil assembly.
According to the abovementioned induction coil assembly and the wireless power transfer system, the windings of the induction coil assembly are wound on a first surface and a second surface of a subs-trate. Two parts of the wire a couple with each other via through holes, and the windings are wound in sequence or crosswise on the first surface and the second surface, so that an area surrounded by each winding of the coil is increased as much as possible with limited substrate dimensions, thereby maximizing the total inductance value of the coil and increasing an induced voltage of the coil.
Several preferred embodiments of the present disclosure will be described in detail in conjunction with the accompanying drawings as follows. However, the present disclosure is not limited thereto.
In a coil assembly in the prior art, windings of a coil assembly are generally wound on one surface of a substrate (e.g. a printed circuit board) so as to achieve a desired inductance value. As shown in
As can be seen from the above-described winding manner, in the coil assembly, the first winding is at the outermost and surrounds a maximum area which leads to a maximum equivalent inductance value L1. The areas surrounded by other windings decreases in turn. The fourth winding is at the innermost and surrounds a minimum area which leads to a minimum equivalent inductance value L4. Although the inductance value of the first winding of such coil assembly is relatively high, the total inductance value of all the four windings of the coil is not high enough. If a preset inductance value is required for a receiving coil, a PCB with a relatively large area is required, which is not conducive to integration and cost. If the receiving coil is formed on a PCB with certain dimensions, the total inductance value is low, and it can be seen from the equation in background that the receiving coil has a low capacity of inducing voltage, which leads to a low efficiency.
Thus, the present disclosure proposes an induction coil assembly applied in a wireless power transfer system. The wireless power transfer system comprises a power transmitting terminal and a power receiving terminal. The power transmitting terminal receives an externally inputted electrical power supply so as to generate a spatial magnetic field. The power receiving terminal comprises a receiving coil and a voltage conversion circuit. The receiving coil is coupled to the spatial magnetic field so as to obtain a high frequency alternative voltage. The voltage conversion circuit receives the high frequency alternative voltage and generates an output voltage to drive a load.
The receiving coil assembly of the wireless power transfer system is shown in
For example, in the present embodiment, the wire of the coil assembly totally forms four windings. The first part of the wire includes two windings in the first half of the coil, namely, the first winding and the second winding shown in
Those skilled in the art may deduce that when the wire forms an N-turn coil and N is an odd number, one more winding should be wound on the first surface or on the second surface of the PCB, however, the winding manner is the same as described when N is an even number.
As can be seen from the above-described manner, the coil structure formed according to the winding manner of the present embodiment is similar to a solenoid, in which the area of each winding is not much different. For example, the area surrounded by the third winding and the area surrounded by the fourth winding would not be reduced too much, but are approximately the same as the area surrounded by the first winding and the area surrounded by the second winding. Thus, the total area surrounded by the four windings is greatly increased which may increase the total inductance value greatly. Therefore, the total inductance value of the induction coil assembly is increased on the premise of limited PCB dimensions. Compared with the coil structure in the prior art shown in
However, it is further found that, in the induction coil assembly shown in
For this reason, further referring to
For example, as shown in
As can be seen from
Moreover, in order to further reduce the reactive current in the abovementioned coil, it can be further seen from the equation of the reactive current that the reactive current may also be reduced by reducing the parasitic capacitances between windings. Therefore, referring to
It should be understood by those skilled in the art that the coil shown in
Furthermore, the wire in the abovementioned embodiment forming the coil structure is one strand of wire which requires a relatively large width. However, it is likely to cause skin effect leading to a small transmission current. Therefore, on the basis of the abovementioned embodiments, the wire may be arranged to comprise M strands of sub wires placed together, wherein M is a positive integer. As shown in
In conjugation with the abovementioned embodiments, it can be inferred that in the embodiments of
Finally, when the carrier (PCB) of the coil is of multi layers, each winding may be wound on a respective layer of the PCB. Each layer comprises at least one through hole, and the wire forms an N-turn coil. Each of the N windings is wound on a first surface of a layer, and the next one is extended to via the through hole and wound on the first surface of an adjacent next layer.
As shown in
Likewise, in
Likewise, the location of the winding on a layer and the location of the winding on an adjacent layer are staggered with each other, which may reduce the parasitic capacitance between the upper winding and the lower winding and reduce the reactive current. Preferably, the projection, on the PCB, of each winding may be exactly staggered precisely, so that the reactive current is reduced to zero.
Likewise, the embodiments shown in
It should be understood by those skilled in the art that for the power transmitting terminal, the power transmitting terminal includes an inverter circuit and a transmitting coil. The inverter circuit receives the externally inputted power supply so as to generate primary side alternating voltage.
The transmitting coil receives the primary side alternating voltage so as to generate the spatial magnetic field. Wherein, the structure of the transmitting coil adopts the abovementioned induction coil assembly. Finally, the structure of the a.bovementioned induction coil assembly is not limited to be applied in the wireless power transfer system, but also be applied in other conditions where it is required to increase induction value of a coil.
The induction coil assembly and the wireless power transfer system according to preferred embodiments of the present disclosure have been described in detail above, the benefits and circuit with regard to the present disclosure should not be construed as limited to the foregoing, the present disclosure will be better understood by means of the disclosed embodiments and accompanying drawings. Therefore, the foregoing disclosure and the accompanying drawings are intended to provide a better understanding of the invention, and the protection of the present invention is not limited to the scope of the present disclosure. Modifications and variations of the embodiments of the present disclosure made by those skilled in the art all fall into the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2016 1 0407870 | Jun 2016 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
20130257362 | Lim | Oct 2013 | A1 |
20150102890 | Nakamura | Apr 2015 | A1 |
20150340150 | Nakamura | Nov 2015 | A1 |
20160035477 | Yeh | Feb 2016 | A1 |
20160056639 | Mao | Feb 2016 | A1 |
20160217911 | Mano | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
103366931 | Oct 2013 | CN |
104517941 | Apr 2015 | CN |
104701947 | Jun 2015 | CN |
104766714 | Jul 2015 | CN |
204480870 | Jul 2015 | CN |
105050372 | Nov 2015 | CN |
204809833 | Nov 2015 | CN |
205029441 | Feb 2016 | CN |
205142776 | Apr 2016 | CN |
105845404 | Aug 2016 | CN |
Number | Date | Country | |
---|---|---|---|
20170358955 A1 | Dec 2017 | US |