The present invention generally relates to electric induction welding or heating of a workpiece within a solenoidal type induction coil, and in particular to such induction welding or heating where the outer dimensions of the workpiece can vary and the coil geometry of the induction coil can be dynamically changed to accommodate the dimensional changes of the workpiece.
Workpieces can pass through solenoidal type induction coils to induction weld or heat the workpieces. Coils of a fixed geometry can efficiently weld or heat only workpieces of a limited range of dimensions.
It is one object of the present invention to provide apparatus and method for electric induction welding or heating of workpieces passing through a solenoidal type coil so that when a dimension of the workpiece changes, the welding or heating process can continue at normal or reduced process line speed without interruption of electric power to the solenoidal induction coil and flow of a cooling medium to the solenoidal coil.
In one aspect the present invention is an apparatus for, and method of electric induction welding or heating of a workpiece by passing the workpiece through at least one turn of a solenoidal induction coil. The induction coil has a dynamically variable coil geometry that can change as a dimension or property of the workpiece changes. Variable coil geometry is accomplished by including an adjustable coil segment assembly or an articulating member that forms or is attached to a part of one or more turns of the solenoidal induction coil.
In some examples of the invention the variable coil geometry is achieved by changing the interior cross sectional dimension of the solenoidal induction coil responsive to a change in the exterior dimensions of a workpiece passing through the solenoidal induction coil.
The above and other aspects of the invention are set forth in this specification and the appended claims.
The figures, in conjunction with the specification and claims, illustrate one or more non-limiting modes of practicing the invention. The invention is not limited to the illustrated layout and content of the drawings.
a) is a diagrammatic cross section of one embodiment of a solenoidal induction coil with dynamically variable coil geometry of the present invention with an adjustable coil segment in the closed position.
b) is a diagrammatic cross section of the solenoidal induction coil in
a) is a diagrammatic cross section of another embodiment of a solenoidal induction coil with dynamically variable coil geometry of the present invention with an adjustable coil segment in the closed position.
b) is a diagrammatic cross section of the solenoidal induction coil in
a) illustrates typical formation of a continuous tubular article by forge welding together opposing longitudinal edges of a metal plate or strip with a solenoidal induction coil of the present invention.
b) is a diagrammatic cross section of one embodiment of a solenoidal induction coil turn with dynamically variable coil geometry of the present invention used in the forge welding process shown in
c) is a diagrammatic cross section of the solenoidal induction coil in
One example of a solenoidal induction coil 10 with dynamically variable coil geometry is shown in diagrammatic cross section in
Coil segments 10a and 10b are fixedly secured either at least partially along the lengths of their coil segments, or by elements connected to the coil segments. For example, at least the power termination ends 10a′ and 10b′ of coil segments 10a and 10b can be fixedly secured adjacent to each other as shown in the figures with space between the power terminations to provide electrical isolation between the power termination ends. The space may be filled with an electrical insulating material such as polytetrafluoroethylene or other suitable material. Alternatively a flexible joint in the electrical supply circuit to the solenoidal coil can be provided, for example, by flexible (continuous flex) cable segments 16a and 16b that connect the opposing end power termination ends 10a′ and 10b′ of solenoidal induction coil 10 to one or more power sources not shown in the figures. In this embodiment of the invention the flexible cable segments 16a and 16b allow flexing apart of rigid coil segments 10a and 10b from the closed-segments position to a variable opened-segments position as further described below.
Coil segments 10a and 10b may be of equal segment lengths as shown in the figures, or of unequal lengths depending upon a particular application. In the figures, equal-length coil segments 10a and 10b are each semicircular. In this example, adjustable coil segment ends 10a″ and 10b″ are opposite power termination ends 10a′ and 10b′ for coil segments 10a and 10b, respectively. In this example, adjustable coil segment 10c is attached to adjustable coil segment ends 10a″ and 10b″ to electrically interconnect coil segments 10a and 10b at the adjustable coil segment ends.
An adjustable coil segment assembly 10d comprises an adjustable coil segments separator 10d′ for providing an adjustable coil segment ends distance between the adjustable coil segment ends 10a″ and 10b″ and actuator 10d″ that dynamically moves separator 10d′ to vary the solenoidal coil geometry, which in this example is the interior cross sectional dimension of the solenoidal coil. Alternatively separator 10d′ may be manually adjusted without an actuator. In this example, actuator 10d″ enables the adjustable coil segment ends 10a″ and 10b″ of the electrically conductive coil segments 10a and 10b to be joined together (closed-segments position) or separated apart (variable opened-segments position) as shown respectively in
The fixed electrically conductive coil segments (10a and 10b) and the adjustable coil segment 10c form a series electrical circuit around a workpiece inserted within the solenoidal coil. In this example, when the solenoidal coil is in the closed-segments position, the adjustable coil segment 10c, as shown in
The fixed electrically conductive coil segments (10a and 10b) and the adjustable coil segment 10c (when in a variable opened-segments position) serve as the solenoidal coil conductors for alternating current (AC current) at a frequency or frequencies suitable for an electric induction welding application or electric induction heating of a workpiece positioned within the solenoidal coil.
In other embodiments of the invention, the adjustable coil segment can be inserted serially at any position around a solenoidal induction coil, for example between a first solenoidal coil adjustable termination (also referred to as a first coil turn end) and a second solenoidal coil adjustable termination (also referred to as a second coil turn end) depending upon a particular application, and as may be necessary, for example, to minimize changes in inductance and impedance between the closed-coil position when the first and second solenoidal coil adjustable terminations are adjacent and connected electrically to short circuit the adjustable coil segment and a variable opened-segments position when the adjustable coil segment provides electrical continuity between the first and second solenoidal coil adjustable terminations. In these embodiments an adjustable coil segment assembly can also be used as described for other examples of the invention.
In some embodiments of the invention, the fixed electrically conductive coil segments 10a and 10b can be formed, for example, from copper tubing or sheets with sufficient bending elasticity to flex at the opposing adjustable coil segment ends 10a″ and 10b″ of the fixed electrically conductive coil segments so that the electrically conductive coil segments are moved between a variable opened-segments position and the closed-segments position by the adjustable coil segment assembly 10d.
Adjustable coil segment 10c can be, for example, a flexible braided electrical conductor (such as copper) or telescoping electrical conductors (such as concentric telescoping copper tubes).
Adjustable coil segments separator 10d′ can be a component that moves either adjustable coil segment end 10a″ or 10b″, or both adjustable coil segment ends. For example, separator 10d′ may be a rod fixed to (but electrically isolated from) adjustable coil segment end 10a″ and passing through an electrically isolated hole in adjustable coil segment end 10b″ so that when (in this example, linear) actuator 10d″ moves the rod in the plus or minus X directions, adjustable coil segment end 10a″ moves in the same direction while adjustable coil segment end 10b″ remains stationary. Alternatively separator 10d′ may be a threaded rod passing through electrically isolated screw thread openings in adjustable coil segment ends 10a″ and 10b″ so that when actuator 10d″ rotates the thread rod the adjustable coil segment ends 10a″ and 10b″ move in opposite plus and minus X directions to separate or join together the adjustable coil segment ends. Actuator 10d″ can be selected based on a particular application, for example, the actuator may be a hydraulic or electrically operated linear or ball screw drive, for opening and closing the distance x1 between opposing ends 10a″ and 10b″ of coil segments 10a and 10b.
In other examples of the invention, a solenoidal coil of the present invention moves (articulates) between the closed-segments position and the variable opened-segments position by means of a non-flexible, rigid member such as, but not limited to, a sliding contact, busbar or other electrically conductive and rigid element in, or adjacent to, the location of adjustable coil segment 10c in
In other embodiments of the invention multiple adjustable coil segments and adjustable coil segment assemblies may be distributed between multiple fixed coil segments of the solenoidal induction coil to dynamically change the interior cross sectional opening of the coil without putting stress on flexible cable segments 16a and 16b or other types of electric power leads, or to accommodate other dimensional changes in a workpiece passing through the solenoidal induction coil.
The adjustable coil segment assembly 10d provides a means for changing the interior cross sectional area of a coil fed by one set of power leads 16a and 16b to accommodate various sizes of workpieces. For example if the workpiece passing through the coil is a longitudinally oriented continuous tubular article, or the opposing edges of a strip material rolled and butted together for induction forge welding, where the exterior cross sectional diameter of the workpiece changes, the distance x1 can be changed to accommodate the change in cross sectional diameter. This can occur, for example, on continuous strip process lines where the strip material is continuously supplied from consecutive coils of different width strip material that are butt-welded together at their ends, or discontinuous strip process lines where there is an interruption due to the change over to a new separate coil of strip material when the existing process coil reaches its end.
For example in
Depending upon the interior cross sectional area of the induction coil and/or the magnitude of electric power or voltage applied to the induction coil, two or more adjustable coil segment assemblies with an adjustable coil segment may be distributed around the circumference of one or more turns of the induction coil in series with fixed electrically conductive coil segments in quantity as required by the number of adjustable coil segment assemblies.
In some examples of the invention, a spatially adjustable capacitor assembly may optionally be provided in parallel with an adjustable coil segment assembly so that an adjustable capacitive element controlled by the spatially adjustable capacitor assembly provides a variable capacitance as the adjustable capacitive element transitions between the closed-segments position to the variable opened-segments position with/or without the adjustable coil segment.
Dynamic variable change in the interior cross sectional area of a solenoidal induction coil of the present invention can be provided by one or more sensing means that sense a change in the geometry of a workpiece prior to passing the workpiece through the solenoidal induction coil. For example if the feed workpiece is a strip having a width, w, that is rolled forge welded into a pipe as shown, for example, in
Forced circulatory cooling of coil 10 can be accomplished, for example, with cooling tubes or cavities 18 in thermal heat transfer contact with fixed electrically conductive coil segments, such as segments 10a and 10b in
In the above examples of the invention actuator 10d″ is electrically isolated from the solenoidal coil circuit so that current flows through flexible adjustable coil segment 10c in
In the above examples of the invention coil segments separators 10d′ and 11d′ are electrically isolated from the first and second adjustable coil segment ends. In other embodiments of the invention the coil segments separator may also function as the adjustable coil segment electrically connecting the first and second adjustable coil segment ends while being electrically isolated from actuator 10d″. In this embodiment, adjustable coil segment 10c, 10c′ or 11c is not required since the coil segments separator functions both as the separating means between the first and the second adjustable coil segment ends (or the first and second solenoidal coil adjustable terminations, or the first and second coil turn ends) and the electrical conductor maintaining electrical continuity between the first and second adjustable coil segment ends (or the first and second solenoidal coil adjustable terminations, or the first and second coil turn ends).
Where some of the above examples of the invention describe a single turn solenoidal induction coil, the features of the invention in a single-turn solenoidal induction coil may be used in each coil turn comprising a multiple turn solenoidal induction coil.
Reference throughout this specification to “one example or embodiment,” “an example or embodiment,” “one or more examples or embodiments,” or “different examples or embodiments,” for example, means that a particular feature may be included in the practice of the invention. In the description, various features are sometimes grouped together in a single example, embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of various inventive aspects.
The present invention has been described in terms of preferred examples and embodiments. Equivalents, alternatives and modifications, aside from those expressly stated, are possible and within the scope of the invention. Those skilled in the art, having the benefit of the teachings of this specification, may make modifications thereto without departing from the scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 61/823,035, filed May 14, 2013, hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61823035 | May 2013 | US |