The present invention relates to an induction cooking hob with a cooling system. The induction cooking hob comprises one or more induction modules. In particular the induction module includes a circuitry, a cooling element and a cooling fan.
In a conventional induction cooking hob the outlet holes for an air stream are arranged at the front side of said induction cooking hob. Said air stream is provided for cooling purposes, in particular for cooling the circuitry. The air stream exiting the induction cooking hob through the outlet holes has a relative high temperature and reaches an area in front of said induction cooking hob. Usually, the user stands in front of the induction cooking hob and is exposed to the hot air stream. A protection shield is often attached in front of the induction cooking hob in order to avoid the hot air stream reaches the user.
It is an object of the present invention to provide an induction cooking hob, which avoids that the air stream provided for cooling purposes reaches the user.
The object is achieved by the induction cooking hob according to claim 1.
According to the present invention an induction cooking hob with a cooling system is provided, wherein:
The present invention allows that the air stream leaves the induction cooking hob through the lateral outlet holes and avoids that the hot air stream reaches the user standing in front of said induction cooking hob. A protection shield at the induction cooking hob is not required.
According to a preferred embodiment of the present invention,
In particular, the induction cooking hob includes at least one flank arranged beside, beneath and/or above the cooling element, so that the air stream is guided through and/or passes by said cooling element, wherein preferably the flank is fastened at the casing by a snap-in mechanism.
Further, the circuitry and the cooling element may be arranged side-by-side in a front portion of the induction module, wherein at least some components of the circuitry are arranged on the cooling element, and wherein preferably at least one rectifier and/or at least one power unit are arranged on said cooling element.
According to embodiments, the induction cooking hob can comprise one cooling element, at least one cooling element, two cooling elements or at least two cooling elements. The or each cooling element can be formed as a single-piece or by multiple pieces. A cooling element which is formed as a single-piece can provide a good cooling performance. On the other hand, a cooling element which is made from multiple pieces can be advantageous, as it can increase the flexibility for inserting the cooling element with respect to the degrees of freedom of the arrangement as well as the flexibility regarding the space requirement. In an embodiment, the induction cooking hob comprises two or more induction modules, whereas the cooling system comprises two or more cooling elements which are arranged within or adjacent to the two or more induction modules.
Moreover, the cooling fan may be arranged in a rear portion of the induction module and behind the cooling element.
In particular, the cooling element includes a structure that an air stream generated by the cooling fan penetrates or passes said cooling element and reaches the front channel.
Preferably, at least one of the lateral walls includes a plurality of lateral outlet holes arranged in the front portion of said lateral wall.
According to a preferred embodiment the casing includes at least one air guide arranged inside the front channel, so that the air stream from the cooling element is deflected and guided to at least one lateral outlet hole of a closest lateral wall.
Further, the air guide may be formed as a vertical sheet element, wherein preferably said air guide is made of metal and/or plastics.
For example, the air guide is formed as a plane sheet element arranged diagonally inside the front channel and in front of the cooling element.
Moreover, the bottom plate may include at least one lower outlet hole arranged in an outer portion of the front channel, wherein said outer portion is beside the corresponding lateral wall, and wherein preferably a plurality of lower outlet holes is arranged in said outer portion of the front channel.
Additionally, the induction module may be spaced from the closest lateral wall, so that a lateral channel is formed between the induction module and the closest lateral wall. Since the induction module is spaced from the lateral outlet hole, it is not possible that the user touches the circuitry through said lateral outlet holes.
In particular, the bottom plate includes at least one lower outlet hole arranged in a front portion of the lateral channel, wherein preferably a plurality of lower outlet holes is arranged in said front portion of the lateral channel.
Further, the cooling element may include a plurality of cooling fins arranged plane-parallel to each other, wherein a plurality of elongated cooling channels is arranged between said cooling fins, and wherein said elongated cooling channels extend parallel to a connecting line between the cooling fan and the air guide, and wherein preferably the cooling fins extend vertically downwards, so that the elongated cooling channels are formed between the cooling fins and the bottom plate of the casing.
For example, the cooling fan is a radial cooling fan and blows the air stream from the rear to the front, wherein preferably the cooling fan sucks the air at the rear side of the induction cooking hob.
According to the preferred embodiment of the present invention, the induction cooking hob comprises two induction modules arranged side-by-side, wherein a first air guide is arranged in front of the cooling element of the induction module on a first side, while a second air guide is arranged in front of the cooling element of the induction module on a second side, and wherein the first air guide deflects the air stream to the at least one lateral outlet hole of the lateral wall on the first side, while the second air guide deflects the air stream to the at least one lateral outlet hole of the lateral wall on the second side.
In this case, the induction module on the first side may be spaced from the lateral wall on the first side, while the induction module on the second side may be spaced from the lateral wall on the second side, so that a first and a second lateral channel are formed between the corresponding induction modules and lateral walls.
Additionally, at least one central induction module may be arranged between two lateral induction modules. In this case, the induction cooking hob comprises three or more induction modules arranged side-by-side.
Furthermore, the induction cooking hob comprises a panel, in particular a glass ceramic panel, covering an open top side of the casing.
Moreover, the induction cooking hob comprises at least one induction coil, in particular a plurality of induction coils, electrically connected to the corresponding circuitry.
At last, the at least one induction coil may be arranged between the at least one induction module and the panel.
Novel and inventive features of the present invention are set forth in the appended claims.
The present invention will be described in further detail with reference to the drawing, in which
The induction cooking hob comprises a casing 10. Said casing 10 includes a bottom plate 12, a front wall 14, a rear wall 16 and two lateral walls 18. The terms “bottom”, “front”, “rear”, “lateral” further prepositions relate to the built-in state of the induction cooking hob. The casing 10 includes an open top side covered by a panel, in particular by a glass ceramic panel. Said panel is not shown in
Further, the induction cooking hob comprises two induction modules 20. Said induction modules 20 are arranged side-by-side within the casing 10. The induction modules 20 are arranged close to the rear wall 16, but spaced from the front wall 14 and the corresponding lateral wall 18. Thus, a front channel is formed between the induction modules 20 and the front wall 14, while two lateral channels are formed between the induction modules 20 and the corresponding lateral wall 18.
Each induction module 20 includes a circuitry 22, one or at least one cooling element 24 and a cooling fan 26. Each cooling element 24 can be made from one piece or from several pieces.
In the embodiment, the induction cooking hob comprises two or at least two cooling elements 24. If one or each cooling element 24 is made from a single piece, the cooling performance is increased, as the heat conductance is improved. On the other hand, if a or each cooling element 24 is made from several or multiple pieces, the flexibility of arranging the cooling element is increased and the arrangement within the available space can be optimised.
The circuitry 22 and the cooling element 24 are arranged side-by-side in a front portion of the induction module 20, while the cooling fan 26 is arranged behind the cooling element 24. On the output side the circuitry 22 is electrically connected to one or more induction coils. The induction coils are arranged above the induction modules 20 and beneath the panel. The induction coils are not shown in
Further, a flank 44 is arranged beneath and beside the cooling element 24. In this example, the flank 44 is formed as a U-shaped profile part and encloses partially the cooling element 24. The flank 44 contributes that the air stream 34 is guided through and passes by, respectively, the cooling element 24. For example, the flank 44 is fastened at the casing 10 by a snap-in mechanism. In general, at least one flank 44 may be arranged beside, beneath and/or above the cooling element 24, so that the air stream 34 is guided through and/or passes by said cooling element 24.
The circuitry 22 comprises a rectifier 36, one or more power units, filter coils 40 and further electric and/or electronic components. In this example, each power unit is formed by a pair of insulated-gate bipolar transistors (IGBT) 38. Alternatively, other power units may be used instead of the IGBT 38.
As shown in
The rectifier 36 is usually formed as a bridge rectifier circuit and formed by diodes. The rectifier 36 and the insulated-gate bipolar transistors 38 are so-called power switches. The total electric power is delivered to the rectifier 36 and insulated-gate bipolar transistors 38. The total electric power of each induction module 20 passes the rectifier 38. Each pair of insulated-gate bipolar transistors 38 is provided with a part of said total electric power. For example, up to about 50% of the total electric power is delivered to one pair of insulated-gate bipolar transistors 38. Thus, the rectifier 36 and the insulated-gate bipolar transistors 38 generate a lot of heat.
In this example, the cooling element 24 is elongated, wherein the rectifier 36 and the insulated-gate bipolar transistors 38 are arranged in series along a longitudinal axis of said cooling element 24. The rectifier 36 and the insulated-gate bipolar transistors 38 are attached on a sloped cooling surface of the cooling element 24, wherein said sloped cooling surface forms a transition between a top surface and a lateral surface of the cooling element 24. The cooling fins 42 extend along the longitudinal axis of the cooling element 24. An air stream 34 generated by the cooling fan 26 passes the cooling element 24 along its longitudinal axis. The air stream 34 passes successively the rectifier 36 and each of the insulated-gate bipolar transistors 38. The rectifier 36 or one insulated-gate bipolar transistor 38 may also use the sloped cooling surface beneath the neighboured insulated-gate bipolar transistors 38, which is advantageous, since the insulated-gate bipolar transistors 38 are usually stressed by different powers.
In this example, the cooling element 24 is formed as a single-piece part. Alternatively, the cooling element 24 may be multi-part. The cooling element 24 formed as single-piece part allows an efficient heat transfer. The cooling fins 42 provide an extended surface within the cooling element 24, which contributes to the efficient heat transfer. Further, the cooling element 24 is relatively flat. The elongated and flat cooling element 24 requires only little space within the casing 10 of the induction cooking hob.
The flank 44 is arranged beneath and beside the cooling element 24 and encloses partially the lower portion of the cooling element 24. The flank 44 allows that the air stream 34 is guided through and passes by, respectively, said cooling element 24.
Moreover, the casing 10 includes two air guides 28. The air guides 28 are formed as vertical sheet elements and arranged in the front channel. The air guides 28 are made of metal or plastics. Each air guide 28 corresponds with one of the induction modules 20. The air guides 28 are arranged diagonally respective to the cooling fins 42 of the cooling element 24 and to the front channel. Each air guide 28 is arranged in front of the corresponding cooling element 24.
Furthermore, each lateral wall 18 of the casing 10 includes a plurality of lateral outlet holes 30. Said lateral outlet holes 30 are arranged in the front portions of the lateral walls 18. A plurality of lower outlet holes 32 is formed in the bottom plate 12 of the casing 10. Said lower outlet holes 32 are arranged in the front portions of the lateral channel between the induction module 20 and the adjacent lateral wall 18. The lower outlet holes 32 are arranged beneath and beside the lateral outlet holes 30.
The induction cooking hob comprises the casing 10 including the bottom plate 12, the front wall 14, the rear wall 16 and the both lateral walls 18. The open top side of the casing 10 is covered by the panel, which is not shown in
The induction modules 20 include the circuitry 22, the cooling element 24 and the cooling fan 26 in each case. The circuitry 22 and the cooling element 24 are arranged side-by-side in the front portion of the induction module 20. The cooling fan 26 is arranged behind the cooling element 24. On the output side the circuitry 22 is electrically connected to the at least one induction coil. The induction coils are arranged above the induction modules 20 and beneath the panel. The induction coils are not shown in
The air guides 28 are formed as vertical sheet elements and arranged in the front channel between the induction modules 20 and the front walls 14. One of the air guides 28 corresponds with one of the induction modules 20. The air guides 28 are arranged diagonally relative to the cooling fins 42 of the cooling element 24 and to the front channel. The air guide 28 is arranged in front of the corresponding cooling element 24.
The lateral outlet holes 30 are arranged in the front portions of the lateral walls 18. The lower outlet holes 32 are formed in the bottom plate 12 of the casing 10, wherein said lower outlet holes 32 are arranged in the front portions of the lateral channel between the induction module 20 and the adjacent lateral wall 18. Further, the lower outlet holes 32 are arranged beneath and beside the lateral outlet holes 30.
The cooling fan 26 is a radial cooling fan and generates the air stream 34. The cooling fan 26 sucks air in a rear portion of the casing 10 and blows the air stream 34 horizontally from the rear to the front. Said air stream 34 enters the cooling channels formed between the cooling fins 42 of the cooling element 24. Within the cooling element 24 the air stream 34 flows from the rear to the front. After the air stream 34 has left the cooling element 24, the air guide 28 deflects the air stream 34. Then, the air stream 34 flows along the front channel and against the lateral wall 18 of the casing 10. On the left hand side of
The cooling fan 26 is an active component, while the cooling element 24 is a passive component. The combination of the active cooling fan 26 and the passive cooling element 24 provides an efficient cooling effect, since the cooling fan 26 delivers a big amount of cooling air through the cooling element 24. The cooling air removes permanently heat from the rectifier 36 and the insulated-gate bipolar transistors 38.
In this example, the induction cooking hob comprises two induction modules 20. In general, the induction cooking hob according to the present invention comprises two or more induction modules 20. According to a further example, the induction cooking hob may comprise three or more induction modules 20 arranged side-by-side. The induction modules 20 allow the preparation of different induction cooking hobs.
The induction cooking hob according to the present invention avoids that the air stream provided for cooling purposes reaches the user. A protection shield at the induction cooking hob is not required. Since the induction modules 20 are spaced from the lateral outlet holes 30, it is not possible that the user touches the circuitry 22 through said lateral outlet holes 30.
Although an illustrative embodiment of the present invention has been described herein with reference to the accompanying drawings, it is to be understood that the present invention is not limited to that precise embodiment, and that various other changes and modifications may be affected therein by one skilled in the art without departing from the scope or spirit of the invention. All such changes and modifications are intended to be included within the scope of the invention as defined by the appended claims.
10 casing
12 bottom plate
14 front wall
16 rear wall
18 lateral wall
20 induction module
22 circuitry
24 cooling element
26 cooling fan
28 air guide
30 outlet holes
32 outlet holes
34 air stream
36 rectifier
38 isolated-gate bipolar transistor (IGBT)
40 filter coil
42 cooling fins
44 flank
Number | Date | Country | Kind |
---|---|---|---|
16203564.6 | Dec 2016 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/080902 | 11/30/2017 | WO | 00 |