The present invention relates to an induction cookware, and more particularly, to a cookware which cooks and stews food by heat produced by electromagnetic induction.
The slow cooker in prior art generally comprises an outer cooking pot and an outer cooking pot lid which are made of insulation material and coupled with each other; and an inner cooking pot and an inner cooking pot lid which are coupled with each other. In cooking operation, the food is put in the inner pot and the inner pot is heated to a cooking temperature by gas oven or electromagnetic oven, then the inner pot is put into the outer pot and covered by the outer pot lid. The food in the inner pot is maintained in a cooking temperature by the insulation effect of the outer pot and outer pot lid so as to slow cook the food.
However, the above mentioned slow cooker in prior art is slow in cooking the food by the insulation effect of the outer pot and outer pot lid. Due to the poor insulation effect of the insulation material, the heat loss is increased, thus the cooking temperature of the inner pot is decreased continuously, and the time of the cooking is increased. But the decreased temperature of the inner pot and the increased cooking time are easy to effect the food taste.
The primary object of the present invention is to provide an induction cookware, which generates heat by heat conduction and electromagnetic induction to heat the food and to slow cook the food so as to add the delicious taste of the food.
To achieve the abovementioned object, the present invention provides an induction cookware comprising: a cooking body having a bottom and a periphery wall extended upwardly from the periphery of said bottom, wherein said bottom and said periphery wall formed a containing groove; an inner pot disposed in said containing groove; an electric heating tube disposed in said containing groove, said electric heating tube fixedly connected to said inner pot; and an induction coil disposed in the bottom of said cooking body, and said induction coil electrically connected to the electric heating tube.
The present invention has the following advantages:
Firstly, the induction coil produces inducted current by extra magnetic field, the inducted current flow through said heating tube and heat the heating tube. The heating tube transfer the heat to the inner pot directly to cook and stew the food inside the inner pot, thus the heat loss can be decreased.
Secondly, the structure of a cooking body with an inner pot inside can heat the food inside the inner pot and slow cook the food inside the inner pot simultaneously, thus the food inside the inner pot can be continuously and uniformly cooked and stewed to add the delicious taste of the food.
Thirdly, by the heating way of heating the food inside the inner pot and slow cook the food inside the inner pot simultaneously, the heat efficiency is increased and the energy is saved.
The present invention will be apparent in its technical content and effect to be achieved after reading the detailed description of the preferred embodiment thereof in reference to the accompanying drawings.
Referring to
An electric heating tube 3 can be connected to the outside or the bottom of the inner pot 2, in this embodiment the electric heating tube 3 is connected to the bottom of the inner pot 2 by rivet (shown in
The induction coil 4 can produce induced current by extra magnetic field, the induced current flow though the electric heating tube 3 and heat the heating tube 3. The electric heating tube 3 transfers the heat to the inner pot 2 to make the temperature of the inner pot 2 rise to a cooking temperature. The electric heating tube 3 not only can be fixedly mounted to the bottom of the inner pot 2, but also can be fixedly connected to the outer sidewall of the inner pot 2 to increase the heat exchange area so as to let the heat to be conduct to the inner pot 2 more uniformly. While when the inner pot 2 get heat directly from the electric heating tube 3, by the structure of the inner pot 2 disposed inside the cooking body 1 and the lid 15, it can achieve heat preservation and reduce the decrease of the temperature of the inner pot 2, thus the heat efficiency is increased and the energy is saved. Moreover, by the heating way of heating the food inside the inner pot 2 and slow cooking the food inside the inner pot 2 simultaneously, the food inside the inner pot 2 can be continuously and uniformly cooked and stewed to add the delicious taste of the food.
The periphery wall 12 of the cooking body 1 further comprises an electric control module 5 (as is shown in
In use, the induction cookware of the present invention is placed on an electric platform 6 (as shown in
When the induction coil 63 of the electric platform is electrified, time-varying electromagnetic field is generated, which make the electric heating tube to generate eddy current and heat up on one hand, and react with each other to the induction coil 4 to generate induced current on the other hand, the induced current of the induction coil 4 is output to the electric heating tube 3 to heat the resistance wire inside the electric heating tube 3. The electric heating tube 3 generates heat due to the induced current and induced magnetic field, and the heat is transferred to the inner pot 2 so that the temperature of the inner pot 2 is rise to a cooking temperature. However, the temperature detecting circuit 52 can transmit the temperature parameter to the RE reception and emission module 51, the RF reception and emission module 51 further transmit the temperature parameter to the RE reception and emission module 62 of the electric platform. After received the temperature, the RE reception and emission module 62 determinates to continuously provide alternating current to an induction coil 63 of the electric platform by the driving module 61. In the present embodiment, the minimum power is 100 W and the maximum power is 3000 W. the direct current is stored in the energy-storing circuit 55, which provides power for the electric control module 5 inside the induction cookware. Moreover, the electric control module 5 is only responsible for the transferring of the identifier and the temperature parameter, while the start and stop of the induction cookware is controlled by the electric platform 6.
In summary, place the induction cookware of the present invention on the electric platform 6 to use, the time-varying electromagnetic field of the induction coil 4 will react with that of the induction coil 63 of the electric platform to generate induced current, the induced current level can be determinate by the arrangement, the circle number and the material of the induction coil 4, thereby to provide a high power which is higher than the commercial power to improve the heating speed so as to shorten the time of cooking food. In addition, according to the temperature of the inner pot 2 in heating to determinate whether to continuously provide power, the heating temperature is automatically controlled in a temperature range in which the food is cooked to add the delicious taste of the food. Moreover, by the heating tube 3 transfer the heat to the inner pot 2 directly, and the insulation effect of the cooking body 1 and the lid 15, the heat efficiency is improved, the heat loss is decreased, thus the object of saving energy is achieved.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Number | Date | Country | Kind |
---|---|---|---|
97220272 U | Nov 2008 | TW | national |
Number | Date | Country |
---|---|---|
07155251 | Jun 1995 | JP |
09289946 | Nov 1997 | JP |
2007282783 | Nov 2007 | JP |
Entry |
---|
JP 2007-282783 A, Kogure et al., English translation, 8 pages, Nov. 2007. |
JP 07-155251 A, Tsuji, English translation, 8 pages, Jun. 1995. |
JP 09-289946 A, Hata, English translation, 8 pages, Nov. 1997. |
Number | Date | Country | |
---|---|---|---|
20100116819 A1 | May 2010 | US |