Induction devices with distributed air gaps

Information

  • Patent Grant
  • 6885273
  • Patent Number
    6,885,273
  • Date Filed
    Thursday, February 14, 2002
    22 years ago
  • Date Issued
    Tuesday, April 26, 2005
    19 years ago
Abstract
A distributed air gap material for a induction device in power systems for minimizing fringe losses, mechanical losses and noise in the core The distributed air gap material occupies a selected portion of the core and is formed of a finely divided magnetic material in a matrix of a dielectric material particles. The air gap material has a zone of transition in which the permeability values vary within the air gap material.
Description
BACKGROUND OF THE INVENTION

The present invention relates to induction devices and particularly to relatively large devices used for power generating and utilization having one or more distributed air gaps formed in the core. The distributed air gap is generally in the form of a magnetic particulate material in a matrix of dielectric material which can comprise a gas or a liquid or a solid or a semi-solid material or combinations thereof.


Induction devices such as reactors are used in power systems, for example, in order to compensate for the Ferranti effect from long overhead lines or extended cable systems causing high voltages in the open circuit or lightly loaded lines. Reactors are sometimes required to provide stability to long line systems. They may also be used for voltage control and switched into and out of the system during light load conditions. In a like manner, transformers are used in power systems to step up and step down voltages to useful levels.


Such devices are manufactured from similar components. Typically, one or more coils are wrapped around a laminated core to form windings, which may be coupled to the line or load and switched in and out of the circuit in a desirable manner. The equivalent magnetic circuit of a static inductive device comprises a source of magnetomotive force, which is a function of the number turns of the winding, in series with the reluctance of the core, which may include iron and, if provided, an air gap. While the air gap is not strictly speaking necessary, reactors and transformers without air gaps tend to saturate at high magnetic field densities. Thus, control is less precise and fault currents may produce catastrophic failures.


The core, shown in fragmentary form in FIG. 13, may be visualized as a body having a closed magnetic circuit, for example, a pair of legs and interconnecting yokes. One of the legs may be cut through to form the air gap. The core may support the windings which, when energized by a current, produces a magnetic field φ in the core, which extends across the air gap. At high current densities the magnetic field is intense.


Although useful and desirable, the gap represents a weak link in the structure of the core. The core tends to vibrate at a frequency twice that of the alternating input current. This is the source of vibrational noise and stress in such devices.


Another problem associated with the air gap is that the field φ fringes, spreads out and is less confined. Thus, field lines tend to enter and leave the core with a non-zero component transverse to the core laminations which can cause a concentration in unwanted eddy currents and hot spots in the core.


These problems are somewhat alleviated by the use of one or more inserts in the gap designed to stabilize the structure and thereby reduce vibrations. In addition, the structure, or insert, is formed of materials which are designed to reduce the fringing effects in the gap. However, these devices are difficult to manufacture and are expensive.


An article by Arthur W. Kelley and F. Peter Symonds of North Carolina State University entitled “Plastic-Iron-Powder-Distributed-Air-Gap Magnetic Material” discusses both discrete and distributed air gap inductor core technology as well as using fine metal powder in the making of specific shaped parts, such as air gap magnetic materials and also for use in making radar absorbing materials.


In the Kelley paper, the magnetic permeability is fixed and specific throughout the various applications disclosed. The present invention is directed to an air gap insert having a transitional zone wherein the magnetic permeability is at some intermediate value less than that of the core itself and greater than that of the air gap material itself.


The solutions presented in the Kelley article would only apply in the field of high frequency, low current signal handling and would not necessarily work in the field of high power, low frequency electronics.


The use of high power, low frequency inductors with air gaps have various problems associated with huge mechanical forces across the air gap as well as noise and vibration of the electrical devices. Such devices are also prone to energy losses and overheating in adjacent cores due to flux fringing. These problems are associated with high power, low frequency devices in part due to their large physical structure, something that is not present in the power electronic devices discussed in Kelley. Therefore, the solutions to these problems require very different solutions than those used to address the smaller devices of the power electronics field.


A typical insert comprises a cylindrical segment of radially laminated core steel plates arranged in a wedge shaped pattern. The laminated segments are molded in an epoxy resin as a solid piece or module. Ceramic spacers are placed on the surface of the module to space it from the core, or when multiple modules are used, from an adjacent module. In the latter case, the modules, and ceramic spacers are accurately stacked and cemented together to make a solid core limb for the device.


The magnetic field in the core creates pulsating forces across all air gaps which, in the case of devices used in power systems, can amount to hundreds of kilo-newtons (kN). The core must be stiff to eliminate these objectionable vibrations. The radial laminations in the modules reduce fringing flux entering flat surfaces of core steel which thereby reduce current overheating and hot spots.


These structures are difficult to build and require precise alignment of a number of specially designed laminated wedge shaped pieces to form the circular module. The machining must be precise and the ceramic spacers are likewise difficult to size and position accurately. As a result, such devices are relatively expensive. Accordingly, it is desirable to produce an air gap spacer which is of unitary construction and substantially less expensive than the described prior arrangements.


SUMMARY OF THE INVENTION

The present invention is based upon the discovery that a distributed air gap insert or region may be provided for an inductor in a power system in which the insert comprises magnetic particles in a matrix of a dielectric material which magnetic particles have a particle size and volume fraction sufficient to provide an air gap with reduced fringe effects. The dielectric may be a gas, or a liquid, or a solid or a semi-solid or combinations thereof.


In one form, the distributed air gap comprises an integral body shaped to conform to the air gap dimensions.


In another embodiment, the magnetic material is formed in a matrix of an organic polymer.


Alternatively, the magnetic particles may be coated with a dielectric material.


In another embodiment, the distributed air gap comprises a dielectric container filled with magnetic particles in a matrix of dielectric material. The container may be flexible.


In yet another form, the core is formed of one or more turns of a magnetic wire or ribbon or a body formed by powder metallurgy techniques.


Still yet another embodiment of the invention sets forth the air gap as having a transition zone of magnetic permeability.


All or part of the core may be in the form of a distributed air gap. Also, the density of the particles forming the distributed air gap may be varied by application of a force thereon to regulate the reluctance of the device.


In an exemplary embodiment, the particulate material has a particle size of about 1 nm to about 1 mm, preferably about 0.1 micrometer (μm) to about 200 micrometer (μm), and a volume fraction of up to about 60%. The magnetic permeability of the power material is about 1-20. The magnetic permeability may be adjusted by about 2-4 times by applying a variable isotropic compression force on the flexible container.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described with reference to the accompanying drawings, wherein



FIG. 1 shows the electric field distribution around a winding of a inductive device for a power transformer or reactor having a distributed air gap according to the invention;



FIG. 2 is a perspective fragmentary view of a cable which may be used in the winding of a high power static inductive device for a power system according to an exemplary embodiment to the invention;



FIG. 3 is a cross section of the cable shown in FIG. 2;



FIG. 4 is a schematic perspective view of a high power inductive device having a distributed air gap in accordance with an exemplary embodiment of the invention;



FIG. 5 is a fragmentary cross section of an embodiment of the distributed air gap according to the invention;



FIG. 6A is a side sectional view of another embodiment of the invention employing a dielectric container filled with magnetic particles in a matrix of dielectric material;



FIG. 6B is a fragmentary perspective view of an alternative embodiment of the distributed air gap in FIG. 6A employing chopped magnetic wire in the end portions thereof;



FIG. 7 is a schematic view of an inductor formed with a powder metallurgy frame and distributed air gap;



FIG. 8 is a schematic illustration of a powder particle for the distributed air gap;



FIG. 9A is a fragmentary sectional view of a core formed of one or more turns of a dielectric tube containing magnetic particles in a matrix of dielectric material;



FIG. 9B is a fragmentary detail of an embodiment of the invention employing a tube filled with magnetic particles in dielectric matrix.



FIGS. 9C-9E are schematic illustrations of cores having distributed air gaps according to the invention;



FIG. 9F is a sectional view of core portions which form the distributed air gaps of the inductor;



FIG. 10 is a schematic illustration of one turn of an exemplary core forming a distributed air gap;



FIGS. 11A & 11B are exemplary diagrams showing hystenesis and power loss for various volume fractions of magnetically permeable particles, e.g. iron;



FIG. 12 is a cross-sectional view of a portion of a magnetic circuit having a transition zone with more than one value of magnetic permeability; and



FIG. 13 is a fragmentary view of a conventional air gap.





DESCRIPTION OF THE INVENTION

The present invention will now be described in greater detail with reference to the accompanying drawings. FIG. 1 shows a simplified view of the electric field distribution around a winding of a induction device such as a power transformer or reactor 1 which includes one or more windings 2 and a core 3. Equipotential lines E show where the electric field has the same magnitude. The lower part of the winding is assumed to be an earth potential. The core 3 has a distributed air gap 4 according to the invention and a window 5. The core may be formed of a laminated sheet of magnetically permeable material, e.g. silicon steel, or may be formed of magnetic wire, ribbon or powder metallurgy material. The direction of the flux φ is shown by the arrow. In general, the flux φ confined or nearly confined within the core 3 is uninterrupted as shown.


The potential distribution determines the composition of the insulation system, especially in high power systems, because it is necessary to have sufficient insulation both between adjacent turns of the winding and between each turn and hearth. In FIG. 1, the upper part of the winding is subjected to the highest dielectric stress. The design and location of a winding relative to the core 3 are in this way determined substantially by the electric field distribution in the core window 5. The windings Z may be formed of a conventional multi-turn insulated wire, as shown, or the windings Z may be in the form of a high power transmission line cable discussed below. In the former case, the device may be operated at power levels typical for such devices in known power generating systems. In the latter case, the device may be operated at much high power levels not typical for such devices.



FIGS. 2 and 3 illustrate an exemplary cable 6 for manufacturing windings Z useful in high voltage, high current and high power inductive devices in accordance with an embodiment of the invention. Such cable 6 comprises at least one conductor 7 which may include a number of strands 8 with a cover 9 surrounding the conductor 7. In the exemplary embodiment, the cover 9 includes a semiconducting layer 10 disposed around the strands 8. A solid main insulating layer 11 surrounds the inner semiconducting layer 10. An outer semiconducting layer 12 surrounds the main insulating layer 11 as shown. The inner and outer layers 10 and 12 have a similar coefficient of thermal expansion as the main insulation layer 11. The cable 6 may be provided with additional layers (not shown) for special purposes. In a high power static conductor device in accordance with the invention, the cable 6 may have a conductor area which is between about 30 and 3000 mm2 and the outer cable diameter may be between about 20 and 250 millimeters. Depending upon the application, the individual strands 8 may be individually insulated. A small number of the strands near the interface between the conductor 7 and the inner semiconducting layer 10 may be uninsulated for establishing good electrical contact therewith.


Devices for use in high power application, manufactured in accordance with the present invention may have a power ranging from 10 KVA up to over 1000 MVA, with a greater voltage ranging from about 34 kV and up to a very high transmission voltages, such as 400 kV to 800 kV or higher.


The conductor 7 is arranged so that it has electrical contact with the inner semiconducting layer 10. As a result, no harmful potential differences arise in the boundary layer between the innermost part of the solid insulation and the surrounding inner semiconducting layer along the length of the conductor.


The similar thermal properties of the various layers, results in a structure which may be integrated so that semiconducting layers in the adjoining insulation layer exhibit good contact independently of variations and temperatures which arise in different parts of the cable. The insulating layer and the semiconducting layers form a monolithic structure and defects caused by different temperature expansion of the insulation and the surrounding layers do not arise.


The outer semiconducting layer is designed to act as a static shield. Losses due to induced voltages may be reduced by increasing the resistance of the outer layer. Since the thickness of the semiconducting layer cannot be reduced below a certain minimum thickness, the resistance can mainly be increased by selecting a material for the layer having a higher resistivity. However, if the resistivity of the semiconducting outer layer is too great the voltage potential between adjacent, spaced apart points at a controlled, e.g. earth, potential will become sufficiently high as to risk the occurrence of corona discharge with consequent erosion of the insulating and semiconducting layers. The outer semiconducting layer is therefor a compromise between a conductor having low resistance and high induced voltage losses but which is easily held at a desired controlled electric potential, e.g. earth potential, and an insulator which has high resistance with low induced voltage losses but which is difficult to hold at the controlled electric potential along its length. Thus, the resistivity ρ, of the outermost semiconducting layer should be within the range ρminsmax, where ρmin is determined by permissible power loss caused by eddy current losses and resistive losses caused by voltages induced by magnetic flux and ρmax is determined by the requirement for no corona or glow discharge. Preferably, but not exclusively, ρs is between 10 and 100 Ωcm.


The inner semiconducting layer 10 exhibits sufficient electric conductivity in order for it to function in a potential equalized manner and hence equalizing with respect to the electric field outside the inner layer. In this connection, the inner layer 10 has such properties that any irregularities in the surface of the conductor 7 are equalized, and the inner layer 10 forms an equipotential surface with a high surface finish at the boundary layer with the solid insulation 11. The inner layer 10 may, as such, be formed of a varying thickness but to insure an even surface with respect to the conductor 7 and the solid insulation 11, its thickness is generally between 0.5 and 1 millimeter.


Referring to FIG. 4, there is shown a simplified view of an exemplary induction device 20 according to an exemplary embodiment of the invention, including a core 22 and at least one winding 24 having N turns. The core 22 is in the form of a rectangular body which may be formed of insulated laminated sheet 26 having a window 28. The core may also be formed of a magnetically permeable ribbon, wire or a powder metallurgy substance. The core 22 has limbs or legs 30 and 32 joined by opposite yoke portions 34. The winding 24 may, for example be wrapped around the solid leg or limb 30. Limb 32 is formed with a gap 36 and a relatively high reluctance distributed air gap insert 38 is located in the air gap as shown.


The arrangement of FIG. 4 may also operate as a transformer when the second winding 25 is employed. As illustrated, the winding 25 may be wound around the core 22. In the arrangement illustrated, the winding 25 is wound concentrically with the winding 24.


In accordance with the invention, the core limb 32 exhibits a relatively high reluctance to the flux φ produced when either of the windings 24-25 are energized. The insert 38 acts as a distributed air gap and is generally non-saturated thereby allowing the device 20 to act as a controller or transformer device in a variety of power applications.



FIG. 5 illustrates the distributed air gap insert 38 in fragmentary schematic cross-section. The insert 38 may comprise a matrix of dielectric material 40 containing magnetically permeable particles 42.


The dielectric 40 may be an epoxy resin, polyester, polyamide, polyethylene, cross-linked polyethylene, PTFE (polytetrafluoroethylene) and PFA (polyperflouroalkoxyethylene or pheno-formaldehyde) sold under the trademark Teflon by Dupont, rubber, EPR (ethylene propylene rubber), ABS (acrylonitrile-butadiene-styrene), polyacetal, polycarbonate, PMMA (poly methyl methaacrylate), polyphenylene sulphone, PPS (polyphenylene sulphide), PSU (polysulphone), polysulfone, polyetherimid PEI (polyetherimide), PEEK (polyetheretherketone), and the like. As discussed in greater detail with respect to FIG. 8, the dielectric material 40 may also coat the particles 42. The magnetic particles 42 may be formed of iron, amorphous iron based materials, Ni—Fe alloys, Co—Fe alloys, Mn—Zn, Ni—Zn, Mn—Mg and the like.


In the exemplary embodiment shown in FIG. 5, opposing faces 45 of the air gap 36 and the corresponding confronting surfaces 45 of the insert 38 may be formed with planar or curvilener confronting surfaces. The insert 38 may have convex surfaces and the confronting surfaces 45 of the core may be concave to stabilize the structure mechanically. Alternatively, the surfaces 45 of the core may be concave and the surface of the insert may be convex to modify field fringing. Generally however, the arrangement illustrated, the flux φ in the core 22 tends to be better confined within the distributed air gap insert or region 38. This occurs because the particles 42 provide an insulated magnetic path through the insert 38 for the flux φ which tends to minimize fringing effects at the interfaces 45 and thereby reduce eddy currents in the core 22 and the insert 38.



FIG. 6A shows another embodiment of the invention in which a core 50 formed of a magnetic wire or laminations 51 has an air gap 52 and employs a distributed air gap insert 54 comprising a dielectric container 55 filled with magnetic powder particles 56 in a dielectric matrix 57 or coated magnetic particles as described hereinafter. The core 50 may comprise a spirally wound magnetic wire, as shown, or a ribbon of magnetic material, or a powder metallurgy material as discussed hereinafter. The core 50 has opposed confronting free ends or surfaces 58 imbedded in the powder forming an interface with the insert 54. The free ends 58 may be irregular or jagged to create a better transition zone in the interface where the permeability gradually changes from the core 50 to the air gap insert 54. In the embodiment shown, ends 53 of the laminations 51 at the interface may be alternatively off set to create the irregular or jagged end 58.


Alternately, as shown in FIG. 6B, the insert 54 may have a multi-component structure in which the central portion 55C is filled with the magnetic particles 56 in the matrix of dielectric material 57, and the end portions 55E are filled with short lengths of chopped magnetic wire 59, and which may exist without the dielectric matrix 57 as desired, to provide good electrical contact with the core 50 and a smooth magnetic transition into and out of the air gap insert 54. The interface may be planar or curved as desired.


The air gap inserts shown in FIGS. 6A and 6B exemplify an embodiment of the invention wherein there is provided a magnetic circuit having transition zones wherein there exits more than one value for magnetic permeability. That is, a zone within the air gap material wherein the magnetic permeability values may vary such as with the lower permeability values of the air gap material and greater permeability values for the core. With such transition zones, the inductor can have portions of the air gap material that have an intermediate permeability value that is greater than the permeability value of other portions of the air gap material itself and less than the permeability value of the core. For example, in FIG. 6A, in the magnetic circuit the core 50 has a permeability value, the confronting free ends or surfaces 58 embedded in the powder 56 have a permeability value and the air gap insert 54 has a permeability value. In the exemplary embodiment, the permeability value of the core 50 is greater than the permeability value of the confronting surfaces 58 and the permeability value of the confronting surfaces 58 is greater than the permeability value of the air gap insert 54. This difference in permeability values of the separate regions forms the transition zone between the core 50 and the air gap insert 54.


Another example that illustrates this concept of a transition zone more clearly is shown in FIG. 6B wherein the central portion 55C of the air gap insert 54 has a permeability value that is less than the permeability value of the end portions 55E containing the chopped wire 59, which is less than the permeability value of the core 50. The graduated increase in permeability values from the central portion 55C of the air gap insert 54 to the core 50 creates the transition zone of permeability within the magnetic circuit.


In the arrangement illustrated in FIG. 6A, it is possible to vary the reluctance of the distributed air gap 54 by imposing a pressure or force on the flexible container 55 to thereby change the density of the particles 56 therein (FIG. 6B). The force F is typically isotropic or evenly distributed so that the change in the reluctance is uniform and predictable. In the embodiment illustrated, the change in reluctance is about a factor of about 2-4 times. The change in the particle density may be employed in other various embodiments discussed herein.


Another method to achieve a distributed air gap employs coated magnetic particles in a static inductive device 70 as illustrated in FIG. 7 including a core frame 72 having air gap 74 and distributed air gap insert 76. The device 70 has windows 78 and at least one winding 80 shown schematically. As in each of the arrangements described, the winding 80 may be an insulated coated wire or a cable as above described.


The distributed air gap insert 76 is formed of powder particles 90 comprising magnetic particles 92 surrounded by dielectric matrix coating 94 (FIG. 8). The powder particles 90 have an overall diameter D0, a particle diameter Dp, and a coating thickness Dc as shown. The insert 76 may be formed or shaped as shown by molding, hot isostatic pressing the particles 90 or other suitable methods. For example, the matrix may be sintered, if the sintering process does not destroy the dielectric properties of the coating.


As noted above, particles, as coated, have an outer diameter D0, and a coating thickness Dc. The electric resistivity and magnetic permeability are factors to consider when determining the ratio Dc/D0. The resistivity is to reduce eddy currents and the permeability is to determine the reluctance of the gap.


Alternatively, the coated particles 90 may be used to fill a container, hose or pipe as noted above. If the magnetic particles 92 have sufficient resistivity, they may be used alone without a coating and may further be combined with a gas, liquid, solid or semisolid dielectric matrix.



FIGS. 9A & 9B illustrate a static inductive device 100 having a core 102 in the form of a torus wound hose 104 having a hollow interior filled with magnetic powder 106 similar to the arrangement described above with respect to FIG. 6A. It should be understood that the core in FIG. 9A may also be manufactured from a magnetic wire or ribbon.


In the arrangement shown in FIG. 9C, if the entire core 102 is a filled hose, the entire core is thus a distributed air gap. Also, as shown in FIG. 9D, core 110 may be in the form of wound hose segments 112 filled with magnetic particles 114 (FIG. 9F). The insert 116 shown in FIGS. 9D & 9F may be formed of hose segments 118 filled with magnetic particles 120 in a dielectric matrix or coated magnetic particles discussed in greater detail hereinafter.



FIG. 9E shows a rectangular core 122 which may be formed as herein described as a full distributed air gap or with an insert 124 as shown. Although similar to the arrangement of FIG. 4, the arrangements of FIGS. 9A-9F have a different geometry. The dielectric material of FIG. 4 is solid, whereas in FIGS. 9A-9F magnetic particles may be distributed in a fluid dielectric such as air.


In the embodiment of FIG. 10, the exemplary core 130 may be in the form of a roll 132 having a radius r of ribbon, wire or a hose of thickness D1. The hose may be filled with magnetic powder or dielectric coated magnetic powder as described. The roll 132 is wound like a spiral, as shown, in a low permeability material, for example air μ2 with a layer of separation or spacing 124 having a thickness D2 therebetween. The dimensions are exaggerated for clarity.


An induced magnetic flux φ having a value well below the saturation in the roll direction forms a typical flux line 136 in the form of a closed loop. For a single spiral roll, any flux line 136 passing the region of high permeability 132 has to pass the region of low permeability 134 exactly once in order to close on itself. Assuming small enough ratio of μ21, the part of the flux line 136 crossing the layer of separation or space 134 will be nearly perpendicular to the roll direction and with a length slightly greater than the distance D2. The total reluctance seen by the flux line 136 crossing a section of width D1+D2 at a distance r>>D1, D2 from the center point P is given approximately by the sum of the reluctance in the core in the roll direction and the total reluctance across the layer of separation 134. As follows:


R is approximately equal to C(L/(μ1/D1)+(D2/L μ2))


L=2 πr,


C is a constant



FIG. 11A illustrates the magnetic induction H and the applied field B for various magnetic particles. FIG. 11B shows the relationship of the magnetic field strength B to the power loss P for various particle volume fractions densities.



FIG. 12 shows a part 170 of a magnetic circuit having a section with wires 172 inserted part way into a piece of distributed air gap material 171 resulting in a transition zone having more than one value of magnetic permeability in the distributed air gap material 171. The distribution of the wires 172 within the distributed air gap material 171 create a graduated permeability in the air gap material such that the permeability at some intermediate value is less than the permeability of the core and greater than the permeability of the air gap material itself.


While there has been described by the present considered to be an exemplary embodiment of the invention, it will be apparent to those skilled in that various changes and modifications may be made therein without departing therefrom. Accordingly, it is intended in the appended claims to cover such changes and modifications as come within the true spirit and scope of the invention.

Claims
  • 1. An induction device formed with a core having a region of reduced permeability in a selected portion thereof comprising: a distributed air gap material disposed in the selected portion of the core; and a flexible high-voltage winding wound on the core and being configured to operate in an inclusive range of above 34 kV through a system voltage of a power network, including a current-carrying conductor formed of a plurality insulated strands and a plurality of uninsulated strands; an inner layer having semiconducting properties surrounding and being in electrical contact with said current-carrying conductor, a solid insulating layer surrounding and contacting the inner layer, and an outer layer having semiconducting properties surrounding and contacting the solid insulating layer.
  • 2. The induction device according to claim 1, wherein: said core has opposed free ends forming an interface with said air gap material; said air gap material has a magnetic permeability value; said core has a magnetic permeability value; said permeability value of said air gap material is less than said magnetic permeability value of said opposing free ends; said permeability value of said opposing free ends is less than said magnetic permeability value of said core; and a transition zone formed by differences in magnetic permeability values of said air gap, said core, said air gap material and said opposing free ends.
  • 3. The induction device according to claim 1, wherein said distributed air gap, comprises: an air gap insert for providing reluctance in said air gap; said air gap insert is a multi-component structure; and a transition zone in said air gap wherein said multicomponent structure of said air gap insert has more than one value of magnetic permeability.
  • 4. The induction device according to claim 3, wherein: said multi-component structure has a central portion and end portions.
  • 5. The induction device according to claim 4, wherein: said central portion has a permeability value; said end portions have a permeability value; said core has a permeability value; said permeability value of said central portion is less than the permeability value of said end portions; said permeability value of said end portion is less than said permeability value of said core; and said difference of permeability values forms said transition zone.
  • 6. The induction device according to claim 5, wherein: said core is comprised of at least one of: a) a magnetic wire, b) a ribbon of magnetic material, and c) a magnetic powder metallurgy material.
  • 7. An induction device formed with a core having a region of reduced permeability in a selected portion thereof comprising: a distributed air gap material disposed in the selected portion of the core; and a flexible high-voltage winding wound on the core and being configured to operate in an inclusive range of above 34 kV through a system voltage of a power network, said high-voltage winding being flexible including a current-carrying conductor comprising a plurality insulated strands and a plurality of uninsulated strands, an inner layer having semiconducting properties surrounding and being in electrical contact with said current-carrying conductor, a solid insulating layer surrounding and contacting the inner layer, and an outer layer having semiconducting properties surrounding and contacting the solid insulating layer.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of the parent application Ser. No. 09/537,748, filed Mar. 30, 2000 now abandoned.

US Referenced Citations (324)
Number Name Date Kind
681800 Lasche Sep 1901 A
847008 Kitsee Mar 1907 A
1304451 Burnham May 1919 A
1418856 Williamson Jun 1922 A
1481585 Beard Jan 1924 A
1508456 Lexz Sep 1924 A
1728915 Blankenship et al. Sep 1929 A
1742985 Burnham Jan 1930 A
1747507 George Feb 1930 A
1756672 Barr Apr 1930 A
1762775 Ganz Jun 1930 A
1781308 Vos Nov 1930 A
1861182 Hendey et al. May 1932 A
1904885 Seeley Apr 1933 A
1974406 Apple et al. Sep 1934 A
2006170 Juhlin Jun 1935 A
2206856 Shearer Jul 1940 A
2217430 Baudry Oct 1940 A
2241832 Wahlquist May 1941 A
2251291 Reichelt Aug 1941 A
2256897 Davidson et al. Sep 1941 A
2295415 Monroe Sep 1942 A
2409893 Pendleton et al. Oct 1946 A
2415652 Norton Feb 1947 A
2424443 Evans Jul 1947 A
2436306 Johnson Feb 1948 A
2446999 Camilli Aug 1948 A
2459322 Johnston Jan 1949 A
2462651 Lord Feb 1949 A
2498238 Berberich et al. Feb 1950 A
2650350 Heath Aug 1953 A
2721905 Monroe Oct 1955 A
2749456 Luenberger Jun 1956 A
2780771 Lee Feb 1957 A
2846599 McAdam Aug 1958 A
2885581 Pileggi May 1959 A
2943242 Schaschl et al. Jun 1960 A
2947957 Spindler Aug 1960 A
2959699 Smith et al. Nov 1960 A
2962679 Stratton Nov 1960 A
2975309 Seidner Mar 1961 A
3014139 Shildneck Dec 1961 A
3098893 Pringle et al. Jul 1963 A
3130335 Rejda Apr 1964 A
3143269 Eldik Aug 1964 A
3157806 Wiedemann Nov 1964 A
3158770 Coggeshall et al. Nov 1964 A
3197723 Dortort Jul 1965 A
3268766 Amos Aug 1966 A
3304599 Nordin Feb 1967 A
3354331 Broeker et al. Nov 1967 A
3365657 Webb Jan 1968 A
3372283 Jaecklin Mar 1968 A
3392779 Tilbrook Jul 1968 A
3411027 Rosenberg Nov 1968 A
3418530 Cheever Dec 1968 A
3435262 Bennett et al. Mar 1969 A
3437858 White Apr 1969 A
3444407 Yates May 1969 A
3447002 Ronnevig May 1969 A
3484690 Wald Dec 1969 A
3541221 Aupoix et al. Nov 1970 A
3560777 Moeller Feb 1971 A
3571690 Lataisa Mar 1971 A
3593123 Williamson Jul 1971 A
3631519 Salahshourian Dec 1971 A
3644662 Salahshourian Feb 1972 A
3651244 Silver et al. Mar 1972 A
3651402 Leffmann Mar 1972 A
3660721 Baird May 1972 A
3666876 Forster May 1972 A
3670192 Andersson et al. Jun 1972 A
3675056 Lenz Jul 1972 A
3684821 Miyauchi et al. Aug 1972 A
3684906 Lexz Aug 1972 A
3699238 Hansen et al. Oct 1972 A
3716652 Lusk et al. Feb 1973 A
3716719 Angelery et al. Feb 1973 A
3727085 Goetz et al. Apr 1973 A
3740600 Turley Jun 1973 A
3743867 Smith, Jr. Jul 1973 A
3746954 Myles et al. Jul 1973 A
3758699 Lusk et al. Sep 1973 A
3778891 Amasino et al. Dec 1973 A
3781739 Meyer Dec 1973 A
3787607 Schlafly Jan 1974 A
3792399 McLyman Feb 1974 A
3801843 Corman et al. Apr 1974 A
3809933 Sugawara et al. May 1974 A
3813764 Tanaka et al. Jun 1974 A
3828115 Hvizd, Jr. Aug 1974 A
3881647 Wolfe May 1975 A
3884154 Marten May 1975 A
3891880 Britsch Jun 1975 A
3902000 Forsyth et al. Aug 1975 A
3912957 Reynolds Oct 1975 A
3932779 Madsen Jan 1976 A
3932791 Oswald Jan 1976 A
3943392 Keuper et al. Mar 1976 A
3947278 Youtsey Mar 1976 A
3965408 Higuchi et al. Jun 1976 A
3968388 Lambrecht et al. Jul 1976 A
3971543 Shanahan Jul 1976 A
3974314 Fuchs Aug 1976 A
3993860 Snow et al. Nov 1976 A
3995785 Arick et al. Dec 1976 A
4001616 Lonseth et al. Jan 1977 A
4008367 Sunderhauf Feb 1977 A
4008409 Rhudy et al. Feb 1977 A
4031310 Jachimowicz Jun 1977 A
4039740 Iwata Aug 1977 A
4041431 Enoksen Aug 1977 A
4047138 Steigerwald Sep 1977 A
4064419 Peterson Dec 1977 A
4084307 Schultz et al. Apr 1978 A
4085347 Lichius Apr 1978 A
4088953 Sarian May 1978 A
4091138 Takagi et al. May 1978 A
4091139 Quirk May 1978 A
4099227 Liptak Jul 1978 A
4103075 Adam Jul 1978 A
4106069 Trautner et al. Aug 1978 A
4107092 Carnahan et al. Aug 1978 A
4109098 Olsson et al. Aug 1978 A
4121148 Platzer Oct 1978 A
4132914 Khutoretsky Jan 1979 A
4134036 Curtiss Jan 1979 A
4134055 Akamatsu Jan 1979 A
4134146 Stetson Jan 1979 A
4149101 Lesokhin et al. Apr 1979 A
4152615 Calfo et al. May 1979 A
4160193 Richmond Jul 1979 A
4164672 Flick Aug 1979 A
4164772 Hingorani Aug 1979 A
4177397 Lill Dec 1979 A
4177418 Brueckner et al. Dec 1979 A
4184186 Barkan Jan 1980 A
4200817 Bratoljic Apr 1980 A
4200818 Ruffing et al. Apr 1980 A
4206434 Hase Jun 1980 A
4207427 Beretta et al. Jun 1980 A
4207482 Neumeyer et al. Jun 1980 A
4208597 Mulach et al. Jun 1980 A
4229721 Koloczek et al. Oct 1980 A
4238339 Khutoretsky et al. Dec 1980 A
4239999 Vinokurov et al. Dec 1980 A
4245182 Aotsu et al. Jan 1981 A
4246694 Raschbichler et al. Jan 1981 A
4255684 Mischler et al. Mar 1981 A
4258280 Starcevic Mar 1981 A
4262209 Berner Apr 1981 A
4274027 Higuchi et al. Jun 1981 A
4281264 Keim et al. Jul 1981 A
4307311 Grozinger Dec 1981 A
4308476 Schuler Dec 1981 A
4308575 Mase Dec 1981 A
4310966 Breitenbach Jan 1982 A
4314168 Breitenbach Feb 1982 A
4317001 Silver et al. Feb 1982 A
4320645 Stanley Mar 1982 A
4321426 Schaeffer Mar 1982 A
4321518 Akamatsu Mar 1982 A
4330726 Albright et al. May 1982 A
4337922 Streiff et al. Jul 1982 A
4341989 Sandberg et al. Jul 1982 A
4347449 Beau Aug 1982 A
4347454 Gellert et al. Aug 1982 A
4357542 Kirschbaum Nov 1982 A
4360748 Raschbichler et al. Nov 1982 A
4361723 Hvizd, Jr. et al. Nov 1982 A
4363612 Meyers Dec 1982 A
4365178 Lenz Dec 1982 A
4367425 Mendelsohn et al. Jan 1983 A
4367890 Spirk Jan 1983 A
4368418 Demello et al. Jan 1983 A
4369389 Lambrecht Jan 1983 A
4371745 Sakashita Feb 1983 A
4384944 Silver et al. May 1983 A
4387316 Katsekas Jun 1983 A
4401920 Taylor et al. Aug 1983 A
4403163 Rarmerding et al. Sep 1983 A
4404486 Keim et al. Sep 1983 A
4411710 Mochizuki et al. Oct 1983 A
4421284 Pan Dec 1983 A
4425521 Rosenberry, Jr. et al. Jan 1984 A
4426771 Wang et al. Jan 1984 A
4429244 Nikiten et al. Jan 1984 A
4431960 Zucker Feb 1984 A
4432029 Lundqvist Feb 1984 A
4437464 Crow Mar 1984 A
4443725 Derderian et al. Apr 1984 A
4470884 Carr Sep 1984 A
4473765 Butman, Jr. et al. Sep 1984 A
4475075 Munn Oct 1984 A
4477690 Nikitin et al. Oct 1984 A
4481438 Keim Nov 1984 A
4484106 Taylor et al. Nov 1984 A
4488079 Dailey et al. Dec 1984 A
4490651 Taylor et al. Dec 1984 A
4503284 Minnick et al. Mar 1985 A
4508251 Harada et al. Apr 1985 A
4510077 Elton Apr 1985 A
4517471 Sachs May 1985 A
4520287 Wang et al. May 1985 A
4523249 Arimoto Jun 1985 A
4538131 Baier et al. Aug 1985 A
4546210 Akiba et al. Oct 1985 A
4551780 Canay Nov 1985 A
4557038 Wcislo et al. Dec 1985 A
4560896 Vogt et al. Dec 1985 A
4565929 Baskin et al. Jan 1986 A
4571453 Takaoka et al. Feb 1986 A
4588916 Lis May 1986 A
4590416 Porche et al. May 1986 A
4594630 Rabinowitz et al. Jun 1986 A
4607183 Rieber et al. Aug 1986 A
4615109 Wcislo et al. Oct 1986 A
4615778 Elton Oct 1986 A
4618795 Cooper et al. Oct 1986 A
4619040 Wang et al. Oct 1986 A
4622116 Elton et al. Nov 1986 A
4633109 Feigel Dec 1986 A
4650924 Kauffman et al. Mar 1987 A
4652963 Fahlen Mar 1987 A
4656379 McCarty Apr 1987 A
4677328 Kumakura Jun 1987 A
4687882 Stone et al. Aug 1987 A
4692731 Osinga Sep 1987 A
4723083 Elton Feb 1988 A
4723104 Rohatyn Feb 1988 A
4724345 Elton et al. Feb 1988 A
4732412 van der Linden et al. Mar 1988 A
4737704 Kalinnikov et al. Apr 1988 A
4745314 Nakano May 1988 A
4761602 Leibovich Aug 1988 A
4766365 Bolduc et al. Aug 1988 A
4771168 Gundersen et al. Sep 1988 A
4785138 Breitenbach et al. Nov 1988 A
4795933 Sakai Jan 1989 A
4827172 Kobayashi May 1989 A
4845308 Womack, Jr. et al. Jul 1989 A
4847747 Abbondanti Jul 1989 A
4853565 Elton et al. Aug 1989 A
4859810 Cloetens et al. Aug 1989 A
4859989 McPherson Aug 1989 A
4860430 Raschbichler et al. Aug 1989 A
4864266 Feather et al. Sep 1989 A
4883230 Lindstrom Nov 1989 A
4890040 Gundersen Dec 1989 A
4894284 Yamanouchi et al. Jan 1990 A
4914386 Zocholl Apr 1990 A
4918347 Takaba Apr 1990 A
4918835 Raschbichler et al. Apr 1990 A
4924342 Lee May 1990 A
4926079 Niemela et al. May 1990 A
4942326 Butler, III et al. Jul 1990 A
4949001 Campbell Aug 1990 A
4982147 Lauw Jan 1991 A
4994952 Silva et al. Feb 1991 A
4997995 Simmons et al. Mar 1991 A
5012125 Conway Apr 1991 A
5030813 Stanisz Jul 1991 A
5036165 Elton et al. Jul 1991 A
5036238 Tajima Jul 1991 A
5066881 Elton et al. Nov 1991 A
5067046 Elton et al. Nov 1991 A
5083360 Valencic et al. Jan 1992 A
5086246 Dymond et al. Feb 1992 A
5091609 Sawada et al. Feb 1992 A
5094703 Takaoka et al. Mar 1992 A
5095175 Yoshida et al. Mar 1992 A
5097241 Smith et al. Mar 1992 A
5097591 Wcislo et al. Mar 1992 A
5111095 Hendershot May 1992 A
5124607 Rieber et al. Jun 1992 A
5136459 Fararooy Aug 1992 A
5140290 Dersch Aug 1992 A
5153460 Bovino et al. Oct 1992 A
5168662 Nakamura et al. Dec 1992 A
5171941 Shimizu et al. Dec 1992 A
5182537 Thuis Jan 1993 A
5187428 Hutchison et al. Feb 1993 A
5231249 Kimura et al. Jul 1993 A
5235488 Koch Aug 1993 A
5246783 Spenadel et al. Sep 1993 A
5264778 Kimmel et al. Nov 1993 A
5287262 Klein Feb 1994 A
5304883 Denk Apr 1994 A
5305961 Errard et al. Apr 1994 A
5321308 Johncock Jun 1994 A
5323330 Asplund et al. Jun 1994 A
5325008 Grant Jun 1994 A
5325259 Paulsson Jun 1994 A
5327637 Breitenbach et al. Jul 1994 A
5341281 Skibinski Aug 1994 A
5343139 Gyugyi et al. Aug 1994 A
5355046 Weigelt Oct 1994 A
5365132 Hann et al. Nov 1994 A
5387890 Estop et al. Feb 1995 A
5397513 Steketee, Jr. Mar 1995 A
5399941 Grothaus et al. Mar 1995 A
5400005 Bobry Mar 1995 A
5408169 Jeanneret Apr 1995 A
5449861 Fujino et al. Sep 1995 A
5452170 Ohde et al. Sep 1995 A
5468916 Litenas et al. Nov 1995 A
5499178 Mohan Mar 1996 A
5500632 Halser, III Mar 1996 A
5510942 Bock et al. Apr 1996 A
5530307 Horst Jun 1996 A
5533658 Benedict et al. Jul 1996 A
5534754 Poumey Jul 1996 A
5545853 Hildreth Aug 1996 A
5550410 Titus Aug 1996 A
5583387 Takeuchi et al. Dec 1996 A
5587126 Steketee, Jr. Dec 1996 A
5598137 Alber et al. Jan 1997 A
5607320 Wright Mar 1997 A
5612510 Hildreth Mar 1997 A
5663605 Evans et al. Sep 1997 A
5672926 Brandes et al. Sep 1997 A
5689223 Demarmels et al. Nov 1997 A
5807447 Forrest Sep 1998 A
5834699 Buck et al. Nov 1998 A
Foreign Referenced Citations (362)
Number Date Country
399790 Jul 1995 AT
565063 Feb 1957 BE
391071 Apr 1965 CH
266037 Oct 1965 CH
534448 Feb 1973 CH
539328 Jul 1973 CH
646403 Feb 1979 CH
657482 Aug 1986 CH
1189322 Oct 1986 CH
40414 Aug 1887 DE
277012 Jul 1914 DE
386561 Dec 1923 DE
387973 Jan 1924 DE
406371 Nov 1924 DE
425551 Feb 1926 DE
432169 Jul 1926 DE
433749 Sep 1926 DE
435608 Oct 1926 DE
435609 Oct 1926 DE
441717 Mar 1927 DE
443011 Apr 1927 DE
460124 May 1928 DE
482506 Sep 1929 DE
501181 Jul 1930 DE
523047 Apr 1931 DE
568508 Jan 1933 DE
572030 Mar 1933 DE
584639 Sep 1933 DE
586121 Oct 1933 DE
604972 Nov 1934 DE
629301 Apr 1936 DE
673545 Mar 1939 DE
719009 Mar 1942 DE
846583 Aug 1952 DE
875227 Apr 1953 DE
975999 Jan 1963 DE
1465719 May 1969 DE
1807391 May 1970 DE
2050674 May 1971 DE
1638176 Jun 1971 DE
2155371 May 1973 DE
2400698 Jul 1975 DE
2520511 Nov 1976 DE
2656389 Jun 1978 DE
2721905 Nov 1978 DE
137164 Aug 1979 DE
138840 Nov 1979 DE
2824951 Dec 1979 DE
2835386 Feb 1980 DE
2839517 Mar 1980 DE
2854520 Jun 1980 DE
3009102 Sep 1980 DE
2913697 Oct 1980 DE
2920478 Dec 1980 DE
3028777 Mar 1981 DE
2939004 Apr 1981 DE
3006382 Aug 1981 DE
3008818 Sep 1981 DE
209313 Apr 1984 DE
3305225 Aug 1984 DE
3309051 Sep 1984 DE
3441311 May 1986 DE
3543106 Jun 1987 DE
2917717 Aug 1987 DE
3612112 Oct 1987 DE
3726346 Feb 1989 DE
3925337 Feb 1991 DE
4023903 Nov 1991 DE
4022476 Jan 1992 DE
4233558 Mar 1994 DE
4402184 Aug 1995 DE
4409794 Aug 1995 DE
4412761 Oct 1995 DE
4420322 Dec 1995 DE
19620906 Jan 1996 DE
4438186 May 1996 DE
19020222 Mar 1997 DE
19547229 Jun 1997 DE
468827 Jul 1997 DE
134022 Dec 2001 DE
049104 Apr 1982 EP
0493704 Apr 1982 EP
078908 May 1983 EP
0120154 Oct 1984 EP
0130124 Jan 1985 EP
0142813 May 1985 EP
0155405 Sep 1985 EP
0102513 Jan 1986 EP
0174783 Mar 1986 EP
0185788 Jul 1986 EP
0277358 Aug 1986 EP
0234521 Sep 1987 EP
0244069 Nov 1987 EP
0246377 Nov 1987 EP
0265868 May 1988 EP
0274691 Jul 1988 EP
0280759 Sep 1988 EP
0282876 Sep 1988 EP
0309096 Mar 1989 EP
0314860 May 1989 EP
0316911 May 1989 EP
0317248 May 1989 EP
0335430 Oct 1989 EP
0342554 Nov 1989 EP
0221404 May 1990 EP
0375101 Jun 1990 EP
0406437 Jan 1991 EP
0439410 Jul 1991 EP
0440865 Aug 1991 EP
0469155 Feb 1992 EP
0490705 Jun 1992 EP
0503817 Sep 1992 EP
0571155 Nov 1993 EP
0620570 Oct 1994 EP
0620630 Oct 1994 EP
0642027 Mar 1995 EP
0671632 Sep 1995 EP
0676777 Oct 1995 EP
0677915 Oct 1995 EP
0684679 Nov 1995 EP
0684682 Nov 1995 EP
0695019 Jan 1996 EP
0732787 Sep 1996 EP
0738034 Oct 1996 EP
0739087 Oct 1996 EP
0740315 Oct 1996 EP
0749190 Dec 1996 EP
0751605 Jan 1997 EP
0739087 Mar 1997 EP
0749193 Mar 1997 EP
0780926 Jun 1997 EP
0802542 Oct 1997 EP
0913912 May 1999 EP
805544 Apr 1936 FR
841351 Jan 1938 FR
847899 Dec 1938 FR
916959 Dec 1946 FR
1011924 Apr 1949 FR
1126975 Mar 1955 FR
1238795 Jul 1959 FR
2108171 May 1972 FR
2251938 Jun 1975 FR
2305879 Oct 1976 FR
2376542 Jul 1978 FR
2467502 Apr 1981 FR
2481531 Oct 1981 FR
2556146 Jun 1985 FR
2594271 Aug 1987 FR
2708157 Jan 1995 FR
123906 Mar 1919 GB
268271 Mar 1927 GB
319313 Jul 1929 GB
518993 Mar 1940 GB
537609 Jun 1941 GB
540456 Oct 1941 GB
589071 Jun 1947 GB
666883 Feb 1952 GB
685416 Jan 1953 GB
715226 Sep 1954 GB
723457 Feb 1955 GB
739962 Nov 1955 GB
763761 Dec 1956 GB
805721 Dec 1958 GB
827600 Feb 1960 GB
854728 Nov 1960 GB
870583 Jun 1961 GB
913386 Dec 1962 GB
965741 Aug 1964 GB
992249 May 1965 GB
1024583 Mar 1966 GB
1053337 Dec 1966 GB
1059123 Feb 1967 GB
1103098 Feb 1968 GB
1103099 Feb 1968 GB
1117401 Jun 1968 GB
1135242 Dec 1968 GB
1157885 Jul 1969 GB
1174659 Dec 1969 GB
1236082 Jun 1971 GB
1268770 Mar 1972 GB
1340983 Dec 1973 GB
1341050 Dec 1973 GB
1365191 Aug 1974 GB
1395152 May 1975 GB
1424982 Feb 1976 GB
1426594 Mar 1976 GB
1438610 Jun 1976 GB
1445284 Aug 1976 GB
1479904 Jul 1977 GB
1493163 Nov 1977 GB
1502938 Mar 1978 GB
1525745 Sep 1978 GB
2000625 Jan 1979 GB
1548633 Jul 1979 GB
2046142 Nov 1979 GB
2022327 Dec 1979 GB
2025150 Jan 1980 GB
2034101 May 1980 GB
1574796 Sep 1980 GB
2070470 Sep 1981 GB
2071433 Sep 1981 GB
2081523 Feb 1982 GB
2099635 Dec 1982 GB
2105925 Mar 1983 GB
2106306 Apr 1983 GB
2106721 Apr 1983 GB
2136214 Sep 1984 GB
2140195 Nov 1984 GB
2150153 Jun 1985 GB
2268337 Jan 1994 GB
2273819 Jun 1994 GB
2283133 Apr 1995 GB
2289992 Dec 1995 GB
2308490 Jun 1997 GB
2332557 Jun 1999 GB
175494 Nov 1981 HU
60206121 Mar 1959 JP
57043529 Aug 1980 JP
57126117 May 1982 JP
59076156 Oct 1982 JP
59159642 Feb 1983 JP
6264964 Sep 1985 JP
1129737 May 1989 JP
62320631 Jun 1989 JP
2017474 Jan 1990 JP
3245748 Feb 1990 JP
4179107 Nov 1990 JP
318253 Jan 1991 JP
3-240211 Oct 1991 JP
424909 Jan 1992 JP
5290947 Apr 1992 JP
6196343 Dec 1992 JP
6233442 Feb 1993 JP
6325629 May 1993 JP
7057951 Aug 1993 JP
7264789 Mar 1994 JP
8167332 Dec 1994 JP
07-94355 Apr 1995 JP
7161270 Jun 1995 JP
8264039 Nov 1995 JP
9200989 Jan 1996 JP
8036952 Feb 1996 JP
8167360 Jun 1996 JP
67199 Mar 1972 LU
90308 Sep 1937 SE
305899 Nov 1968 SE
255156 Feb 1969 SE
341428 Dec 1971 SE
453236 Jan 1982 SE
457792 Jun 1987 SE
502417 Dec 1993 SE
792302 Jan 1971 SU
425268 Sep 1974 SU
1019553 Jan 1980 SU
694939 Jan 1982 SU
955369 Aug 1983 SU
1511810 May 1987 SU
WO8202617 Aug 1982 WO
WO8502302 May 1985 WO
WO9011389 Oct 1990 WO
WO9012409 Oct 1990 WO
PCTDE 9000279 Nov 1990 WO
WO9101059 Jan 1991 WO
WO9101585 Feb 1991 WO
WO9107807 Mar 1991 WO
PCT SE 9100077 Apr 1991 WO
WO9109442 Jun 1991 WO
WO 9111841 Aug 1991 WO
WO8115862 Oct 1991 WO
WO 9115755 Oct 1991 WO
WO9201328 Jan 1992 WO
WO9321681 Oct 1993 WO
WO9406194 Mar 1994 WO
WO9518058 Jul 1995 WO
WO9522153 Aug 1995 WO
WO9524049 Sep 1995 WO
WO9622606 Jul 1996 WO
PCTCN 9600010 Oct 1996 WO
WO9630144 Oct 1996 WO
WO9710640 Mar 1997 WO
WO9711831 Apr 1997 WO
WO9716881 May 1997 WO
WO 9729494 Aug 1997 WO
WO9745288 Dec 1997 WO
WO9745847 Dec 1997 WO
WO 9745908 Dec 1997 WO
PCTFR 9800468 Jun 1998 WO
WO9834244 Aug 1998 WO
WO9834245 Aug 1998 WO
WO9834246 Aug 1998 WO
WO9834247 Aug 1998 WO
WO9834248 Aug 1998 WO
WO9834249 Aug 1998 WO
WO9834250 Aug 1998 WO
WO9834309 Aug 1998 WO
WO9834312 Aug 1998 WO
WO9834315 Aug 1998 WO
WO9834321 Aug 1998 WO
WO9834322 Aug 1998 WO
WO9834323 Aug 1998 WO
WO9834325 Aug 1998 WO
WO9834326 Aug 1998 WO
WO9834327 Aug 1998 WO
WO9834328 Aug 1998 WO
WO9834329 Aug 1998 WO
WO9834330 Aug 1998 WO
WO9834331 Aug 1998 WO
WO 9840627 Sep 1998 WO
WO9840627 Sep 1998 WO
WO 9843336 Oct 1998 WO
WO9917309 Apr 1999 WO
WO9917311 Apr 1999 WO
WO9917312 Apr 1999 WO
WO9917313 Apr 1999 WO
WO9917314 Apr 1999 WO
WO9917315 Apr 1999 WO
WO9917316 Apr 1999 WO
WO9917422 Apr 1999 WO
WO9917424 Apr 1999 WO
WO9917425 Apr 1999 WO
WO9917426 Apr 1999 WO
WO9917427 Apr 1999 WO
WO9917428 Apr 1999 WO
WO9917429 Apr 1999 WO
WO9917432 Apr 1999 WO
WO9917433 Apr 1999 WO
WO9919963 Apr 1999 WO
WO9919969 Apr 1999 WO
WO9919970 Apr 1999 WO
PCTSE 9802148 Jun 1999 WO
WO9927546 Jun 1999 WO
WO9928919 Jun 1999 WO
WO9928921 Jun 1999 WO
WO9928923 Jun 1999 WO
WO9928924 Jun 1999 WO
WO9928925 Jun 1999 WO
WO9928926 Jun 1999 WO
WO9928927 Jun 1999 WO
WO9928928 Jun 1999 WO
WO9928929 Jun 1999 WO
WO9928930 Jun 1999 WO
WO9928931 Jun 1999 WO
WO9928934 Jun 1999 WO
WO9928994 Jun 1999 WO
WO9929005 Jun 1999 WO
WO9929008 Jun 1999 WO
WO9929011 Jun 1999 WO
WO9929012 Jun 1999 WO
WO9929013 Jun 1999 WO
WO9929014 Jun 1999 WO
WO9929015 Jun 1999 WO
WO9929016 Jun 1999 WO
WO9929017 Jun 1999 WO
WO9929018 Jun 1999 WO
WO9929019 Jun 1999 WO
WO9929020 Jun 1999 WO
WO9929021 Jun 1999 WO
WO9929022 Jun 1999 WO
WO9929024 Jun 1999 WO
WO9929026 Jun 1999 WO
WO9929029 Jun 1999 WO
WO9929034 Jun 1999 WO
Related Publications (1)
Number Date Country
20030030529 A1 Feb 2003 US
Continuations (1)
Number Date Country
Parent 09537748 Mar 2000 US
Child 10073866 US