This application claims priority under 35 U.S.C. §119 to Korean Application No. 10-2014-0133308, filed in Korea on Oct. 2, 2014, and Korean Application No. 10-2015-0090414, filed in Korea on Jun. 25, 2015, all of which are incorporated by reference in their entirety for all purposes as if fully set forth herein.
1. Field of the Disclosure
The present disclosure relates to an induction heat cooking apparatus, and more particularly, to an induction heat cooking apparatus which includes a plurality of switching devices and a plurality of resonance circuits, and a control method thereof.
2. Background
An induction heat cooking apparatus is an electric cooking apparatus performing a cooking function using a method in which a high-frequency current causes to flow through a working coil or a heating coil, and an eddy current flows when a strong line of magnetic force that is accordingly generated passes through a cooking container, and thus the cooking container itself is heated.
In a basic heating principle of the induction heat cooking apparatus, as the current is applied to the heating coil, the cooking container formed of a magnetic material generates heat due to induction heating, the cooking container itself is heated by the generated heat, and a cooking operation is performed.
An inverter used in the induction heat cooking apparatus serves to switch a voltage applied to the heating coil which causes the high-frequency current to flow through the heating coil. The inverter drives a switch device configured with an insulated gate bipolar transistor (IGBT) so that the high-frequency current flows through the heating coil and thus a high-frequency magnetic field is formed at the heating coil.
When two heating coils are provided at the induction heat cooking apparatus, two inverters having four switching devices are required to operate the two heating coils.
Referring to
In the first and second inverters 20 and 30, two switching devices which switch input power are connected in series, and the first and second heating coils 40 and 50 driven by output voltages of the switching devices are connected to connection points of the serially connected switching devices, respectively. And the resonant capacitors 60 and 70 are connected to other sides of the first and second heating coils 40 and 50.
The switching devices are driven by a driving part, and controlled at a switching time output from the driving part to be alternately operated, and thus a high-frequency voltage is applied to the heating coil. And since an ON/OFF time of the switching devices applied from the driving part is controlled to be gradually compensated, the voltage supplied to the heating coil is changed from a low voltage to a high voltage.
However, such an induction heat cooking apparatus should include two inverter circuits having four switching devices to operate two heating coils. Therefore, problems arise of a volume of a product increasing, and a price of the product also increasing.
In addition, when the number of heating coils increases to three or more, a plurality of switching devices are required according to the number of heating coils.
Therefore, the present disclosure is directed to an induction heat cooking apparatus having a plurality of heating coils, which is capable of being controlled by a minimum of switching devices, and a control method thereof.
Also, the present disclosure is directed to an induction heat cooking apparatus having a plurality of heating coils, in which the plurality of heating coils are also capable of being controlled by a minimum of switching devices, and a control method thereof.
Also, the present disclosure is directed to an induction heat cooking apparatus which is capable of reducing a momentary overcurrent generated while the switching devices are turned on or off, and thus reducing a current ripple of a rectifier circuit, and also reducing generation of heat, and a control method thereof.
According to an aspect of the present disclosure, there is provided an induction heat cooking apparatus in which a first terminal of a first resonant capacitor of which a second terminal is connected to a second heating coil is connected to one of a positive power supply terminal and a negative power supply terminal of a rectifier, and a first terminal of a second resonant capacitor of which a second terminal is connected to a third heating coil is connected to the other one of the positive power supply terminal and the negative power supply terminal of the rectifier not connected to the first resonant capacitor, and a controller controls a plurality of switching devices to simultaneously drive the second heating coil and the third heating coil which are connected in parallel.
The first heating coil may have a larger heating power capacity than that of the second heating coil or the third heating coil, and the second heating coil and the third heating coil may have the same heating power capacity as each other.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.
Embodiments will be described in detail with reference to the following drawings in which like reference numerals refer to like elements, and wherein:
Reference will now be made in detail to the embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings.
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the disclosure may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosure, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the disclosure. To avoid detail not necessary to enable those skilled in the art to practice the disclosure, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense.
Also, in the description of embodiments, terms such as first, second, A, B, (a), (b) or the like may be used herein when describing components of the present disclosure. Each of these terminologies is not used to define an essence, order or sequence of a corresponding component but used merely to distinguish the corresponding component from other component(s). It should be noted that if it is described in the specification that one component is “connected,” “coupled” or “joined” to another component, the former may be directly “connected,” “coupled,” and “joined” to the latter or “connected”, “coupled”, and “joined” to the latter via another component.
Referring to
Also, although not shown in the drawing, a controller for controlling switching operations of the switching devices 221, 222, 223 and 224 is further included. The embodiment describes an example in which three heating coils are provided.
In the embodiment, when the number of heating coils is N, N+1 switching devices may be provided. The heating coils may be driven in a state in which the number of switching devices is minimized.
One end of the first switching device 221 is connected to the positive power supply terminal, and the other end thereof is connected to the second switching device 222. One end of the second switching device 222 is connected to the first switching device 221, and the other end thereof is connected to the third switching device 223. One end of the third switching device 223 is connected to the second switching device 222, and the other end thereof is connected to the fourth switching device 224. One end of the fourth switching device 224 is connected to the third switching device 223, and the other end thereof is connected to the negative power supply terminal.
Also, a DC capacitor 290 connected to both ends of the rectifier 210 may be further included. The DC capacitor 290 serves to reduce a ripple of a DC voltage output from the rectifier 210.
The embodiment has described an example in which the first heating coil 241 is connected between the first resonant capacitor 261 and the second resonant capacitor 262. However, the first resonant capacitor 261 or the second resonant capacitor 262 may not be provided.
Meanwhile, the embodiment has described an example in which the second heating coil 242 is connected with the third resonant capacitor 263 connected with the positive power supply terminal, and the third heating coil 243 is connected with the fourth resonant capacitor 264 connected with the negative power supply terminal. However, the second heating coil 242 may be connected with the fourth resonant capacitor 264 connected with the negative power supply terminal, and the third heating coil 243 may be connected with the third resonant capacitor 263 connected with the positive power supply terminal.
The second heating coil 242 and the third heating coil 243 may be formed to have the same heating power capacity. The second heating coil 242 and the third heating coil 243 may be simultaneously driven in parallel.
When the second heating coil 242 and the third heating coil 243 are simultaneously driven in parallel, the switching devices 221, 222, 223 and 224 are operated as will be illustrated below in
When all of the third resonant capacitor 263 connected with the second heating coil 242 and the fourth resonant capacitor 264 connected with the third heating coil 243 are connected to one of the positive power supply terminal and the negative power supply terminal, the overcurrent flows through the positive power supply terminal or the negative power supply terminal. As a result, when the second heating coil 242 and the third heating coil 243 are simultaneously driven in parallel, a current ripple is increased, and thus heat is generated at the rectifier 210.
Therefore, in the present disclosure, since the third resonant capacitor 263 and the fourth resonant capacitor 264 are connected with the positive power supply terminal and the negative power supply terminal, respectively, the current ripple may be reduced, and thus generation of the heat may be reduced.
The switching devices 221, 222, 223, and 224 may be connected with an anti-parallel diode, and a subsidiary resonant capacitor connected in parallel with the anti-parallel diode may be provided so as to minimize switching losses of the switching devices.
Referring to
Therefore, a signal of the controller 280 is applied to the gate drivers 291, 292, 293, and 294 to drive each semiconductor switch, and thus each of the switching devices 221, 222, 223, and 224 may be controlled.
Meanwhile, a current converter 270 may be provided between grounds of the switching devices 221, 222, 223, and 224 serially connected with each other and grounds of the first, second and third heating coils 241, 242, and 243. The current converter 270 serves to measure a current flowing through each of the first, second and third heating coils 241, 242, and 243 and then to input a value of a current to the controller 280 via an analog-digital converter (ADC) provided at the controller 280. The controller 280 controls each of the switching devices 221, 222, 223, and 224 based on the current value.
As illustrated in
When the controller 280 intends to drive the first heating coil 241, during a half resonant period, the first switching device 221 is controlled to be in a closed state, and the second, third and fourth switching devices 122, 123, and 124 are controlled to be in an opened state. And during the other half resonant period, the first switching device 221 is controlled to be in the opened state, and the second, third and fourth switching devices 122, 123, and 124 are controlled to be in the closed state.
By such an operation, an input voltage is applied to the first heating coil 241 and the first and second resonant capacitors 261 and 262 during the half resonant period, and thus a current in the first heating coil 241 is increased by starting a resonance. The input voltage is reversely applied to the first heating coil 241 and the first and second resonant capacitors 261 and 262 during the other half resonant period, and thus a reverse current in the first heating coil 241 is increased by starting the resonance.
As such an operation is repeated, an eddy current is induced in a cooking container placed on the first heating coil 241, and the induction heat cooking apparatus is operated.
As illustrated in
By such an operation, the input voltage is applied to the second heating coil 242 and the third resonant capacitor 263 during the half resonant period, and thus a current in the second heating coil 242 is increased by starting the resonance. Additionally, the input voltage is reversely applied to the second heating coil 242 and the third resonant capacitor 263 during the other half resonant period, and thus a reverse current in the second heating coil 242 is increased by starting the resonance.
As such an operation is repeated, the eddy current is induced in the cooking container placed on the second heating coil 242, and the induction heat cooking apparatus is operated.
Although not shown in the drawing, when the controller 280 intends to drive the third heating coil 243, during the half resonant period, the first, second and third switching devices 221, 222 and 223 are controlled to be in the closed state, and the fourth switching device 224 is controlled to be in the opened state. And during the other half resonant period, the first, second and third switching devices 221, 222, and 223 are controlled to be in the opened state, and the fourth switching device 224 is controlled to be in the closed state.
As described above, the switching devices are controlled by the controller 280, and thus the heating coils may be driven.
As described above, since the induction heat cooking apparatus according to the embodiment of the present disclosure includes a plurality of heating coils and a minimum of switching devices for driving the plurality of heating coils, it is possible to reduce a size of the induction heat cooking apparatus and also to reduce a production cost.
Referring to
First, when the controller 280 intends to drive the first heating coil 241, during the half resonant period, the first switching device 221 is controlled to be in the closed state, and the second, third and fourth switching devices 222, 223, and 224 are controlled to be in the opened state. And during the other half resonant period, the first switching device 221 is controlled to be in the opened state, and the second, third and fourth switching devices 222, 223, and 224 are controlled to be in the closed state.
By such an operation, the input voltage is applied to the first heating coil 241 and the first and second resonant capacitors 261 and 262 during the half resonant period, and thus the current in the first heating coil 241 is increased by starting the resonance. Additionally, the input voltage is reversely applied to the first heating coil 241 and the first and second resonant capacitors 261 and 262 during the other half resonant period, and thus the reverse current in the first heating coil 241 is increased by starting the resonance.
As such an operation is repeated, the eddy current is induced in the cooking container placed on the first heating coil 241, and the induction heat cooking apparatus is operated.
Then, when the controller 280 intends to drive the second heating coil 242, during the half resonant period, the first and second switching devices 221 and 222 are controlled to be in the closed state, and the third and fourth switching devices 123 and 124 are controlled to be in the opened state. And during the other half resonant period, the first and second switching devices 221 and 222 are controlled to be in the opened state, and the third and fourth switching devices 223 and 224 are controlled to be in the closed state.
By such an operation, the input voltage is applied to the second heating coil 242 and the third resonant capacitor 263 during the half resonant period, and thus the current in the second heating coil 242 is increased by starting the resonance. The input voltage is reversely applied to the second heating coil 242 and the third resonant capacitor 263 during the other half resonant period, and thus the reverse current in the second heating coil 242 is increased by starting the resonance.
As such an operation is repeated, the eddy current is induced in the cooking container placed on the second heating coil 242, and the induction heat cooking apparatus is operated.
In the same manner, when the controller 280 intends to drive the third heating coil 243, during the half resonant period, the first, second and third switching devices 221, 222 and 223 are controlled to be in the closed state, and the fourth switching device 224 is controlled to be in the opened state. And during the other half resonant period, the first, second and third switching devices 221, 222, and 223 are controlled to be in the opened state, and the fourth switching device 224 is controlled to be in the closed state.
After all of the first, second and third heating coils 241, 242, and 243 are driven by such a method, the heating coils are driven again, in turn, from the first heating coil 241, and thus all of the first, second and third heating coils 241, 242, and 243 may be driven.
Referring to
As illustrated in
Therefore, according to a purpose or a user's needs, the first, second and third heating coils 241, 242, and 243 may be driven together with each having a different power.
Referring to
Since the third switching device 223 is in the closed state, the second and third heating coils 242 and 243 are connected in parallel with each other.
Therefore, through such an operation, during the half resonant period, the input voltage is applied to the second and third heating coils 242 and 243 and the third and fourth resonant capacitors 263 and 264, and thus the current in each of the second and third heating coils 242 and 243 is increased by starting the resonance. And during the other resonant period, the input voltage is reversely applied to the second and third heating coils 242 and 243 and the third and fourth resonant capacitors 263 and 264, and thus the reverse current in each of the second and third heating coils 242 and 243 is increased by starting the resonance.
At this time, the second and third heating coils 242 and 243 which are operated in the parallel driving method may be formed to have the same capacity. The embodiment describes an example in which each of the second and third heating coils 242 and 243 has a capacity of 1.8 kW.
Also, it is preferable that each of the second and third heating coils 242 and 243 which are operated in the parallel driving method is formed to have a smaller capacity than that of the first heating coil 241.
As such an operation is repeated, the eddy current is induced in a cooking container placed on the second and third heating coils 242 and 243, and the induction heat cooking apparatus is operated.
Meanwhile, as described above, in the present disclosure, since the third resonant capacitor 263 connected with the second heating coil 242 is connected with the positive power supply terminal, and the fourth resonant capacitor 264 connected with the third heating coil 243 is connected with the negative power supply terminal, the overcurrent generated during a switching process of the switching devices 221, 222, 223, and 224 may be branched, and thus the current ripple and the heat generation may be reduced.
In conditions used in an experiment, two 6.5″ coils (21 turn and 36 strands) were used as the heat coils, a gap was 4.5 mm, an inverter was a half-bridge inverter (HVIC drive), Vf of the bridge diode was 1.05 V, an IGBT (60 A) was provided, 9″/7″ Al-clad containers were used as the cooking containers, a source (240V, 60 Hz, and CVCF) was used, and electric power of 4700 W was maintained for 30 minutes.
When comparing
In
As illustrated in
Like this, in the present disclosure, since the third resonant capacitor 263 and the fourth resonant capacitor 264 are connected with the negative power supply terminal and the positive power supply terminal, respectively, the heat generated from the rectifier 210 may be considerably reduced.
Referring to
Also, although not shown in the drawing, a controller for controlling switching operations of the switching devices 121, 122, 123, 124, and 125 is further included.
The embodiment describes an example in which four heating coils are provided. However, three or more heating coils may be provided.
In the embodiment, when the number of heating coils is N, N+1 switching devices may be provided. The heating coils may be driven in a state in which the number of switching devices is minimized.
One end of the first switching device 121 is connected to the positive power supply terminal, and the other end thereof is connected to the second switching device 122. One end of the second switching device 122 is connected to the first switching device 121, and the other end thereof is connected to the third switching device 123. One end of the third switching device 123 is connected to the second switching device 122, and the other end thereof is connected to the fourth switching device 124. One end of the fourth switching device 124 is connected to the third switching device 123, and the other end thereof is connected to the fifth switching device 125. One end of the fifth switching device 125 is connected to the fourth switching device 124, and the other end thereof is connected to the negative power supply terminal.
Also, a DC capacitor 190 connected to both ends of the rectifier 110 may be further included. The DC capacitor 190 serves to reduce a ripple of a DC voltage output from the rectifier 110.
The embodiment has described an example in which the first heating coil 141 is connected between the first resonant capacitor 161 and the second resonant capacitor 162. However, the first resonant capacitor 161 may not be provided.
Also, the embodiment has described an example in which the second heating coil 142 is connected between the third resonant capacitor 163 and the fourth resonant capacitor 164. However, the third resonant capacitor 163 may not be provided.
Meanwhile, the embodiment has described an example in which the third heating coil 143 is connected with the fifth resonant capacitor 165 connected with the positive power supply terminal, and the fourth heating coil 144 is connected with the sixth resonant capacitor 166 connected with the negative power supply terminal. However, the third heating coil 143 may be connected with the sixth resonant capacitor connected with the negative power supply terminal, and the fourth heating coil 144 may be connected with the fifth resonant capacitor 165 connected with the positive power supply terminal.
The third heating coil 143 and the fourth heating coil 144 may be formed to have the same capacity. The third heating coil 143 and the fourth heating coil 144 may be simultaneously driven in parallel.
When the third heating coil 143 and the fourth heating coil 144 are simultaneously driven in parallel, the switching devices 121, 122, 123, 124, and 125 are operated as will be illustrated below in
When all of the fifth resonant capacitor 165 connected with the third heating coil 143 and the sixth resonant capacitor 166 connected with the fourth heating coil 144 are connected to one of the positive power supply terminal and the negative power supply terminal, the overcurrent flows through the positive power supply terminal or the negative power supply terminal. As a result, when the third heating coil 143 and the fourth heating coil 144 are simultaneously driven in parallel, a current ripple is increased, and thus heat is generated at the rectifier 110.
Therefore, in the present disclosure, since the fifth resonant capacitor 165 and the sixth resonant capacitor 166 are connected with the positive power supply terminal and the negative power supply terminal, respectively, the current ripple may be reduced, and thus generation of the heat may be reduced.
The switching devices 121, 122, 123, 124, and 125 may be connected with an anti-parallel diode, and a subsidiary resonant capacitor connected in parallel with the anti-parallel diode may be provided so as to minimize switching losses of the switching devices.
Referring to
Therefore, a signal of the controller 180 is applied to the gate drivers 191, 192, 193, 194, and 195 to drive each semiconductor switch, and thus each of the switching devices 121, 122, 123, 124, and 125 may be controlled.
Meanwhile, a current converter 170 may be provided between grounds of the switching devices 121, 122, 123, 124, and 125 serially connected with each other and grounds of the first, second, third and fourth heating coils 141, 142, 143 and 144. The current converter 170 serves to measure a current flowing through each of the first, second, third and fourth heating coils 141, 142, 143, and 144 and then to input a current value to the controller 180 via an ADC provided at the controller 180. The controller 180 controls each of the switching devices 121, 122, 123, 124, and 125 based on the current value.
As illustrated in
When the controller 180 intends to drive the first heating coil 141, during a half resonant period, the first switching device 121 is controlled to be in a closed state, and the second, third, fourth and fifth switching devices 122, 123, 124, and 125 are controlled to be in an opened state. And during the other half resonant period, the first switching device 121 is controlled to be in the opened state, and the second, third, fourth and fifth switching devices 122, 123, 124, and 125 are controlled to be in the closed state.
By such an operation, an input voltage is applied to the first heating coil 141 and the first and second resonant capacitors 161 and 162 during the half resonant period, and thus a current in the first heating coil 141 is increased by starting a resonance. The input voltage is reversely applied to the first heating coil 141 and the first and second resonant capacitors 161 and 162 during the other half resonant period, and thus a reverse current in the first heating coil 141 is increased by starting the resonance.
As such an operation is repeated, an eddy current is induced in a cooking container placed on the first heating coil 141, and the induction heat cooking apparatus is operated.
As illustrated in
By such an operation, the input voltage is applied to the second heating coil 142 and the third and fourth resonant capacitors 163 and 164 during the half resonant period, and thus a current in the second heating coil 142 is increased by starting the resonance. And the input voltage is reversely applied to the second heating coil 142 and the third and fourth resonant capacitors 163 and 164 during the other half resonant period, and thus a reverse current in the second heating coil 142 is increased by starting the resonance.
As such an operation is repeated, the eddy current is induced in a cooking container placed on the second heating coil 142, and the induction heat cooking apparatus is operated.
Although not shown in the drawing, when the controller 180 intends to drive the third heating coil 143, during the half resonant period, the first, second and third switching devices 121, 122, and 123 are controlled to be in the closed state, and the fourth and fifth switching devices 124 and 125 are controlled to be in the opened state. And during the other half resonant period, the first, second and third switching devices 121, 122, and 123 are controlled to be in the opened state, and the fourth and fifth switching devices 124 and 125 are controlled to be in the closed state.
Also, when the controller 180 intends to drive the fourth heating coil 144, during the half resonant period, the first, second, third and fourth switching devices 121, 122, 123, and 124 are controlled to be in the closed state, and the fifth switching device 125 is controlled to be in the opened state. And during the other half resonant period, the first, second, third and fourth switching devices 121, 122, 123, and 124 are controlled to be in the opened state, and the fifth switching device 125 is controlled to be in the closed state.
As described above, the switching devices are controlled by the controller 180, and thus the heating coils may be driven.
As described above, since the induction heat cooking apparatus according to the embodiment of the present disclosure includes the plurality of heating coils, and a minimum of switching devices for driving the plurality of heating coils, it is possible to reduce a size of the induction heat cooking apparatus and also to reduce a production cost.
Referring to
First, when the controller 180 intends to drive the first heating coil 141, during the half resonant period, the first switching device 121 is controlled to be in the closed state, and the second, third, fourth and fifth switching devices 122, 123, 124, and 125 are controlled to be in the opened state. And during the other half resonant period, the first switching device 121 is controlled to be in the opened state, and the second, third, fourth and fifth switching devices 122, 123, 124, and 125 are controlled to be in the closed state.
By such an operation, the input voltage is applied to the first heating coil 141 and the first and second resonant capacitors 161 and 162 during the half resonant period, and thus the current in the first heating coil 141 is increased by starting the resonance. And the input voltage is reversely applied to the first heating coil 141 and the first and second resonant capacitors 161 and 162 during the other half resonant period, and thus the reverse current in the first heating coil 141 is increased by the resonance starting.
As such an operation is repeated, the eddy current is induced in a cooking container placed on the first heating coil 141, and the induction heat cooking apparatus is operated.
Then, when the controller 180 intends to drive the second heating coil 142, during the half resonant period, the first and second switching devices 121 and 122 are controlled to be in the closed state, and the third, fourth and fifth switching devices 123, 124, and 125 are controlled to be in the opened state. And during the other half resonant period, the first and second switching devices 121 and 122 are controlled to be in the opened state, and the third, fourth and fifth switching devices 123, 124, and 125 are controlled to be in the closed state.
By such an operation, the input voltage is applied to the second heating coil 142 and the third and fourth resonant capacitors 163 and 164 during the half resonant period, and thus the current in the second heating coil 142 is increased by starting the resonance. The input voltage is reversely applied to the second heating coil 142 and the third and fourth resonant capacitors 163 and 164 during the other half resonant period, and thus the reverse current in the second heating coil 142 is increased by starting the resonance.
As such an operation is repeated, the eddy current is induced in a cooking container placed on the second heating coil 142, and the induction heat cooking apparatus is operated.
In the same manner, when the controller 180 intends to drive the third heating coil 143, during the half resonant period, the first, second and third switching devices 121, 122, and 123 are controlled to be in the closed state, and the fourth and fifth switching devices 124 and 125 are controlled to be in the opened state. And during the other half resonant period, the first, second and third switching devices 121, 122, and 123 are controlled to be in the opened state, and the fourth and fifth switching devices 124 and 125 are controlled to be in the closed state.
After all of the first, second and third heating coils 141, 142, and 143 are driven by such a method, the heating coils are driven again, in turn, from the first heating coil 141, and thus all of the first, second and third heating coils 141, 142, and 143 may be driven.
Referring to
As illustrated in
Therefore, according to the purposes or the user's needs, the first, second and third heating coils 141, 142, and 143 may be driven together with each having different power.
Referring to
Since the fourth switching device 124 is in the closed state, the third and fourth heating coils 143 and 144 are connected in parallel with each other.
Therefore, through such an operation, during the half resonant period, the input voltage is applied to the third and fourth heating coils 143 and 144 and the fifth and sixth resonant capacitors 165 and 166, and thus the current in each of the third and fourth heating coils 143 and 144 is increased by starting the resonance. And during the other resonant period, the input voltage is reversely applied to the third and fourth heating coils 143 and 144 and the fifth and sixth resonant capacitors 165 and 166, and thus the reverse current in each of the third and fourth heating coils 143 and 144 is increased by starting the resonance.
At this time, the third and fourth heating coils 143 and 144 which are operated in the parallel driving method may be formed to have the same capacity. The embodiment describes an example in which each of the third and fourth heating coils 143 and 144 has a capacity of 2.4 kW.
Also, it is preferable that the each of third and fourth heating coils 143 and 144 which are operated in the parallel driving method be formed to have a smaller capacity than that of the first and second heating coils 141 and 142.
As such an operation is repeated, the eddy current is induced in a cooking container placed on the third and fourth heating coils 143 and 144, and the induction heat cooking apparatus is operated.
Meanwhile, as described above, in the present disclosure, since the fifth resonant capacitor 165 connected with the third heating coil 143 is connected with the positive power supply terminal, and the sixth resonant capacitor 166 connected with the fourth heating coil 144 is connected with the negative power supply terminal, the overcurrent generated during a switching operation of the switching devices 121, 122, 123, 124, and 125 may be branched, and thus the current ripple and the heat generation may be reduced.
The embodiment of the present disclosure can provide the induction heat cooking apparatus having the plurality of heating coils, which can be controlled by a minimum of switching devices, and the control method thereof.
Also, the embodiment of the present disclosure can provide the induction heat cooking apparatus having the plurality of heating coils, in which the plurality of heating coils can be controlled by a minimum of switching devices, and the control method thereof.
Also, the embodiment of the present disclosure can provide the induction heat cooking apparatus which can reduce the momentary overcurrent generated while the switching devices are turned on or off, and thus can reduce the current ripple of the rectifier circuit and can also reduce the heat generation, and the control method thereof.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0133308 | Oct 2014 | KR | national |
10-2015-0090414 | Jun 2015 | KR | national |