Articles of athletic footwear often include two primary elements, an upper and a sole structure. The upper provides a comfortable covering for the foot and securely positions the foot with respect to the sole structure. The sole structure is secured to a lower portion of the upper (for example, through adhesive bonding) and is generally positioned between the foot and the ground. In addition to attenuating ground reaction forces (that is, providing cushioning) during walking, running, and other ambulatory activities, the sole structure may influence foot motions (for example, by resisting pronation), impart stability, and provide traction. Accordingly, the upper and the sole structure operate cooperatively to provide a comfortable structure that is suited for a wide variety of athletic activities.
The upper is often formed from a plurality of material elements (for example, textiles, polymer sheets, foam layers, leather, and/or synthetic leather) that are stitched and/or adhesively bonded together to form a void on the interior of the footwear for receiving a foot. More particularly, the upper forms a structure that extends over instep and toe areas of the foot, along medial and lateral sides of the foot, and around a heel area of the foot. The upper may also incorporate a lacing system to adjust fit of the footwear, as well as permitting entry and removal of the foot from the void within the upper. In addition, the upper may include a tongue that extends under the lacing system to enhance adjustability and comfort of the footwear. Further, the upper may incorporate a heel counter to provide stability, rigidity, and support to the heel and ankle portion of the foot.
The sole structure may include one or more components. For example, the sole structure may include a ground-contacting sole component. The ground-contacting sole component may be fashioned from a durable and wear-resistant material (such as rubber or plastic), and may include ground-engaging members, tread patterns, and/or texturing to provide traction.
In addition, in some embodiments, the sole structure may include a midsole and/or a sockliner. The midsole, if included, may be secured to a lower surface of the upper and forms a middle portion of the sole structure. Many midsole configurations are primarily formed from a resilient polymer foam material, such as polyurethane or ethylvinylacetate, that extends throughout the length and width of the footwear. The midsole may also incorporate fluid-filled chambers, plates, moderators, or other elements that further attenuate forces, influence the motions of the foot, or impart stability, for example. The sockliner is a thin, compressible member located within the upper and positioned to extend under a lower surface of the foot to enhance footwear comfort.
The footwear components discussed above may be assembled together using various methods, including, for example, stitching, adhesives, welding, and other joining techniques. Articles of footwear may be assembled, at least in part, on a structure called a “last.” A last is a form having the general shape of a human foot. During manufacturing, an article of footwear may be assembled around a last, in order to create a shoe with the desired shape. For example, upper materials/panels may be assembled, or otherwise placed, on a last. Then other components, such as midsole components and/or ground-contacting components may be attached to the upper, while fitted on the last. A last is typically not shaped like any particular type of foot, but rather is formed having a shape wherein the dimensions are averages of many different foot types, in order to produce a shoe that fits a variety of foot types.
When joining footwear components using welds and/or adhesives, heat may be applied to select portions of the footwear components. Therefore, systems have been developed to provide heat to certain portions of footwear components. There are various ways in which the heat may be applied. The heat may activate adhesive applied to portions of the footwear components, thereby joining the components. In some cases, the heat may be applied to effectively melt portions of footwear components (for example plastics) in order to join the components together. In other techniques, heat may be applied to footwear components in order to shape the components. For example, such techniques may involve heating a footwear component while a form (such as a last or an actual human foot) is pressed against it, in order to mold the component to the form.
Systems have been developed that apply heat using electrical heating elements. Some systems incorporate electrical heating elements into the last. Once heated by the electrical heating elements, the last conductively transmits heat to components of footwear fitted on the last or otherwise pressed against it. Such systems heat adhesives applied to the footwear components in order to join the components to one another.
In other systems, irradiative heating may be applied to join components of footwear. For example, microwave or infrared irradiation may be applied to footwear components from external sources to apply heat for shaping or joining footwear components. Some systems have been developed that apply microwave or infrared irradiation to heat adhesives in order to join footwear components.
In some articles of footwear, induction heating may be utilized to apply heat to components of the footwear. Induction heating generally involves the application of an electromagnetic field to an object formed of an electrically conducting material (for example a metal). This creates electromagnetic induction, wherein the electromagnetic field generates eddy currents in the electrically conducting material, and the resistance of the material leads to Joule heating of the material. Certain materials are thermally reactive to magnetic fields (by virtue of being electrically conductive). Such materials are called “susceptors” or “susceptor materials.” When exposed to an electromagnetic field, a susceptor material increases in temperature.
In some footwear manufacturing processes, footwear components or adhesives used to join footwear components may include susceptor materials. When exposed to an electromagnetic field, select portions of footwear components and/or adhesives that are formed of susceptor materials are heated in order to shape or join the footwear components. For example, one method involves the implementation of a susceptor-impregnated insole, which is molded to a wearer's foot upon induction heating of the insole. Another method involves welding two panels of an upper together by melting a layer of the panel material. The layer includes a susceptor material, which heats when exposed to an electromagnetic field, causing the layer to melt.
In one aspect, the present disclosure is directed to an apparatus for making an article of footwear. The apparatus may include a last shaped to resemble a human foot and being formed at least in part from a susceptor material that is thermally reactive to an electromagnetic field. The apparatus may also include an induction coil disposed proximate to the last and configured to produce an electromagnetic field that causes the susceptor material in the last to increase in temperature by induction heating.
In another aspect, the present disclosure is directed to a method of making an article of footwear. The method may include providing a last shaped to resemble a human foot and formed at least in part from a susceptor material that is thermally reactive to an electromagnetic field. The method may also include covering the last at least in part with one or more footwear components of an article of footwear. Further, the method may include placing the susceptor material in proximity with the one or more footwear components covering the last and placing the last in proximity with an induction coil. Also, the method may include increasing the temperature of the susceptor material by induction heating by producing an electromagnetic field using the induction coil, and transferring heat from the susceptor material to the one or more footwear components covering the last.
In another aspect, the present disclosure is directed to a method of making an article of footwear. The method may include providing a last shaped to resemble a human foot. The method may also include forming at least one footwear component at least in part from a susceptor material that is thermally reactive to an electromagnetic field. The method may further include covering at least a portion of the last with two or more footwear components, wherein the two or more footwear components includes the at least one footwear component formed at least in part from a susceptor material. In addition, the method may include applying an electromagnetic field to the susceptor material, causing induction heating of the susceptor material and joining the two or more footwear components by melding the two or more components with the induction heating.
In another aspect, the present disclosure is directed to a method of making an article of footwear. The method may include providing a last shaped to resemble a human foot. In addition, the method may include forming at least one footwear component at least in part from a susceptor material that is thermally reactive to an electromagnetic field. Also, the method may include covering at least a portion of the last with the at least one footwear component. Further, the method may include applying an electromagnetic field to the susceptor material, causing induction heating of the susceptor material and molding the at least one footwear component into a predetermined shape using the induction heating. In some embodiments, the footwear component formed at least in part from a susceptor material may be a heel counter, a toe cap, or a panel of an upper of the article of footwear.
In another aspect, the present disclosure is directed to a method of making an article of footwear. The method may include providing a last shaped to resemble a human foot. The method may also include forming at least one footwear component at least in part from a non-metallic susceptor material that is thermally reactive to an electromagnetic field. The method may also include covering at least a portion of the last with the at least one footwear component and applying an electromagnetic field to the susceptor material, causing induction heating of the susceptor material. In addition, the method may include subjecting the article of footwear to a metal detection process.
Advantages and features of novelty characterizing aspects of the presently disclosed embodiments are pointed out with particularity in the appended claims. Additional systems, methods, features, and advantages of the invention will be, or will become, apparent to one of ordinary skill in the art upon examination of the following descriptive matter and accompanying figures.
The invention can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views.
The following discussion and accompanying figures disclose systems and methods for manufacturing an article of footwear. Concepts associated with the disclosed systems and methods may be applied to a variety of footwear types, including athletic shoes, dress shoes, casual shoes, or any other type of footwear.
For consistency and convenience, directional adjectives are employed throughout this detailed description corresponding to the illustrated embodiments. The term “longitudinal,” as used throughout this detailed description and in the claims, refers to a direction extending a length of an article of footwear, that is, extending from a forefoot portion to a heel portion. The term “forward” is used to refer to the general direction in which the toes of a foot point, and the term “rearward” is used to refer to the opposite direction, i.e., the direction in which the heel of the foot is facing.
The term “lateral direction,” as used throughout this detailed description and in the claims, refers to a side-to-side direction extending a width of the footwear. In other words, the lateral direction may extend between a medial side and a lateral side of an article of footwear, with the lateral side of the article of footwear being the surface that faces away from the other foot, and the medial side being the surface that faces toward the other foot.
The term “horizontal,” as used throughout this detailed description and in the claims, refers to any direction substantially parallel with the ground, including the longitudinal direction, the lateral direction, and all directions in between. Similarly, the term “side,” as used in this specification and in the claims, refers to any portion of a component facing generally in a lateral, medial, forward, and/or rearward direction, as opposed to an upward or downward direction.
The term “vertical,” as used throughout this detailed description and in the claims, refers to a direction generally perpendicular to both the lateral and longitudinal directions. For example, in cases where a sole is planted flat on a ground surface, the vertical direction may extend from the ground surface upward. The term “upward” refers to the vertical direction heading away from a ground surface, while the term “downward” refers to the vertical direction heading towards the ground surface. Similarly, the terms “top,” “upper,” and other similar terms refer to the portion of an object substantially furthest from the ground in a vertical direction, and the terms “bottom,” “lower,” and other similar terms refer to the portion of an object substantially closest to the ground in a vertical direction.
For purposes of this disclosure, the foregoing directional terms, when used in reference to an article of footwear, shall refer to the article of footwear when sitting in an upright position, with the sole facing groundward, that is, as it would be positioned when worn by a wearer standing on a substantially level surface. Further, it will be understood that each of these directional terms may be applied to, not only a complete article of footwear, but also to individual components of an article of footwear.
In addition, for purposes of this disclosure, the term “fixedly attached” shall refer to two components joined in a manner such that the components may not be readily separated (for example, without destroying one or both of the components). Exemplary modalities of fixed attachment may include joining with permanent adhesive, rivets, stitches, nails, staples, welding or other thermal bonding, and/or other joining techniques. In addition, two components may be “fixedly attached” by virtue of being integrally formed, for example, in a molding process.
Footwear Structure
Since the present disclosure is directed to apparatuses and methods for manufacturing articles of footwear, various components of an article of footwear will be described in the following paragraphs for purposes of reference.
Footwear 110 is depicted in
As shown in
As shown in
Sole structure 112 may be fixedly attached to upper 114 (for example, with adhesive, stitching, welding, and/or other suitable techniques) and may have a configuration that extends between upper 114 and the ground. Sole structure 112 may include provisions for attenuating ground reaction forces (that is, cushioning the foot). In addition, sole structure 112 may be configured to provide traction, impart stability, and/or limit various foot motions, such as pronation, supination, and/or other motions.
In some embodiments, sole structure 112 may include multiple components, which may individually and/or collectively provide footwear 110 with a number of attributes, such as support, rigidity, flexibility, stability, cushioning, comfort, reduced weight, and/or other attributes. In some embodiments, sole structure 112 may include an insole 126, a midsole 128, and a ground engaging sole component 130, as shown in
Insole 126 may be disposed in the void defined by upper 114. Insole 126 may extend through each of regions 116, 118, and 120 and between the lateral and medial sides of footwear 110. Insole 126 may be formed of a deformable (for example, compressible) material, such as polyurethane foams, or other polymer foam materials. Accordingly, insole 126 may, by virtue of its compressibility, provide cushioning, and may also conform to the foot in order to provide comfort, support, and stability.
In some embodiments, insole 126 may be removable from footwear 110, for example, for replacement or washing. In other embodiments, insole 126 may be integrally formed with the footbed of upper 114. In other embodiments, insole 126 may be fixedly attached within footwear 110, for example, via permanent adhesive, welding, stitching, and/or another suitable technique. In some embodiments of footwear 110, upper 114 may include a bottom portion defining a lower aspect of the void formed by upper 114. Therefore, in such embodiments, insole 126 may be disposed above the bottom portion of upper 114, inside the void formed by upper 114. In other embodiments, upper 14 may not extend fully beneath insole 126, and thus, in such embodiments, insole 126 may rest atop midsole 128 (or sole component 30 in embodiments that do not include a midsole).
Footwear 110 is depicted in
In some embodiments, a midsole may include, in addition (or as an alternative) to cushioning components, such as foams discussed above, features that provide support and/or rigidity. In some embodiments, such features may include a support plate that extends at least part of the length of footwear 110.
As shown in
Support plate 132 may be a substantially flat, plate-like platform. Support plate 132, although relatively flat, may include various anatomical contours, such as a relatively rounded longitudinal profile, a heel portion that is higher than the forefoot portion, a higher arch support region, and other anatomical features.
Support plate 132 may be formed of a relatively rigid plastic, carbon fiber, or other such material, in order to maintain a substantially flat surface upon which the forces applied by a foot during ambulatory activities may be distributed. Support plate 132 may also provide torsional stiffness to sole structure 112, in order to provide stability and responsiveness.
A ground-contacting sole component may include features that provide traction, grip, stability, support, and/or cushioning. For example, a sole component may have ground-engaging members, such as treads, cleats, or other patterned or randomly positioned structural elements. A sole component may also be formed of a material having properties suitable to provide grip and traction on the surface upon which the footwear is anticipated to be used. For example, a sole component configured for use on soft surfaces, may be formed of a relatively hard material, such as hard plastic. For instance, cleated footwear, such as soccer shoes, configured for use on soft grass may include a sole component made of hard plastic, having relatively rigid ground engaging members (cleats). Alternatively, a sole component configured for use on hard surfaces, such as hardwood, may be formed of a relatively soft material. For example, a basketball shoe configured for use on indoor hardwood courts may include a sole component formed of a relatively soft rubber material.
Sole components may be formed of suitable materials for achieving the desired performance attributes. Sole components may be formed of any suitable polymer, composite, and/or metal alloy materials. Exemplary such materials may include thermoplastic and thermoset polyurethane (TPU), polyester, nylon, polyether block amide, alloys of polyurethane and acrylonitrile butadiene styrene, carbon fiber, poly-paraphenylene terephthalamide (para-aramid fibers, e.g., Kevlar®), titanium alloys, and/or aluminum alloys. In some embodiments, sole components may be formed of a composite of two or more materials, such as carbon-fiber and poly-paraphenylene terephthalamide. In some embodiments, these two materials may be disposed in different portions of the sole component. Alternatively, or additionally, carbon fibers and poly-paraphenylene terephthalamide fibers may be woven together in the same fabric, which may be laminated to form the sole component. Other suitable materials and composites will be recognized by those having skill in the art.
The sole component may be formed by any suitable process. For example, in some embodiments, the sole component may be formed by molding. In addition, in some embodiments, various elements of the sole component may be formed separately and then joined in a subsequent process. Those having ordinary skill in the art will recognize other suitable processes for making the sole components discussed in this disclosure.
As shown in
An upper of an article of footwear may be formed of one or more panels. In embodiments that combine two or more panels, the panels may be fixedly attached to one another. For example, upper panels may be attached to one another using stitching, adhesive, welding, and/or any other suitable attachment technique.
As shown in
Upper 114 may be formed out of any suitable materials. For example, upper panels 138 may be formed of such materials as leather, canvas, rubber, polyurethane, vinyl, nylon, synthetic leathers, and/or any other suitable material. In some cases, footwear 110 may be formed out of multiple panels in order to facilitate assembly of footwear 110. In some embodiments, multiple panels may be used for upper 114 in order to enable different materials to be used in different parts of upper 114. Different materials may be chosen for different panels of footwear 110 based on factors such as strength, durability, flexibility, breathability, elasticity, and comfort.
In addition, in some embodiments, footwear may include other footwear components, such as a heel counter and/or a toe cap. In some cases, components such as heel counters and/or toe caps may be upper panels. In other cases, heel counters and/or toe caps may be separate components added to an upper.
In some embodiments, an article of footwear may include a heel counter to provide support and stability to the heel and ankle regions of the foot. In some embodiments, the heel counter may be disposed on an outside portion of the upper. In other embodiments, the heel counter may be disposed in between layers of the upper. The heel counter may be formed of a relatively rigid material, configured to stiffen the rear section of an article of footwear, including the heel region. In some embodiments, the heel counter may include a U-shaped structure configured to wrap around the lateral, rear, and medial portions of the heel region of the footwear. In some embodiments, the heel counter may also include a bottom portion configured to be disposed under the heel region of the upper.
As shown in
In some embodiments an article of footwear may include a toe cap disposed at a toe region of the footwear. In some embodiments, the toe cap may be a panel of an upper. In other embodiments, the toe cap may be a layer of the upper. In still other embodiments, the toe cap may be a covering applied on top of the upper. The toe cap may provide additional reinforcement in the toe region, to resist scuffing and/or protect the toes.
As shown in
An article of footwear such as footwear 110 shown in
Manufacturing Apparatus
An apparatus for making an article of footwear may include a last shaped to resemble a human foot. During the manufacturing process, one or more footwear components, such as panels of an upper, toe caps, heel counters, midsole components, and/or ground-contacting sole components may be mounted on the last, in order to form the article of footwear having an interior shape corresponding with the outer shape of the last. The apparatus may be further configured to join and/or mold footwear components covering the last using induction heating. In order to do so, the apparatus may include a last on, or against, which footwear components may be mounted; a support block for supporting footwear components by holding the components against the last, and an induction coil for inductively heating susceptor material in the last. When held against the inductively heated last, footwear components may be heated in order to join footwear components together, or mold footwear components into a predetermined shape.
The averaged dimensions result in a last that is not shaped like any particular foot. Such a last may have less surface detail than an actual foot and the contours of the last may be smoothed out in comparison to an actual foot. The result may be a last that appears, to some extent, like a mannequin or doll foot. Nevertheless, for purposes of this description and the appending claims, a last shall be considered to “resemble a human foot” not only when the last is shaped like a specific foot, but also when the last is shaped with dimensions that are averages of multiple feet. Persons of ordinary skill in the art will readily recognize the practice of forming lasts with averaged dimensions, and will, accordingly, appreciate the meaning of the term “resemble a human foot,” as used in the present description and claims.
In some embodiments, the last may be formed of a single piece of material. In other embodiments, the last may be formed of multiple components. In some embodiments different last components may be formed of different materials. In some embodiments, the last may include a first component. An outer surface of the first component may form a substantial majority of the outer shape of the last. The first component may have a relatively low electrical conductivity, and thus, may be resistant to induction heating. Exemplary materials from which the first component of the last may be formed include plastics, wood, rigid foams, and other relatively rigid materials having relatively low electrical conductivity.
In addition, in exemplary embodiments, in order to facilitate induction heating, the last may be formed, at least in part, from a susceptor material that is thermally reactive to an electromagnetic field. For example, the susceptor material may be a material that increases in temperature when exposed to an electromagnetic field. Exemplary such materials are electrically conductive materials. Accordingly, exemplary susceptor materials may include metals, such as aluminum, steel, and copper; metallic compounds, such as boron carbide, tin oxide, and zinc oxide; and/or other electrically conductive materials, such as graphite and other carbon-based materials. Other susceptor materials usable with the presently disclosed apparatuses and methods will be recognized by skilled artisans.
Some exemplary susceptor materials may include ferromagnetic materials. For example, a susceptor component may be formed at least in part of ferromagnetic particles. In some cases such particles may be nanoparticles. Susceptor particles may be integrally mixed with component materials, such as plastics. In some cases, susceptor particles may be mixed with granular component materials.
Some footwear manufacturing processes involve use of metal detectors for quality control. In some cases, non-metallic susceptor materials may be used in order to permit use of metal detectors without reducing the effectiveness of the metal detection for quality control purposes.
In some embodiments, the last may be formed substantially entirely of a susceptor material. In other embodiments, substantially the entire last may be formed of a material that is impregnated with a susceptor material. In still other embodiments, the last may include a susceptor component separate from the first component of the last. Such a separate susceptor component may be formed entirely from a susceptor material, may be impregnated with a susceptor material, or may include sub-components that are formed, at least in part, from a susceptor material.
There are several advantages to utilizing induction heating over other heating techniques, such as conduction heating and convection heating, for certain footwear manufacturing processes, such as joining and/or molding of footwear components. In conduction heating (the transfer of heat through materials) and convection heating (the transfer of heat from one component to air or another medium, which then transfers the heat to another component), the heating may be wide spread across an entire object regardless of which type of materials it is made from. In addition, such processes can be relatively slow, and may not be well-suited for evenly heating an object. It can take a relatively long time for thermal energy to evenly distribute from portions of an object closest to the heat source to portions of the object furthest from the heat source. In addition, it may be difficult to heat objects evenly with conduction and convection, regardless of how long the process is conducted, as portions closer to the heat source may exhibit larger temperature increases. Also, conduction and convection heating processes can be inefficient, requiring large amounts of energy to effectuate relatively small increases in temperature.
In contrast to conduction and convection heating, induction heating may be better suited to selectively heating certain portions of an object. With induction heating, the site of heating may be determined by the placement of susceptor materials, for example, in the manufacturing apparatus (such as in the last) or in the footwear components themselves. Thus, induction heating may be utilized to join and/or mold select portions of an article of footwear or select portions of footwear components. For example, induction heating may be utilized to selectively heat only adjoining portions of two footwear components, in order to join the two components. In addition, select portions of an article of footwear, such as a toe cap or heel region, may be molded using induction heating, without affecting other portions of the article of footwear. Because select portions of an article of footwear may be heated, joining and/or molding processes may be performed while the article of footwear is in an advanced stage of assembly. For example, joining or molding processes may be performed on one part of an article of footwear, even though a substantial portion of the rest of the article of footwear has already been assembled, because the heating may be focused on the areas to be joined or molded, without heating other portions of the footwear.
Induction heating may also be a relatively fast process by which an object may be heated evenly. Since the susceptor material heats due to the flow of eddy currents and the electrical resistance of the susceptor material, the susceptor material heats relatively evenly, compared to conduction or convention heating processes. Not only does heating occur evenly in the susceptor material, but also, it occurs in a relatively short amount of time, because there is no delay due to thermal conduction or convection. Faster heating may result in thermoset materials reaching thermoset activation temperatures more quickly. This may hasten molding processes. In other processes, faster heating may result in materials reaching a melting/welding temperature more quickly, which may hasten joining procedures.
Similarly, cooling processes may be more rapid because only the object including the susceptor material is heated. Thus, other portions of the footwear, as well as the mold forms, remain at a lower temperature and need not be cooled. Further, the cool mold forms will immediately begin cooling and setting the heated components after the heating is stopped. Accordingly, the article of footwear can be cooled without being transferred to a cooling mold. This may result in faster production cycle times, and use of less production floor space.
In addition, heating only select portions of an article of footwear, such as a heel counter, may enable a larger selection of upper materials. That is, certain upper materials may have desirable performance properties but may not withstand heating to a desired extent. With generalized heating, such as conductive heating, heat-sensitive upper materials are not usable. With component-specific induction heating, a plastic heel counter may be heated without heating an upper material. Thus, a wider variety of upper materials may be used.
Another advantage of induction heating over conduction heating is that the heating may be performed without physically touching the object to be heated with any kind of heating device. For example, conduction heating may be performed using an electrical heating element. However, the electrical heating element is typically brought into contact with the object to be heated in order to conductively heat it. This may place restrictions on options for carrying out heating aspects of footwear manufacturing processes. Thus, a non-contact form of heating may be desired. An electrical heating element, as well as other heating devices, can be used to effectuate convection heating, by placing the heating device in proximity to, but not touching, the object to be heated. However, as noted above, convection heating is a relatively slow process.
Other forms of non-contact heating are also known. For example, irradiative heating may be performed using infrared (IR) or microwave irradiation. However, there are advantages of induction heating over these types of heating as well.
Infrared heating involves heating objects by irradiation with infrared light waves. The infrared light transmits energy via radiation, as opposed to conduction or convection. Infrared irradiation may provide non-contact heating, and may also provide targeted heating of an object. Infrared heating also does not require a medium for transmission. That is, the energy is not transferred by heating air, for example, but rather transmits the energy directly to the object to be heated with radiation, which happens to travel through the air. However, infrared irradiation is applied to the surface of an object. The thermal energy must then propagate through the remainder of the object via thermal conduction, which, as noted above, can be a relatively slow and uneven heating process. Consequently, infrared irradiation is not well-suited for application to blind surfaces (surfaces not exposed to the infrared irradiation) or other non-exposed portions of the object. This can be limiting for footwear manufacturing, as non-exposed portions of footwear components (for example overlapping panels of an upper) may not be conducive to heating with infrared irradiation.
Microwave irradiation causes dielectric heating by agitating molecules in the irradiated material. Although microwave irradiation involves the application of electromagnetic waves, it is distinguishable from induction heating, because microwave irradiation results in dielectric heating instead of Joule heating (heating due to the flow of eddy currents in a conductive material) which is caused by induction heating. When conductivity of the material is relatively low and/or frequency of the electromagnetic waves is high, dielectric heating (not Joule heating) is the dominant mechanism of loss. Thus, a skilled artisan would recognize the difference between induction heating and microwave irradiation heating. Accordingly, for purposes of this description and the appended claims, the term “induction heating” shall refer to the use of an electromagnetic field and a susceptor material to induce Joule heating, and shall not encompass microwave irradiation heating.
It is further noted that, because microwave irradiation is more suited for heating materials with a low electrical conductivity (such as foods), it is not well-suited for selectively heating portions of an article of footwear, since most footwear materials have a relatively low electrical conductivity. Thus, heating an article of footwear with microwave irradiation may tend to heat many portions of the footwear, instead select portions to be joined or molded, for example. Induction heating, on the other hand, is more effective on more electrically conductive materials. Therefore, with induction heating, such electrically conductive materials may be selectively placed in a footwear manufacturing apparatus (for example a last) or into components of the article of footwear itself, in order to localize the heating.
In some embodiments, last 205 may be formed at least in part from a susceptor material that is thermally reactive to an electromagnetic field. As shown in
The footwear making apparatus may be configured to apply pressure between the last and a support block in order to facilitate attachment of footwear components, such as sole structure components, to an upper (or portions of an upper) that are covering the last. Additionally, or alternatively, the footwear making apparatus may be configured to facilitate molding of the sole structure components against the last. Accordingly, the apparatus may include a support block configured to support one or more footwear components by holding the footwear components against the last during induction heating. For example, an exemplary support block may be configured to cradle sole structure components, such as support plates and/or ground contacting sole components. Accordingly, the support block may include features to facilitate this. For example, the support block may include a foot sole-shaped depression configured to mate with a sole portion of the last.
As shown in
In some embodiments, the support block may be a rigid form configured to hold a footwear component against the last. In other embodiments, the support block may include one or more soft forms in order to force the footwear component against the last, allowing the last (and any other footwear components mounted on the last) to determine the shape of the footwear component joined and/or molded in the induction heating process. For example, the support block may have a soft, gel-like, or inflatable liner. In other embodiments, the support block may include a cabinet having inflatable walls that, when inflated, close relatively tightly around the last, pressing footwear components against the outer surface of the last. Other configurations of devices for supporting footwear components will be recognized by those having ordinary skill in the art.
The apparatus may further include an induction coil configured to generate an electromagnetic field. When exposed to the electromagnetic field, the susceptor material increases in temperature, thus heating at least a portion of the last. In some embodiments, this induction heating of the last may be utilized to join two or more footwear components. In some embodiments, induction heating of the last may be utilized to effectuate molding of footwear components. In some embodiments, induction heating may be utilized for both joining and molding footwear components.
In some embodiments, induction coil 240 may be a separate component from support block 225, as shown in
In some configurations, induction coil 240 may be located in last 205. For example, induction coil 240 may be embedded into an interior of last 205. In some configurations, at least a portion of induction coil 240 may be located on a surface of last 205, as discussed in greater detail below (see discussion of
In some embodiments, induction coil 240 may have a substantially planar shape, as shown in
In some embodiments, induction coil 240 may be integrated into a heating device. For example, in some cases, induction coil 240 may be a component of a hot plate or other similar equipment.
In addition, the cross-sectional shape of coils 245 may vary. In some embodiments, coils 245 may have a relatively flat and/or oblong cross-sectional shape, as shown in an enlarged cross-sectional view 250 in
Induction coils may have any of a variety of shapes. In some embodiments, the induction coil may have a substantially tubular shape with a hollow central void that is configured to receive the last with one or more components of an article of footwear covering at least a portion of the last. Such a coil may be suitable for producing an electromagnetic field that is relatively even about the surface of the last. This may be beneficial for joining and/or molding footwear components that cover more than one side of the last.
Susceptor components may be disposed in any suitable location of the last, and may have any suitable size for effectuating the induction heating desired to be produced and transmitted to footwear components. In some embodiments, the susceptor components may be disposed to form a portion of the outer surface of the last. Disposed on the outer surface, susceptor components may directly contact footwear components mounted on the last, thus facilitating conduction of heat that has been inductively produced in the susceptor components to the footwear components. In addition, susceptor components may be located in areas of the last upon which footwear components that are desired to be heated will be mounted. For example, in some embodiments, midsole components and/or a ground-contacting sole component may be desired to be joined to a bottom (sole) portion of an upper. Therefore, in some embodiments, the last may include a susceptor component in the sole region of the last in order to transfer inductively produced heat from the susceptor component to sole structure components held adjacent the sole portion of the upper.
In addition to first component 525, apparatus 500 may also include a susceptor component 515. As shown in
It may be desirable to prevent heating of non-susceptor components of the last. Preventing heating of non-susceptor components may prevent damage to such components, and may also prevent transfer of heat to portions of footwear components that are not desired to be heated. This may facilitate the targeted application of heat to only portions of footwear components that are desired to be heated. To this end, in some embodiments, susceptor components of the last may be spaced from non-susceptor components of the last. By maintaining gaps between susceptor components and non-susceptor components, conductive heat transfer from susceptor components to non-susceptor components can be prevented.
In some embodiments, susceptor components may be connected to non-susceptor components of the last in relatively small areas in order to limit the amount of surface contact and, therefore, thermal conduction, between the components. In addition, in some embodiments, the connection points between susceptor components and non-susceptor components may be located in an interior portion of the last. Accordingly, in such embodiments, heat that may be conductively transferred from the susceptor components to the non-susceptor components may be localized in portions of the last that are remote from the outer surface of the last. Therefore, since footwear components are mounted on an outer surface of the last, preventing or limiting the transfer of heat to outer surface portions of non-susceptor components of the last may prevent the transfer of heat to portions of footwear components that are not desired to be heated.
As illustrated in
While the outer regions of susceptor component 515 and the outer regions of first component 525 may be independent of one another, susceptor component 515 and first component 525 may be connected at certain points. However, these points may be located substantially remote from the outer surface of last 505. Susceptor component 515 may include an outer portion 540 disposed at an outer region of last 505. Outer portion 540 of susceptor component 515 may include outer surface 530, which may form at least a portion of the outer shape of last 505. Susceptor component 515 may include an inner portion 550 extending in an inward direction away from outer surface 530 of susceptor component 515. Outer portion 540 may include an outer rail 555 disposed at a peripheral portion 560 of sole region 520 of last 505. Inner portion 550 may include one or more inner rails 565 extending inward from an inner surface 570 of outer rail 555.
Groove 575 may have any suitable shape. As shown in
The connection between inner rails 565 of susceptor component 515 and holes 595 may be made using any suitable attachment mechanism. Susceptor component 515 may be attached to first component 525 with a press-fit, adhesive, fasteners, or any other suitable fixation method. One or both of first component 525 and susceptor component 515 may be formed in multiple pieces in order to facilitate assembly of the two components.
As also illustrated in
In some embodiments, rather than having a gap between the susceptor component and the rest of the last, a thermally isolative filler material may be disposed between the susceptor and the rest of the last, in order to thermally isolate the susceptor, so that heating may be targeted. The filler material may be a non-inductive, non-conductive material so that it does not increase in temperature when exposed to electromagnetic radiation. The material may also be thermally non-conductive, in order to keep heat from the susceptor component from conducting to the rest of the last.
In some embodiments, an outer surface of filler material 3417 may be flush with the outer surface of first component 3410 of last 3405 and/or susceptor component 3415. For example, the left side of
A method of using apparatus 3400 may include covering last 3405, at least in part, with one or more footwear components 3420 of an article of footwear. For example, as shown in
Manufacturing Processes—Susceptor in Last
Processes for making articles of footwear using induction heating and implementing manufacturing apparatuses, such as those described above will be discussed below.
Induction heating may be implemented in various ways using susceptor materials disposed in the last of a footwear manufacturing apparatus. An electromagnetic field may inductively heat the susceptor material in the last, and the susceptor material may conductively transfer heat to one or more footwear components mounted on the last. This inductive heating and associated transfer to footwear components may be used to join footwear components together and/or to mold footwear components. The following discussion describes exemplary methods of joining and/or molding footwear components using the induction heating of susceptor materials in a last.
A. Joining
An exemplary apparatus 1200 for making an article of footwear is depicted in
The method also involves increasing the temperature of the susceptor material by induction heating by producing an electromagnetic field using induction coil 1225 and transferring heat from the susceptor material to the one or more footwear components covering last 1205.
The joining of footwear components, such as support plate 1220 and upper 1215, for example, may be caused by the transfer of heat to the footwear components. For example, in some embodiments, upon heating of the footwear components, one or both of the footwear components may melt at least partially, resulting in melding of the two components together. In some embodiments, the method may include placing a thermally activated adhesive in contact with the footwear components. In such embodiments, joining of the footwear components may include adhesively bonding portions of the footwear components together by activating the adhesive with heat transferred from the susceptor material to the adhesive.
It is noted that the selection of the type of induction coil may be made with consideration of the location of the footwear components that are desired to be heated. For example, attachment of a midsole support plate is discussed above in conjunction with a planar induction coil. Use of a planar induction coil may be suitable for such an application because the location of the area to be heated is on the bottom portion of the assembly. For assembly 1420, however, the location of the area to be heated falls on three sides of the footwear (lateral, rear, and medial). Therefore, it may be advantageous to use a tubular coil, which may be placed around assembly 1420 in order to more effectively heat the areas of interest. It should also be noted that the induction coil may be oriented in other directions. For example, while a horizontally oriented induction coil 1425 is shown in
Placement of susceptor components may be selected according to the location of the footwear components desired to be heated. For example, sole structure components, like a support plate, were discussed above. For such footwear components, it may be desirable to implement susceptor components at a bottom portion of the last. However, when the target footwear components are not desired to be joined to a bottom portion of the article of footwear, it may be suitable to locate the susceptor component in an alternative location that coincides with the desired location at which the footwear component is to be attached to the upper. For example, regarding the attachment of a heel counter, as described above, it may be desirable to locate the susceptor component in a heel region of the last. Similarly, susceptor components may be located in other parts of the last, such as the toe region, for use heating footwear components corresponding with the toe region of the article of footwear.
There may be several advantages of using a susceptor component having the form of a grid instead of a solid susceptor component. For example, a grid can provide broad area surface heating similar to a solid susceptor component, but can do so using less of susceptor material. This may be desirable, since susceptor materials may be expensive and/or heavy. Using a grid or other type of pattern can reduce weight, distribute heat evenly, control heat transfer, and cover large area. In some embodiments, a grid or other patterned susceptor component may be used to provide a less extensive and, therefore, less permanent attachment. For some types of footwear, it may be desirable for components to be able to be pulled apart with some effort. For example, it is common to resole dress shoes. Resoling would not be possible, however, if a heel of a shoe were permanently attached to the upper and/or other sole structure components. Therefore, it would be advantageous to have a broad surface heating component that may effectuate joining of components at intermittent locations, rather than forming one solid melding of the surfaces of both components, in order to produce footwear with replaceable components. A grid or other patterned susceptor component may be suitable for such applications.
Toe cap 1715 may be brought into contact and held with pressure against last 1705 using, for example, a support block (not shown) in a similar manner to that described above with regard to heel counter 1415. With toe cap 1715 in place, last 1705, upper panel 1710, toe cap 1715, and the support block or similar device may form an assembly 1720. As shown in
Once sole component 1915 is held in place (for example by a support block (not shown)), last 1905, upper 1910, sole component 1915 and, in some embodiments, a support block may form an assembly 1920. The process of joining sole component 1915 to upper 1910 may include fixedly attaching the sole component to the panel of the upper using heat generated by induction heating. For example, assembly 1920 may be exposed to an electromagnetic field produced by an induction coil 1925.
As shown in
Upon exposure to an electromagnetic field, the susceptor material in last 1905 may increase in temperature due to induction heating. Some of the heat produced in last 1905 may be conductively transmitted to upper 1910 and sole component 1915. The transferred heat may cause upper 1910, sole component 1915, or both to melt, resulting in the two components becoming fixedly attached by melding together.
B. Molding
A method of making an article of footwear may include providing a last 2005 shaped to resemble a human foot and formed at least in part from a susceptor material that is thermally reactive to an electromagnetic field. The method may also include covering the last at least in part with one or more footwear components, such as an upper and a support plate. Further, the method may include placing the susceptor material in proximity with the footwear components covering the last. For example, a support block may be used to hold the support plate against the upper covering the last.
The method may include placing the last in proximity with an induction coil and increasing the temperature of the susceptor material by induction heating by producing an electromagnetic field with the induction coil. Because of the contact between the footwear components and the susceptor material in the last, the method may further include transferring heat from the susceptor material to the footwear components covering the last, for example by thermal conduction. This heating of the footwear components may cause molding of one or more of the footwear components into a predetermined shape.
The method may include providing last 2005, and covering last 2005 at least in part with one or more footwear components 2020 of an article of footwear. For example, as shown in
It will be noted that, in some configurations, support block 2035 may incorporate susceptor component 2015 and/or induction coil 2040. In such configurations, susceptor component 2015 and/or induction coil 2040 may be at least partially embedded in support block 2035. Further, in some configurations, susceptor component 2015 and/or induction coil 2040 may be at least partially located on an outer surface of support block 2035.
The temperature of susceptor component 2015 may be increased by using induction coil 2040 to produce an electromagnetic field, and exposing susceptor component 2015 to the electromagnetic field. Heat may be transferred conductively from susceptor component 2015 to support plate 2030 by thermal conduction between susceptor component 2015, upper 2025, and support plate 2030.
The transferring of heat to support plate 2030 may cause molding of support plate 2030 into a predetermined shape. As shown in
In addition, although the cross-sectional view shown in
It should also be noted that, in some embodiments, the heating process described above with regard to
Apparatus 2100 may also include a support block 2120, which may hold toe cap 2115 against last 2105 and may serve as a mold form. The inner shape of toe cap 2115 may be determined by the shape of underlying last 2105. The outer shape of toe cap 2115 may be determined by the shape of support block 2120.
Apparatus 2100 may further include an induction coil 2125. Once assembled, last 2105, upper 2110, toe cap 2115, and support block 2120 may be exposed to an electromagnetic field produced by induction coil 2125. In response, the susceptor material in last 2105 may undergo induction heating. At least some of the heat produced in the susceptor material may be transferred conductively to toe cap 2115, causing toe cap 2115 to mold into a predetermined shape.
Apparatus 2200 may further include an induction coil (not shown). Once assembled, last 2205, upper 2210, heel counter 2215, and support block 2220 may be exposed to an electromagnetic field produced by the induction coil. In response, the susceptor material in last 2205 may undergo induction heating. At least some of the heat produced in the susceptor material may be transferred conductively to heel counter 2215, causing heel counter 2215 to mold into a predetermined shape.
The inner shape of heel counter 2215 created by the molding process may be determined by the shape of underlying last 2205. The outer shape of heel counter 2215 may be determined by the shape of support block 2220. In addition to a generally heel-shaped contour, support block 2220 may have a mold feature 2225 configured to mold a structural feature into heel counter 2215.
Structural features may be molded into footwear components, such as heel counters, toe caps, panels of uppers, midsole components, sole components, and other footwear components. In some embodiments, such molded structural features may include positive structures, that is, structures that protrude from the surface of the footwear component. In some embodiments, the molded structural features may include negative structures, that is, structures involving recesses, indentations, grooves, and other features where material has been displaced. Structural features may be formed on outward-facing surfaces of footwear components and/or on inward-facing surfaces of footwear components. For purposes of explanation, the molding of structural features in outward-facing surfaces of footwear components will be discussed below. It will be understood, however, that similar procedures may be employed to mold structural features into inward-facing surfaces.
Structural features, such as those discussed above, may provide strength, reinforcement, wear resistance, stiffness, flexibility, reduced weight, foot protection, and other physical attributes to footwear components. In addition, pre-formed components may be inserted into a mold feature to be joined with the footwear component during the molded process. This may enable a different (for example stronger) material to be used for the structural component. For example, a metal rod may be placed in a semi-cylindrical mold feature in order to mold the metal rod into a rib on a surface of a plastic footwear component. While a plastic rib may provide reinforcement, a plastic rib with an embedded metal rod may provide a higher level of reinforcement.
A mold feature, such as mold feature 2225 shown in
Although rib 2230 and groove 2235 are shown as generally horizontal, such structural features may have any suitable orientation and may be placed on footwear at any suitable location. Those having ordinary skill in the art will recognize possible applications for mold-formed ribs, grooves, and other types of structural features.
Manufacturing Processes—Susceptor in Footwear
Induction heating may be implemented in various ways using susceptor materials disposed in components of the footwear. An electromagnetic field may inductively heat the susceptor material in the footwear components. This inductive heating may be used to join footwear components together and/or to mold footwear components. The following discussion describes exemplary methods of joining and/or molding footwear components using the induction heating of susceptor materials in the footwear components themselves.
A. Joining
An exemplary method of making an article of footwear may include providing a last shaped to resemble a human foot. The method may include forming at least one footwear component at least in part from a susceptor material that is thermally reactive to an electromagnetic field. In some embodiments, only part of a footwear component may be formed of the susceptor material. For example, in joining methods, peripheral portions of footwear components may be formed of susceptor material. In other embodiments, the entire footwear component may be formed of a susceptor material. In some embodiments, all or a part of the footwear component may be impregnated with susceptor material. In addition, for joining processes, one or both of the footwear components to be joined may include susceptor material.
The method may also include covering at least a portion of the last with the footwear component formed at least in part from the susceptor material and applying an electromagnetic field to the susceptor material, causing induction heating of the susceptor material. In addition, the method may include joining the footwear components together by melding components with the induction heating.
As shown in
At least a portion of last 2705 may be covered with two or more footwear components 2725. For example, footwear components 2725 may include support plate 2715 and an upper 2735. In some cases an upper may surround a bottom portion of a last, as shown in conjunction with other embodiments discussed herein. However, in other embodiments, an upper may cover side portions of a last, with a bottom portion of a last substantially uncovered by upper material.
As shown in
An induction coil 2730 may be used to apply an electromagnetic field to the susceptor material, thus causing induction heating of the susceptor material. As a result, support plate 2715 may be fixedly attached to upper 2735, for example, by melding the two components together with the induction heating. Joinder of support plate 2715 and upper 2735 may be facilitated by a support block 2745, in a manner similar to that discussed in conjunction with other embodiments above.
In addition to midsole components, such as support plates, and upper panels, other types of footwear components may be joined using induction heating of susceptor materials incorporated into the footwear components. For example,
As shown in
Once last 2805, upper 2810, heel counter 2815 and support block 2820 are assembled, heel counter 2815 may be inductively heated using an induction coil (not shown). The heating may result in the fixed attachment of heel counter 2815 to upper 2810, for example by melding.
Once last 2905, upper 2910, toe cap 2915 and support block 2920 are assembled, toe cap 2915 may be inductively heated using an induction coil (not shown). The heating may result in the fixed attachment of toe cap 2915 to upper 2910, for example by melding.
In addition to midsole components, upper panels, heel counters, toe caps, other footwear components may be joined together using induction heating. For example,
Once last 2905, upper 3010, sole component 3015, and a support block (not shown) are assembled, sole component 3015 may be inductively heated using an induction coil (not shown). The heating may result in the fixed attachment of sole component 3015 to upper 3010, for example by melding.
In some cases, the susceptor component may be provided as a film or thin layer of material between components to be joined by inductive heating. For example, in some methods of joining components with inductive heating, a thermoplastic film having an embedded susceptor material may be provided between footwear components to be joined. When the components are held against each other (with the film in between), and subjected to an electromagnetic field, the susceptor-including layer may heat up and melt. In some cases the melted thermoplastic susceptor-including layer may, in turn, melt the surface(s) of either or both of the footwear components to be joined, thereby welding the two components to one another. In some cases, the surfaces of the two components to be joined may remain unmelted, and the melted susceptor-including layer may act as an adhesive, bonding the two footwear components together. A susceptor-including layer, such as a film, may be utilized to join footwear components that also include susceptor material in the components themselves. However, in some cases, neither footwear component to be joined may include susceptor material, and thus, in such cases, the susceptor material may be provided only in the film.
In some embodiments, the induction coil may be part of the last. For example, in some embodiments, a flat type induction coil may be integrated into the surface of the last. A last such as this, having an induction coil, may be used to apply heat to footwear components that include susceptor materials in them. This application of heat may be utilized for joining components and/or for molding components.
As shown in
B. Molding
An exemplary method of making an article of footwear may include providing a last shaped to resemble a human foot and forming at least one footwear component at least in part from a susceptor material that is thermally reactive to an electromagnetic field. Such a method may include covering at least a portion of the last with the footwear component, and applying an electromagnetic field to the susceptor material, causing induction heating of the susceptor material. The method may further include molding the footwear component into a predetermined shape using the induction heating.
An electromagnetic field may be applied to the assembly of last 3105, upper 3110, support plate 3115 and support block 3120. An induction coil 3125 may be used to produce the electromagnetic field. Upon exposure to the electromagnetic field to support plate 3115, support plate 3115 may increase in temperature due to induction heating of the susceptor material in support plate 3115. The heating of support plate 3115 may result in molding of support plate 3115 into a predetermined shape.
The molding process discussed above regarding support plate 3115 may be carried out similarly for other footwear components formed of susceptor materials.
An apparatus and process of molding a heel counter using inductive heating is discussed above. A similar apparatus may be used to inductively heat heel counter 3200 and, thereby mold heel counter 3200 into a predetermined shape using the induction heating. Heel counter 3200 may be molded to have an anatomical shape of the heel portion of a foot. In some embodiments, heel counter 3200 may be molded to include structural features, such as ribs, grooves, or projections, on an outward-facing surface, as discussed above in conjunction with other embodiments.
The molding process discussed above regarding support plate 3115 may also be applicable for molding a toe cap formed of susceptor material.
An apparatus and process of molding a heel counter using inductive heating is discussed above. A similar apparatus may be used to inductively heat toe cap 3300 and, thereby mold toe cap 3300 into a predetermined shape using the induction heating. In some embodiments, toe cap 3300 may be molded to include structural features, such as ribs, grooves, or projections, on an outward-facing surface, as discussed above in conjunction with other embodiments.
While various embodiments of the invention have been described, the description is intended to be exemplary, rather than limiting, and it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible that are within the scope of the invention. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents. Features of any embodiment described in the present disclosure may be included in any other embodiment described in the present disclosure. Also, various modifications and changes may be made within the scope of the attached claims.
Number | Name | Date | Kind |
---|---|---|---|
1390998 | Thomas Lund | Sep 1921 | A |
2569764 | Jonas | Oct 1951 | A |
2893059 | Capdevila | Jul 1959 | A |
3641688 | Von Den Benken | Feb 1972 | A |
3676542 | Maltby | Jul 1972 | A |
3821827 | Nadler | Jul 1974 | A |
3896516 | Von Den Benken | Jul 1975 | A |
3938266 | Cook | Feb 1976 | A |
3983204 | Opinsky et al. | Sep 1976 | A |
4038762 | Swan, Jr. | Aug 1977 | A |
4108928 | Swan, Jr. | Aug 1978 | A |
4272898 | Tansill | Jun 1981 | A |
4508582 | Fink | Apr 1985 | A |
4562607 | Trask | Jan 1986 | A |
4617921 | Seeler | Oct 1986 | A |
5203793 | Lyden | Apr 1993 | A |
5218975 | Prostkoff | Jun 1993 | A |
5272216 | Clark et al. | Dec 1993 | A |
5499460 | Bryant et al. | Mar 1996 | A |
5714098 | Potter | Feb 1998 | A |
5733647 | Moore, III et al. | Mar 1998 | A |
5766704 | Allen et al. | Jun 1998 | A |
5800896 | Kobayashi | Sep 1998 | A |
5837088 | Palmgren et al. | Nov 1998 | A |
5939157 | Allen et al. | Aug 1999 | A |
6003248 | Hilgarth | Dec 1999 | A |
6004662 | Buckley | Dec 1999 | A |
6346210 | Swartz et al. | Feb 2002 | B1 |
6746767 | Gottfried et al. | Jun 2004 | B2 |
6761747 | Gottfried et al. | Jul 2004 | B2 |
6763609 | Su | Jul 2004 | B2 |
6805825 | MacLeod | Oct 2004 | B1 |
6812271 | Swartz et al. | Nov 2004 | B2 |
6939477 | Stark et al. | Sep 2005 | B2 |
7013587 | Yama | Mar 2006 | B2 |
7111414 | Willis et al. | Sep 2006 | B2 |
7219446 | Haimerl | May 2007 | B1 |
7569624 | Kolbe et al. | Aug 2009 | B2 |
7669352 | Stefani | Mar 2010 | B2 |
7785673 | Lasko | Aug 2010 | B2 |
7810257 | Candrian et al. | Oct 2010 | B2 |
7823299 | Brigham | Nov 2010 | B1 |
7837892 | Pridoehl et al. | Nov 2010 | B2 |
20070033750 | Cook et al. | Feb 2007 | A1 |
20070267398 | McCoy et al. | Nov 2007 | A1 |
20080164247 | Chen et al. | Jul 2008 | A1 |
20090159834 | Roos et al. | Jun 2009 | A1 |
20090165949 | Roos et al. | Jul 2009 | A1 |
20110220634 | Yeh | Sep 2011 | A1 |
20140000044 | Boardman et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
1121403 | May 1996 | CN |
3405964 | Jan 1985 | DE |
3437786 | Apr 1986 | DE |
0154170 | Sep 1985 | EP |
0 919 151 | Jun 1999 | EP |
1197628 | Dec 1959 | FR |
2057670 | May 1971 | FR |
1275095 | May 1972 | GB |
2109220 | Jun 1983 | GB |
H04206189 | Jul 1992 | JP |
20010113120 | Dec 2001 | KR |
411264 | Nov 2000 | TW |
WO8503624 | Aug 1985 | WO |
WO2008148588 | Dec 2008 | WO |
WO2009132911 | Nov 2009 | WO |
WO2009132912 | Nov 2009 | WO |
WO2010063557 | Jun 2010 | WO |
WO2010149443 | Dec 2010 | WO |
WO2010149463 | Dec 2010 | WO |
WO2011023430 | Mar 2011 | WO |
2014004756 | Jan 2014 | WO |
2014004759 | Jan 2014 | WO |
Entry |
---|
International Search Report and Written Opinion of PCT/US2013/048051 dated Nov. 22, 2013. |
Office Action dated Jul. 9, 2014 in U.S. Appl. No. 13/539,298. |
Response filed Sep. 30, 2014 in U.S. Appl. No. 13/539,298. |
International Search Report and Written Opinion dated Oct. 11, 2013, in PCT Application No. PCT/US2013/048046. |
Garcia, Schlangen, Van De Ven, Van Viliet, Induction Heating of Mastic Containing Conductive Fibers and Fillers, Materials and Structures, published at Springerlink.com, Jul. 30, 2010. |
Fink, Yarlagadda, Xiao, Laverty, Gillespie,Jr., Functional Nanostructures for Induction Heating: A Review of Literature and Recommendations for Research, Army Research Laboratory, ARL-TR-2365, Nov. 2000. |
State Intellectual Property Office, Chinese Office Action for CN Application No. 201380045001.1, dated Oct. 10, 2015. |
Korean Patent Office, Korean Office Action for KR Application No. 10-2015-7002362, dated Jun. 21, 2016. |
Number | Date | Country | |
---|---|---|---|
20140000043 A1 | Jan 2014 | US |