The present invention relates to an induction heating-assisted vibration welding method and apparatus.
The process of vibration welding can be used to securely join adjacent surfaces of one or more work pieces. A weld is formed by applying vibrations to the work piece in a calibrated range of frequencies and directions. The work piece is first positioned and clamped between a stationary anvil and a welding horn or sonotrode. When energized, the sonotrode transmits vibration energy through the work piece. Heat generated by the friction softens the material of the work piece along the interfacing surfaces, which ultimately forms a solid weld. The efficiency, consistency, and reliability/durability of a vibration-welded part depend largely on the design of the sonotrode, the anvil, and various other welding tools and control equipment used to form the welds.
A vibration welding method and system are provided for increasing a temperature of a selected portion of a work piece or multiple work pieces, and/or a selected welding interface defined by the work piece(s), during a vibration welding process. The method includes heating the selected portion or welding interface using an induction heating device, which may be embedded within a welding anvil or another designated welding tool in one possible embodiment. The position and/or orientation of the induction heating device relative to the work piece determines the position of a generated eddy current with respect to the same work piece, and thus determines the particular welding interface to be heated.
In a vibration welding process, the temperature in a weld zone drops as heat energy from the vibrations of the sonotrode dissipates. Even if equal amounts of heat can be generated at each of the different possible welding interfaces for a given multiple-sheet welding configuration, the welding temperature at a given welding interface may differ drastically from that of other interfaces. This is largely due to different friction conditions, different relative motion between the surfaces of the work piece, and heat sink effects. Therefore, a designated portion of the work piece, such as the thickest portion of the work piece or the surface or component of the work piece having the highest thermal conductivity, can be selectively heated via induction as set forth herein using the induction heating device.
In particular, a method is disclosed herein for heating of a work piece and/or a welding interface formed using a vibration welding system, wherein the welding interface is defined by adjacent surfaces of a work piece being welded. The method includes positioning the work piece adjacent to a welding tool such that the welding interface is also adjacent to the welding tool, and then using an induction heating device to generate an eddy current in one of the welding tool and the work piece. Once the eddy current is generated within all conductors in an electromagnetic field surrounding the energized induction heating device, the welding interface is heated to a calibrated threshold temperature via conduction, or to within a calibrated temperature range. The work piece may thereafter be vibration welded using a sonotrode of the vibration welding system, either concurrently or after the aforementioned heating step.
Additionally, a vibration welding system for welding adjacent surfaces of a work piece using vibration energy includes a welding tool, an induction heating device embedded within the welding tool, and a controller. The induction heating device, once energized, generates eddy current(s) sufficient for heating a welding interface defined by adjacent surfaces of the work piece. The controller modulates the current and the frequency transmitted to the induction heating device to maintain the welding temperature above a calibrated threshold. The design, position, and orientation of the induction heating device ultimately determine whether the welding tool or the work piece is most thoroughly heated.
The above features and advantages and other features and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.
Referring to the drawings, wherein like reference numbers refer to like components, and beginning with
The welding system 10 may include welding control equipment 12. The welding control equipment 12 includes a welding power supply 14 operable for transforming an available source power into a form readily usable in vibration welding. As understood by those of ordinary skill in the art, a welding power supply used in a vibration welding process, such as the welding power supply 14 shown in
The welding power supply 14 and the welding controller 16 ultimately transform source power into a suitable power control signal having a predetermined waveform characteristic(s) suited for use in the vibration welding process, for example a frequency of several hertz (Hz) to approximately 40 KHz, or much higher frequencies depending on the particular application. The power control signal is transmitted from the welding power supply 14 or the welding controller 16 to a converter 18 having the required mechanical structure for producing a mechanical vibration in one or more welding pads 22. The welding pads 22 may be integrally-formed with or connected to a vibrating welding horn or sonotrode 24.
The vibration welding system 10 may also include a booster 20. The booster 20 may be any device configured for amplifying the amplitude of vibration, and/or for changing the direction of an applied clamping force. That is, a vibration signal from the welding controller 16 may have a relatively low amplitude initially, e.g., a fraction of a micron up to a few millimeters, which can then be amplified via the booster 20 to produce the required mechanical oscillation. The vibration signal is in turn transmitted to the one or more welding pads 22 of the sonotrode 24.
A weld is ultimately formed at or along welding interfaces 26 between adjacent surfaces of the work piece 28. The welding system 10 may be used to weld or join metals or thermoplastics by varying the orientation of the vibrations emitted by the sonotrode 24. That is, for thermoplastics the vibrations emitted by the sonotrode 24 tend to be perpendicular to the surface being welded, while for metals the direction may be generally tangential thereto.
Still referring to
The induction heating device 40 is used to heat the work piece 28 and/or the welding interface 26, i.e., a designated interfacing surface of the work piece to be welded. That is, the work piece 28 may define multiple welding interfaces 26 as shown in
Additionally, the position and/or orientation of the induction heating device 40 relative to the work piece 28 defining the welding interface 26 may be selected to thereby determine the position and orientation of an eddy current (arrow 41) generated by the induction heating device when the device is energized. The eddy current (arrow 41) ultimately heats the conductive metal materials within which the eddy current is generated, e.g., the anvil head 36 or the work piece 28.
The work piece 28 shown in the particular embodiment shown in
Potential uses for the battery 44 include the powering of various onboard electronic devices and propulsion in a hybrid electric vehicle (HEV), an electric vehicle (EV), a plug-in hybrid electric vehicle (PHEV), and the like. By way of example, the battery 44 could be sufficiently sized to provide the necessary voltage for powering an electric vehicle or a hybrid gasoline/electric vehicle, e.g., approximately 300 to 400 volts or another voltage range, depending on the required application.
As the sonotrode 24 of
Referring to
The induction heating device 40 is electrically connected to the welding power supply 14 or to another 110V or 220V power supply via a control module 50 and wires 52. The wires 52 may be constructed of insulated silver (Ag) or insulated copper (Cu) according to one possible embodiment, thereby optimizing energy transfer to the induction heating device 40. Such an embodiment may be of particular benefit when welding copper or aluminum, e.g., the conductive tabs 42 of the battery 44 shown in
Also, the control module 50 may be used to modulate the electrical current and frequency of an alternating current (AC) signal (arrow 53) transmitted to the induction heating device 40. Use of a high frequency AC current, e.g., approximately 25 kHz or higher, may facilitate generation of the eddy current (arrow 41) in the work piece 28 of
Sizing of the induction heating device 40 may be determined by the nature of the immediate welding task. For example, heating up a copper work piece having an area of 1 cm×1 cm×0.20 cm, which is approximately four times the area of a typical weld spot, within 1 second (s) requires, according to one possible formula, power (P) of VcvΔT/t, where V is the volume of the work piece (in m3), cv is the volumetric specific heat capacity in Joules (J)/centimeter (cm)3 Kelvin (K), t=1 s, and ΔT=130° K, i.e., the desired increase in welding temperature.
The magnetic flux density (B) required to deliver the required power (P) via the eddy current (arrow 41) may be calculated as: B=√{square root over (6ρD)}/(πdf), where ρ is the static resistivity of the material being welded, in this example copper, D is the penetration depth of the weld, d is the sheet thickness, and f is the frequency in Hz. The electrical current (I) required to generate the flux density (B) can be determined using the equation: I=FBh/μN, where F is a calibrated safety factor, h is the magnetic flux loop height at the penetration depth (D), μ is the permeability of air, and N is the number of loops in the induction heating device 40 at the stated safety factor (F).
From the stated formulas, which are indeed to be exemplary and not necessarily applicable to all possible applications, even given a conservative safety factor (F) of 10 when welding a relatively thin copper sheet (d=0.001 m) with a weld penetration depth (D) of 0.0005 m, at a frequency (f) of 25 kHz, the electrical current (I) required for generating eddy currents (arrow 41) collectively providing sufficient heating is less than approximately 5 mA. This low level of electrical current can provide cost advantageous improvement in the resultant weld quality of certain welding applications.
Referring to
The location of the eddy current (arrow 41) may be varied toward and, if desired, into the work piece 28 simply by positioning the induction coils 59 closer to the work piece, i.e., by moving the coils in the direction of arrow 60. The induction coils 59 may be hollow tubes to allow for fluid cooling or may be cooled by other means to prevent overheating. One embodiment extends the channel 51 deeper into the anvil head 36 to allow closer fixed positioning of the induction coils 59 with respect to the work piece 28. Positioning of the induction coils 59 is variable within the extended channel 51 in another embodiment. For example, the insulator ends 58 of different thicknesses could be inserted into the channel 51 to vary the distance between the induction coils 59 and the welding interface 26 being welded to form a given weld 54.
Referring to
Referring to
Once positioned, at step 104 one or more induction heating devices 40, 140 are energized to generate the eddy current (arrow 41) shown in
At step 106, a designated controller, e.g., the welding controller 16 of
At step 108, the weld is completed. The method 100 may then repeat step 102 for a subsequent weld.
While the best modes for carrying out the invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 61/363,022, filed Jul. 9, 2010, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61363022 | Jul 2010 | US |