The present description relates to an induction heating device for a metal strip.
Heating of a metal strip in a heat-treating furnace has been performed mainly by indirect heating using a radiant tube. The indirect heating restricts productivity because, in addition to large thermal inertia, valid heat input into a metal strip becomes difficult as the difference between the temperature of metal strip and furnace temperature becomes small. Furthermore, in the indirect heating using a radiant tube, for example, for a steel sheet such as a carbon steel, it is difficult to perform rapid heating near the transformation point at which endothermic reaction occurs, and to perform high-temperature annealing because of restriction by heat resistance of the radiant tube, restricting choice of degrees of freedom of heat treatment conditions for metal strip.
In contrast, induction heating in which a metal strip is heated with high-frequency current is capable of freely controlling heating speed and heating temperature, so that the induction heating has large degrees of freedom at the points of heat treatment operation and development of metal strip products and is a heating method that has been paid attention recently.
The induction heating is largely categorized into two methods. One is an LF (longitudinal flux heating) system for heating a metal strip by flowing high-frequency current in an induction coil surrounding the circumference of a metal strip to make magnetic flux pass through a cross section in the longitudinal direction (traveling direction) of the metal strip to generate induction current circulating in a cross section in the width direction of the metal strip perpendicular to the magnetic flux.
The other method is a TF (transverse flux heating) system for heating a metal strip by arranging inductors (sufficient magnetic bodies) around which respective primary coils are wound to sandwich the metal strip and flowing currents in the primary coils to make the magnetic fluxes generated by the currents pass through sheet surfaces of the metal strip via the inductors to generate induction currents in the sheet surfaces of the metal strip.
In the induction heating by the LF system for making induction current circulate in a sheet cross section, on the basis of the relationship between current penetration depth δ and current frequency f(δ(mm)=5.03×105√(ρ/μr·f), ρ(Ωm): specific resistance, μr: relative magnetic permeability, f: frequency (Hz)), when the current penetration depth of the induction current generated on the front and back of the metal strip is deeper than the thickness of the steel sheet, the generated currents interfere with each other, generating no induction current in a cross section of the metal strip.
For example, in the case of a non-magnetic metal strip or a steel sheet that loses magnetic properties over its Curie temperature, current penetration depth δ becomes deep, generating no induction current when the sheet thickness of the metal strip is thin. Furthermore, even in the case of magnetic material, no induction current generates in a cross section of steel sheet in the LF system when the sheet thickness is too thin as compared with penetration depth.
On the other hand, in the induction heating by the TF system, magnetic flux passes through a sheet surface of the metal strip, enabling the metal strip to be heated regardless of sheet thickness and difference of magnetism and non-magnetism, but heating efficiency is lowered or heating is entirely impossible in some cases when opposite inductors are not adjacent. Furthermore, overheating readily occurs at ends of the metal strip disadvantageously (for example, see Japanese Patent Application Laid-Open (JP-A) No. S63-119188).
Furthermore, when a magnetic metal strip is not located at the center of opposing inductors, the magnetic metal strip may be pulled to one of the inductors to make magnetic flux be concentrated regionally to increase temperature variation of the metal strip. Furthermore, in the induction heating by normal TF system, the inductor is difficult to be easily changed in its shape, disadvantageously making it difficult to cope with change in sheet width of the metal strip.
For that reason, for example, an electromagnetic induction heating device has been disclosed in Japanese Patent Application Laid-Open (JP-A) No. S59-205183 that includes a magnetic pole segments arranged in parallel with a sheet width direction of a sheet to oppose the sheet and independently movable in the thick direction of the sheet and a movable masking shield made of a non-magnetic metal capable of appearing and retreating in the sheet width direction of the sheet for adjusting magnetic field generated by the magnetic pole segments.
The electromagnetic induction heating device of JP-A No. S59-205183 is capable of adjusting magnetic flux in response to change in sheet width of the sheet, but is difficult to rapidly adjust magnetic flux in sheet width direction when sheet width of the sheet is largely changed.
Japanese Patent Application Laid-Open (JP-A) No. 2002-008838 discloses an induction heating device having a plurality of independent magnetic bars and equipped with a magnetic circuit with a variable width adaptable to the width of a metal strip. However, in the induction heating device of JP-A No. JP 2002-008838, an example is illustrated in which magnetic cores movable in a width direction is provided near respective induction coils placed apart from front and back sides.
Embodiments of the description aims mainly to provide an induction heating device for a metal strip capable of controlling temperature distribution at ends in the sheet width direction of a metal strip by adjusting current density of and heating period by induction currents flowing at the ends in the sheet width direction of the metal strip.
According to an aspect of the present description, there is provided an induction heating device for a metal strip including: an induction coil including a first induction coil member and a second induction coil member that are provided in parallel with a metal strip across the metal strip that travels in a longitudinal direction thereof, that are provided such that both ends of each of the first induction coil member and the second induction coil member protrude from the traveling metal strip in a sheet width direction of the traveling metal strip, and that are arranged such that vertical projection images thereof onto the traveling metal strip do not overlap each other in a traveling direction in which the metal strip travels, a first electrical connector for electrically connecting one of both ends of the first induction coil member and one of both ends of the second induction coil member, and a second electrical connector for electrically connecting another one of the both ends of the first induction coil member and another one of the both ends of the second induction coil member; a first magnetic core including a first magnetic core member provided between the first induction coil member and the second induction coil member in the traveling direction, the first magnetic core member being provided on one of surface sides of the traveling metal strip and covering a large area of one end portion in the sheet width direction of the traveling metal strip, the large area being on a side of each of the first induction coil member and the second induction coil member, and covering a small area of the one end portion at a center portion between the first induction coil member and the second induction coil member, and a second magnetic core member provided between the first induction coil member and the second induction coil member in the traveling direction, the second magnetic core member being provided on another one of the surface sides opposite from the one of the surface sides of the traveling metal strip and covering a large area of the one end portion in the sheet width direction of the traveling metal strip, the large area being on the side of each of the first induction coil member and the second induction coil member, and covering a small area of the one end portion at the center portion between the first induction coil member and the second induction coil member; and a second magnetic core including a third magnetic core member provided between the first induction coil member and the second induction coil member in the traveling direction, the third magnetic core member being provided on the one of the surface sides of the traveling metal strip and covering a large area of another end portion opposite from the one end portion in the sheet width direction of the traveling metal strip, the large area being on the side of each of the first induction coil member and the second induction coil member, and covering a small area of the another end portion at the center portion between the first induction coil member and the second induction coil member, and a fourth magnetic core member provided between the first induction coil member and the second induction coil member in the traveling direction, the fourth magnetic core member being provided on another one of the surface sides of the traveling metal strip and covering a large area of the another end portion in the sheet width direction of the traveling metal strip, the large area being on the side of each of the first induction coil member and the second induction coil member, and covering a small area of the another end portion at the center portion between the first induction coil member and the second induction coil member.
In an induction heating device, a magnetic core arranged on the side of an end in the sheet width direction of a metal strip that travels in a longitudinal direction to cover the end pushes, at the end of the metal strip, the induction current generated by induction coils arranged on the front and the back sides of the metal strip outside the magnetic core (center direction of the metal strip) to suppress the induction current from being concentrated at the end of the metal strip.
However, it is difficult to adequately control current density of and heating period by induction current flowing at the end in the sheet width direction of the metal strip to appropriately control temperature distribution at the end in the sheet width direction of the metal strip by only partially arranging the magnetic core at the end in the sheet width direction of the metal strip.
The present inventors have intensively studied about a method of adequately controlling current density of and heating period by induction current flowing at the end in the sheet width direction of the metal strip to appropriately control temperature distribution at the end in the sheet width direction of the metal strip. As a result, the inventors have found that arrangement of a magnetic core having a predetermined profile on the side of an end in the sheet width direction at the end in the sheet width direction of the metal strip at which induction current flows instead of partially arranging a magnetic core at the end in the sheet width direction of the metal strip makes it possible to adequately control current density of and heating period by induction current flowing at the end in the sheet width direction of the metal strip and to appropriately control temperature distribution at the end in the sheet width direction of the metal strip. It is preferable that the predetermined profile is a shape covering a large area of the end in the sheet width direction of the metal strip on each of both end sides in the traveling direction of the metal strip and near corresponding one of induction coils, and covering a small area of the end at a center portion as compared with the both end sides.
Furthermore, the inventors have found that the magnetic core may be divided into a plurality of members in a traveling direction of a metal strip, and that temperature distribution of an end in the sheet width direction of a metal strip can be freely controlled as long as including a moving mechanism for moving each of the divided plurality of members in the sheet width direction of the metal strip.
Embodiments of the description are made on the basis of the above knowledge. Hereinafter, induction heating devices of the embodiments of the description will be described with reference to the drawings.
First, the induction heating device that is the premise of the embodiments of the description and a mode of induction current generated in a metal strip by the induction heating device will be described.
The induction coil member 2a and the induction coil member 2b are arranged in parallel with the metal strip 1. Both ends of the induction coil member 2a and both ends of the induction coil member 2b are protruded from the metal strip 1 in the sheet width direction of the metal strip 1.
In the induction heating device illustrated in
The induction coil member 2a and the induction coil member 2b are arranged such that the vertical projection image that is the vertical projection of the induction coil member 2a onto the metal strip 1 and the vertical projection image that is the vertical projection of the induction coil member 2b onto the metal strip 1 are not overlapped in the longitudinal direction (traveling direction) of the metal strip 1.
In the case of the above LF method, induction currents having the same magnitude flow on the respective front and back surfaces of the metal strip in reverse directions, so that when current penetration depth δ is deep, the induction currents interfere to each other, making no induction current flow. However, in the case of
In the metal strip 1 just below the induction coil members 2a, 2b (not shown), an annular induction current 5 (5a, 5b) generates that flows in the directions of the arrows (inverse directions of the current flowing in the induction coil members 2a, 2b) as illustrated in
However, overheating readily occurs at the ends in the sheet width direction of the metal strip 1, because, for example, (a) the induction current flowing at the ends in the sheet width direction of the metal strip 1 tries to make the reactance between with the primary current flowing in the conductor 2c (see
Furthermore, when the induction coil 2 is a pair of coil members, magnetic flux spreads outside the induction coil 2, which lowers the current density of the induction current 5 at the center of the metal strip 1, making it difficult to increase the temperature at the center to make the thermal difference between the center and the ends in the sheet width direction of the metal strip 1 readily increase.
So, in the induction heating device of the embodiments of the description, to control the induction current 5 flowing at the ends in the sheet width direction of the metal strip 1 across the whole width of the ends where the induction current 5 flows and to freely control the temperature distribution in the sheet width direction of the metal strip 1, a plurality of magnetic cores capable of covering the ends in the sheet width direction of the metal strip 1 and the metal strip 1 beyond the ends is arranged across the whole width between the vertical projection image of the induction coil member 2a on the front surface side of the metal strip 1 onto the metal strip 1 and the vertical projection image of the induction coil member 2b on the back surface side of the metal strip 1 onto the metal strip 1 so as to be movable forwardly and backwardly in the sheet width direction of the metal strip 1.
The induction coil members 2a, 2b may be one conductor or may be a plurality of conductors. Furthermore, a magnetic core for a back surface may be mounted at the back surface of the induction coil members 2a, 2b to enforce magnetic flux.
The size of the magnetic core 6 is not limited to a specific range and may be appropriately set on the basis of the distance between the induction coil members 2a, 2b on the front surface side and back surface side of the metal strip 1, the sheet width of the metal strip 1, and the number of the magnetic cores 6 to be arranged.
Although the magnetic core 6 is formed of a ferromagnetic substance, the ferromagnetic substance is not limited to a ferromagnetic substance of a specific material. The ferromagnetic substance includes, for example, ferrite, laminated magnetic steel sheet, and amorphous alloy, and may be appropriately selected depending on heating capability, frequency, etc. applied to the induction heating device.
As illustrated in
In the magnetic core 6 used in the embodiments illustrated in
The magnetic core 6 includes a magnetic core member 6a on the front surface side of the metal strip 1, a magnetic core member 6b on the back surface side thereof, and a magnetic core member 6e for coupling ends (right side ends in the drawings) of the magnetic core member 6a and the magnetic core member 6b, which are on the side opposite from the portions of the magnetic core member 6a and the magnetic core member 6b covering the metal strip 1.
A surface portion readily accepting heat of the magnetic core 6 may be covered with a non-magnetic heat insulating material 6c as illustrated in
The induction heating device of the embodiments is provided with a moving member 9 for moving the magnetic core 6 illustrated in
In the magnetic core 6 illustrated in
As illustrated in
The magnetic core member 6a and the magnetic core member 6b cover a large area of the end in the sheet width direction of the metal strip 1 on the side of each of the induction coil member 2a and the induction coil member 2b, and cover a small area of the ends at the center portion between the induction coil member 2a and the induction coil member 2b. The side of each of the magnetic core member 6a and the magnetic core member 6b covering the end in the sheet width direction of the metal strip 1 is bent.
The magnetic core member 6a and the magnetic core member 6b are movable forwardly and backwardly in the sheet width direction of the metal strip 1 by the moving member 9 to follow change in the sheet width, and capable of following positional deviation due to snaking or the like of the metal strip 1.
As illustrated in
The magnetic core 6 is divided into a plurality of magnetic cores 60 in the longitudinal direction (traveling direction) of the metal strip 1. The magnetic core member 6a on the front surface side of the metal strip 1 is divided into a plurality of magnetic core members 60a. The magnetic core member 6b on the back surface side of the metal strip 1 is divided into a plurality of magnetic core members 60b. The magnetic core member 6e coupling the ends on the side opposite from the portions covering the metal strip 1 (in the drawing, right side ends) of the magnetic core member 6a and the magnetic core member 6b is divided into a plurality of magnetic core members 60e. The number of the plurality of magnetic core members 60a equals to the number of the plurality of magnetic core members 60b, and the plurality of magnetic core members 60a and the plurality of magnetic core members 60b are arranged such that the vertical projection image of the plurality of magnetic core members 60a and the vertical projection image of the plurality of magnetic core members 60b onto the metal strip 1 are overlapped each other in the traveling direction of the metal strip 1.
The divided magnetic core 60 includes the magnetic core member 60a on the front surface side and the magnetic core member 60b on the back surface side of the metal strip 1, and the magnetic core member 60e coupling the ends on the side opposite from the portions covering the metal strip 1 (in the drawing, right side ends) of the magnetic core member 6a and the magnetic core member 6b as illustrated in
The plurality of magnetic core members 60a and the plurality of magnetic core members 60b are movable forwardly and backwardly in the sheet width direction of the metal strip 1 by the moving member 9 to follow change in the sheet width, and capable of following positional deviation due to snaking or the like of the metal strip 1. Furthermore, the moving member 9 enables a line connecting the side of the magnetic core members 60a and magnetic core members 60b covering the end in the sheet width direction of the metal strip 1 to be a predetermined profile.
The plurality of magnetic cores 60 is not necessary to be arranged with no gap in the whole width between the vertical projection image of the induction coil member 2a on the front surface side of the metal strip 1 onto the metal strip 1 and the vertical projection image of the induction coil member 2b on the back surface side of the metal strip 1 onto the metal strip 1, and an appropriate number of magnetic cores 60 may be arranged at predetermined intervals to provide a desired heating temperature distribution.
The line connecting the side of the magnetic core members 60a and magnetic core members 60b covering the end in the sheet width direction of the metal strip 1 is bent. The plurality of magnetic cores 60 is arranged to cover the end in the sheet width direction of the metal strip 1 in the center area between the induction coil member 2a and the induction coil member 2b, and is arranged to cover an inside of the metal strip 1 beyond the end in the sheet width direction of the metal strip 1 in the area near the induction coil member 2a and the area near the induction coil member 2b. The magnetic core members 6a and the magnetic core members 6b cover a large area of the end in the sheet width direction of the metal strip 1 on the side of each of the induction coil member 2a and the induction coil member 2b, and cover a small area of the end at the center portion between the induction coil member 2a and the induction coil member 2b.
Advance/retreat control of the magnetic core members 60a and the magnetic core members 60b in the sheet width direction gradually suppresses flowing direction of the induction current concentrated at the ends in the sheet width direction of the metal strip 1 to adjust current density and heating period of the current flowing at the ends of the metal strip to prevent overheating at the ends in the sheet width direction of the metal strip 1.
Furthermore, heat generation distribution in the sheet width direction of the metal strip 1 is accurately controlled by freely adjusting the current distribution of the induction current circulating on the sheet surface of the metal strip 1.
For example, when the metal strip 1 is heated by a radiant tube in the stage before using the induction heating device to make the ends of the metal strip be in a high temperature state, making temperature distribution in the sheet width direction of the metal strip even is possible at the exit side of the induction heating device by suppressing calorific value at the ends so as to be smaller than calorific value at the center of the metal strip by suppressing the current flowing at the ends of the metal strip.
In the case of the arrangement of the magnetic cores 60 illustrated in
Note that also in the case where the induction coil member 2a, the induction coil member 2b, and the plurality of magnetic cores 60 described with reference to
The arrangement of the plurality of magnetic cores 60 and advance/retreat control of the plurality of magnetic cores 60 do not necessarily need to be symmetric on the both sides in the sheet width direction of the metal strip 1. In the case where temperature distribution is already asymmetric in the sheet width direction of the metal strip 1 at the entrance side of the induction heating device, or in the case where distribution of magnetic field is asymmetric due to snaking, etc., the plurality of magnetic cores 60 does not need to be arranged symmetrically in the sheet width direction of the metal strip 1, and the arrangement thereof may be appropriately changed depending on purpose.
Furthermore, circulation mode of the induction current 7 is not limited to be ellipsoidal, and can be any mode by appropriately changing the entering distances and/or the number of the magnetic cores 60 to be arranged.
So far, the case of one pair of induction coils is described in which the induction coil member 2a on the front surface side and the induction coil member 2b on the back surface side of the metal strip 1 are coupled, but the inventor confirmed that the above magnetic cores 6 and plurality of magnetic cores 60 effectively function also in the induction heating device in which a plurality of pairs of induction coils is successively arranged.
Furthermore, changing outputs of the induction coils 2 of the first stage and second stage allows heating speed to be freely controlled, which makes it possible to heat different temperature areas at different heating speeds, and making it possible to adequately cope with various heating conditions metallurgically required.
The induction coil 20 is arranged on the both sides of the front surface side and back surface side of the metal strip 1. The direction of the current flowing in the induction coil 20 on the front surface side of the metal strip 1 is same as the direction of the current flowing in the induction coil 20 on the back surface side of the metal strip 1. The current flows in the directions shown by the arrows in the drawing.
The induction coil 20 on the front surface side of the metal strip 1 and the induction coil 20 on the back surface side of the metal strip 1 each include an induction coil member 20a, an induction coil member 20b, an induction coil member 20c, and an induction coil member 20d. The induction coil member 20a and the induction coil member 20b are arranged in parallel with the metal strip 1. The both ends of the induction coil member 20a and the both ends of the induction coil member 20b are protruded from the metal strip 1 in the sheet width direction of the metal strip 1. One end of the induction coil member 20a and one end of the induction coil member 20b are coupled by the induction coil member 20c, and the other end of the induction coil member 20a and the other end of the induction coil member 20b are coupled by the induction coil member 20d. The induction coil member 20c is an example of the electrical connector, and the induction coil member 20d is also an example of the electrical connector.
The induction coil member 20a and the induction coil member 20b are arranged such that the vertical projection image that is the vertical projection of the induction coil member 20a onto the metal strip 1, and the vertical projection image that is the vertical projection of the induction coil member 20b onto the metal strip 1 are not overlapped in the longitudinal direction (traveling direction) of the metal strip 1.
The vertical projection image of the induction coil member 20a of the induction coil 20 on the front surface side of the metal strip 1 onto the metal strip 1, and the vertical projection image of the induction coil member 20a of the induction coil 20 on the back surface side of the metal strip 1 onto the metal strip 1 are arranged to overlap in the longitudinal direction (traveling direction) of the metal strip 1.
The vertical projection image of the induction coil member 20b of the induction coil 20 on the front surface side of the metal strip 1 onto the metal strip 1, and the vertical projection image of the induction coil member 20b of the induction coil 20 on the back surface side of the metal strip 1 onto the metal strip 1 are arranged to overlap in the longitudinal direction (traveling direction) of the metal strip 1.
The magnetic core 6 including a plurality of magnetic cores 60 (a plurality of magnetic core members 60a and a plurality of magnetic core members 60b) has the same configuration as that of the magnetic core 6 including the plurality of magnetic cores 60 (the plurality of magnetic core member 60a and the plurality of magnetic core member 60b) described with reference to
Referencing to
In contrast, referencing to
Next, an example will be described, but the condition of the example is a conditional example employed to confirm operability and effects of the invention, and the invention is not limited to the conditional example.
Electromagnetic field analysis was performed under the following conditions to confirm effects.
Target Material: 0.06% C steel sheet (sheet width 1 m, sheet thickness 1 mm).
Induction Coils: copper sheets having a width of 150 mm were placed to sandwich the steel sheet and such that the copper sheets on the front and back side become in parallel to each other, and vertical projection images thereof onto the steel sheet are separated by 300 mm in inside dimension. The distance between the steel sheet and the induction coils is 10 mm.
Magnetic core A: A magnetic core (made of ferrite) disposed between the induction coil and the induction coil. Width 30 mm, thickness 20 mm, depth 200 mm, inside height 100 mm, and depth 180 mm. Seven cores (one side of steel sheet ends) are arranged at intervals of 10 mm so as to be separated by 15 mm from the induction coils. Relative magnetic permeability is 2000.
Magnetic core B: A magnetic core (made of ferrite) for concentrating magnetic flux mounted on the back surface of the induction coil. Physical properties are same as those of the magnetic core A.
Heating: Heating at 800° C. in non-magnetic area.
Property Values
Boundary Condition
Current: 10 kHz constant current
Analytical Model
Example: The induction coil members 2a, 2b laid in the whole sheet width with a gap of 300 mm are placed in parallel on the front surface side and back surface side of the steel sheet 1 and magnetic cores A1 to A7 are arranged on both sides of the ends of the steel sheet and between the two induction coil members 2a, 2b.
A circulation mode of the induction current 7 generated by the induction coil member 2a (front surface side) and the induction coil member 2b (back surface side) was changed by changing entering distances (mm) of the magnetic cores A1 to A7 from steel sheet end, the temperature at the steel sheet end and the temperature at the steel sheet center were calculated, and the temperature ratio=temperature of steel sheet end/temperature of steel sheet center was calculated. Table 1 shows the results.
Comparative Examples 1 to 3: The induction coil members 2a, 2b laid in the whole sheet width with a gap of 300 mm ware placed in parallel on the front surface side and back surface side of the steel sheet 1, and in each of the cases where no magnetic core was arranged on both sides of the ends of the steel sheet and between the two induction coil members 2a, 2b (Comparative Example 1), where the magnetic core A1 was arranged at one end of the steel sheet 1 and near the induction coil 2a, and the magnetic core A7 was arranged at the other end of the steel sheet 1 and near the induction coil member 2b (Comparative Example 2), and where the magnetic cores A1, A7 are arranged at each of the both ends of the steel sheet and near the induction coil members 2a, 2b, respectively (Comparative Example 3), the temperature at the steel sheet end and the temperature at the steel sheet center were calculated, and the temperature ratio=temperature of the steel sheet end/the temperature of steel sheet center was calculated. Table 1 illustrates the results.
The temperature ratios illustrated in Table 1 show that temperature distribution in the sheet width direction of the steel sheet was largely improved to be homogenized.
According to the embodiments of the above description, it is possible to control the induction current flowing on end sides in the sheet width direction of the metal strip and to freely control temperature distribution of the metal strip in the sheet width direction regardless of magnetic or non-magnetic also when the sheet thickness is thin.
Furthermore, according to the embodiments of the description, it is possible to freely correct temperature distribution so as to be desired temperature distribution during heating the metal strip also in the case where the metal strip is heated before entering in the induction heating device and a large deviation exists in temperature distribution of the metal strip, thereby making it possible to improve heat processing quality of the metal strip.
Furthermore, according to the embodiments of the description, heating is possible without lowering heating rate also in the temperature area where temperature exceeds Curie point at which heat transfer becomes difficult as a heated material becomes high temperature by radiation heating, thereby making it possible to improve productivity to dramatically improve flexibility of schedule of production.
The disclosure of Japanese Patent Application No. 2014-181710 filed on Sep. 5, 2014 in its entirety is hereby incorporated by reference.
All the documents, patent applications, and technical standards described in the present description are hereby incorporated by reference to the same extent as in cases where each document, patent application, or technical standard is specifically and individually described as being incorporated by reference.
Although various typical embodiments are described above, the present invention is not limited to the embodiments. The scope of the present invention is limited only by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2014-181710 | Sep 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/075266 | 9/4/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/035893 | 3/10/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2722589 | Marquardt | Nov 1955 | A |
3031555 | Ross | Apr 1962 | A |
4751360 | Ross | Jun 1988 | A |
4775772 | Chaboseau | Oct 1988 | A |
4795872 | Hagisawa | Jan 1989 | A |
5278381 | Rilly | Jan 1994 | A |
5317121 | Katayama | May 1994 | A |
5397877 | Couffet | Mar 1995 | A |
5837976 | Loveless | Nov 1998 | A |
6198083 | Pierman | Mar 2001 | B1 |
6864419 | Lovens | Mar 2005 | B2 |
6963056 | Peysakhovich | Nov 2005 | B1 |
8502122 | Hirota | Aug 2013 | B2 |
8592735 | Hirota | Nov 2013 | B2 |
9578693 | Umetsu | Feb 2017 | B2 |
9888529 | Hirota | Feb 2018 | B2 |
10292210 | Umetsu | May 2019 | B2 |
20020011486 | Anderhuber | Jan 2002 | A1 |
20020148830 | Ross | Oct 2002 | A1 |
20030222079 | Lawton | Dec 2003 | A1 |
20060196870 | Nikanorov | Sep 2006 | A1 |
20070012663 | Hosokawa | Jan 2007 | A1 |
20070131673 | Rapoport | Jun 2007 | A1 |
20070194010 | Lovens | Aug 2007 | A1 |
20070235445 | Wilgen | Oct 2007 | A1 |
20080264932 | Hirota | Oct 2008 | A1 |
20090057301 | Lovens | Mar 2009 | A1 |
20090255924 | Lovens | Oct 2009 | A1 |
20100072192 | Hirota | Mar 2010 | A1 |
20100108665 | Hirota | May 2010 | A1 |
20100155390 | Hirota | Jun 2010 | A1 |
20100187223 | Peysakhovich | Jul 2010 | A1 |
20110036831 | Warner | Feb 2011 | A1 |
20130015178 | Lin | Jan 2013 | A1 |
20140008356 | Uchida | Jan 2014 | A1 |
20170290102 | Hirota | Oct 2017 | A1 |
Number | Date | Country |
---|---|---|
101617562 | Dec 2009 | CN |
101707908 | Jun 2012 | CN |
2 112 863 | Oct 2009 | EP |
59-205183 | Nov 1984 | JP |
62-281291 | Dec 1987 | JP |
63-119188 | May 1988 | JP |
10-111981 | Apr 1998 | JP |
2002-008838 | Jan 2002 | JP |
2004-296368 | Oct 2004 | JP |
2006-294396 | Oct 2006 | JP |
2007-95651 | Apr 2007 | JP |
2008-186589 | Aug 2008 | JP |
2008-204648 | Sep 2008 | JP |
2008-288200 | Nov 2008 | JP |
2009-259588 | Nov 2009 | JP |
2009259588 | Nov 2009 | JP |
2010-245029 | Oct 2010 | JP |
2431946 | Oct 2011 | RU |
Entry |
---|
Extended European Search Report dated Mar. 15, 2018 in Patent Application No. 15838715.9. |
International Search Report for PCT/JP2015/075266 (PCT/ISA/210) dated Nov. 24, 2015. |
Written Opinion of the International Searching Authority for PCT/JP2015/075266 (PCT/ISA/237) dated Nov. 24, 2015. |
Chinese Office Action dated Apr. 19, 2019, for corresponding Chinese Patent Application No. 201580046992.4, with partial English translation. |
Russian Office Action and Search Report, dated May 30, 2018, for corresponding Russian Application No. 2017107070, with an English Translation. |
Number | Date | Country | |
---|---|---|---|
20170290102 A1 | Oct 2017 | US |