This application is the U.S. National Phase under 35 U.S.C. § 371 of International Application No. PCT/KR2017/004758 filed on May 8, 2017, which in turn claims the benefit of Korean Application No. 10-2016-0056435 filed on May 9, 2016, and Korean Application No. 10-2016-0126380 filed on Sep. 30, 2016, the disclosures of which are incorporated by reference into the present application.
The present invention relates to a high-frequency heating method for a hot stamping process, and more particularly, to a high-frequency heating method for a hot stamping process, which heats a steel sheet and forms the steel sheet into an ultra high strength steel.
Generally, a hot stamping technique is a forming technique to produce a high strength component by heating a steel sheet to an appropriate temperature (about 900° C.) and press forming in a die.
In a conventional hot stamping process, a material is heated by using an electric furnace. However, a heating system using an electric furnace has to be equipped with a long facility line for heating, and energy consumption is large for raising the temperature of the electric furnace itself. Even when the heating system is not operated, energy has to be continuously used to maintain the temperature of the electric furnace. Thus, energy efficiency of the electric furnace is low.
In order to solve this problem, a heating method using a high frequency heater has been introduced. In this case, the high-frequency heater requires only a short facility line and can heat a steel sheet in a short time. The high-frequency heater is excellent in energy efficiency.
Referring to
The present invention has been made in an effort to solve problems of the conventional high-frequency heating method for a hot stamping process, and provides a high-frequency heating method for a hot stamping process, which is capable of performing high-frequency heating at a melting point or more of a coating layer.
According to an embodiment, a high-frequency heating method for a hot stamping process includes: a first heating step of high-frequency heating a steel sheet, which has an aluminum (Al) coating layer formed on an iron (Fe)-based base material, to a first target temperature at a first heating rate; a second heating step of melting the coating layer by high-frequency heating the steel sheet to a second target temperature at a second heating rate, wherein the second heating rate is lower than the first heating rate; and a third heating step of high-frequency heating the steel sheet to a third target temperature at a third heating rate, wherein the third heating rate is higher than the second heating rate, wherein a compound is formed by a reaction between the coating layer and the base material in the second heating step.
In the second heating step, an applied current may be adjusted so that an electromagnetic force (F) generated during the high-frequency heating is less than a bonding force between particles of the coating layer or a bonding force (f) between the coating layer and the base material (F<f).
The first target temperature may be 530° C. to 570° C., which is a temperature equal to or lower than a melting point of the coating layer.
The second target temperature may be 730° C. to 770° C., which is a temperature at which the steel sheet loses properties of a ferromagnetic material.
The second heating rate may be 6.4° C./s to 24° C./s.
In the first heating step and the second heating step, the high-frequency heating may be performed by longitudinal flux induction heating (LFIH), and in the third heating step, the high-frequency heating may be performed by transverse flux induction heating (TFIH).
In the second heating step, a wider coil may be used in the second heating step than a coil used in the first heating step, and an interval between the coils in the second heating step may be wider than an interval between the coils in the first heating step.
In the second heating step, the coil used in the second heating step may have a width of 70 mm to 90 mm.
In the second heating step, the interval between the coils in the second heating step is 50 mm to 70 mm.
In the high-frequency heating method for the hot stamping process according to the present invention, the compound layer is formed between the coating layer and the base material and the high-frequency heating is performed without the coating layer being swept even when the high-frequency heating is performed at the temperature equal to or higher than the melting point of the coating layer.
Embodiments of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings in which:
Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
Referring to
In the first heating step S10 and the second heating step S20, heating is performed by a high-frequency heating method employing longitudinal flux induction heating (LFIH).
In the first heating step S10, the steel sheet 100 is high-frequency heated to a first target temperature T1 at a first heating rate V1. At this time, the steel sheet 100 according to the present invention includes an aluminum (Al) coating layer 120 formed on an iron (Fe)-based base material 110 (see
In the first heating step S10, the steel sheet is heated to a temperature equal to or lower than the melting point of the coating layer 120, which is the first target temperature T1, for 5 seconds to 10 seconds. In the present invention, the temperature equal to or lower than the melting point of the coating layer 120, which is the first target temperature T1, is preferably 530° C. to 570° C. When the temperature is lower than 530° C., the time required for the heating in the second heating step S20 becomes longer, and the facility line required for the heating becomes longer. Therefore, this is inefficient. In addition, when the temperature exceeds 570° C., the coating layer 120 may be pre-melted.
As a result, when it is assumed that the heating starts at room temperature (20° C.), the heating is performed to 530° C. to 570° C. for 5 seconds to 10 seconds, and thus, the first heating rate V1 is 51° C./s to 110° C./s.
In the second heating step S20, the steel sheet 100 having passed through the first heating step S10 is high-frequency heated to a second target temperature at a second heating rate to melt the coating layer 120. Thus, a compound 130 is formed by a reaction between the coating layer 120 and the base material 110. As illustrated in
Since the coating layer 120 is made of an aluminum-silicon (Al—Si)-based aluminum alloy and the steel sheet 100 is made of iron (Fe), the compound 130 may be at least one of Al8Fe2Si, Al2Fe2Si, and Fe2Al5/FeAl2 compounds. The Al8Fe2Si compound has a melting temperature of about 855° C., the Al2Fe2Si compound has a melting temperature of about 1,050° C., and the Fe2Al5/FeAl2 compound has a melting temperature of about 1,156° C. Thus, due to the compound formed in the coating layer 120, the melting temperature of the coating layer 120 may be increased to prevent the coating layer 120 from agglomerating or flowing in the third heating step S30.
In the second heating step S20, the steel sheet 100 having passed through the first heating step S10 is high-frequency heated to the second target temperature T2 at a second heating rate V2. At this time, in the present invention, a current applied to the coil 210 is lower than in the first heating step S10, and thus an eddy current I2 generated in the steel sheet 100 is reduced. Therefore, the power P2=I22R converted into heat energy in the steel sheet 100 is reduced, and the second heating rate V2 becomes smaller than the first heating rate V1.
In the present invention, the applied current is adjusted so that an electromagnetic force F generated during the high-frequency heating is less than a bonding force f between the coating layer 120 and the base material 110 (F<f).
In the case of high-frequency heating a metal, the metal can be heated by an electromagnetic induction phenomenon. Meanwhile, a magnetic field B is generated by a current applied to the coil 210, and an electromagnetic force (Lorentz force: F=qv×B) is applied to a charge q of the metal moving at a speed v. In a case where the metal is in a solid state, even if the electromagnetic force F is applied, there is no influence due to a strong bonding force between particles. However, after the metal is melted, the charge q of the liquid metal is moved by the electromagnetic force F. Therefore, when the coating layer 120 is high-frequency heated at a temperature higher than the melting point of the coating layer 120, the coating layer 120 may be segregated from the base material 110, and agglomerate and flow on the base material 110 by the electromagnetic force F. In this case, the thickness of the coating layer 120 can not be constant and the surface of the steel sheet 100 can be uneven (see
Therefore, in the present invention, the electromagnetic force F is lowered in the second heating step S20 and the applied current is adjusted so as to be smaller than the inter-particle bonding force of the coating layer 120 or the bonding force f between the coating layer 120 and the base material 110. As a result, the eddy current I2 generated in the steel sheet 100 is reduced, and the second heating rate V2 is lower than the first heating rate V1.
In the second heating step S20, the steel sheet 100 is heated to the second target temperature T2, that is, a temperature (Curie temperature) at which the ferromagnetic property of the steel sheet 100 is lost, for 10 seconds to 25 seconds. When the steel sheet 100 is heated to the second target temperature T2 for less than 10 seconds, there is a possibility of causing the coating layer 120 to be segregated, agglomerated and flow on the base material 110 by the electromagnetic force F. When the steel sheet 10 is heated to the second target temperature T2 for more than 25 seconds, a facility line necessary for the heating becomes longer, which results in a deterioration in efficiency.
In the present invention, the second target temperature T2, that is, the temperature (Curie temperature) at which the steel sheet 100 loses the ferromagnetic property is preferably 730° C. to 770° C. When the temperature is lower than 730° C., the time required for the heating in the third heating step S30 becomes longer, and the facility line required for the heating becomes longer. Therefore, this is inefficient. In addition, when the temperature exceeds 770° C., the steel plate 100 loses the properties of the ferromagnetic material, and the heating efficiency is drastically reduced under the high-frequency heating method employing the LFIH.
Therefore, since it is heated from the first target temperature T1 to the second target temperature T2 for 10 seconds to 25 seconds, the second heating rate V2 is 6.4° C./s to 24° C./s.
Referring to
When the width of the coil is less than 70 mm or the interval between the coils is less than 50 mm, the coating layer 120 may agglomerate or flow. The width of the coil exceeding 90 mm or the interval between the coils exceeding 70 mm, requires a longer facility line and leads to inefficient result.
In the first heating step S10 and the conventional heating method, coils having a width of 10 mm to 20 mm were used, and the interval between the coils was less than 50 mm. Meanwhile, in the second heat step S20 of the present invention, the coils 210b are wider in width than the coils 210a used in the first heating step S10. The interval between the coils 210b arranged in the second heating step is wider than the interval between the coils 210a arranged in the first heating step. According the present invention, the coating layer 120 can be formed uniformly.
In
Meanwhile, as illustrated in
In the third heating step S30, the steel sheet 100 having passed through the second heating step S20 is high-frequency heated to a third target temperature T3 at a third heating rate V3. In the third heating step S30, high-frequency heating is performed by transverse flux induction heating (TFIH).
In the present invention, in the first heating step S10 and the second heating step S20 the heating is performed by LFIH, and in the third heating step S30 the heating is performed by TFIH. When heating a ferromagnetic material such as iron (Fe) by the LFTH, the magnetic field generated in the coil 210 is well absorbed and the heating is easily performed. When heating a non-magnetic material by the LFTH, the magnetic field generated in the coil 210 is not absorbed and the heating efficiency is reduced. Meanwhile, in the case of the TFIH, the number of magnetic fields (magnetic flux) which is generated in the vertical coil 220 and meets a non-magnetic material increases, thereby the heating efficiency increases.
Therefore, in the present invention, in the first heating step S10 and the second heating step S20 before reaching the Curie temperature, high-frequency heating is performed by the LFIH, and after reaching the Curie temperature, they high-frequency heating is performed by the TFIH, thereby maximizing the heating efficiency.
In the third heating step S30, the steel sheet 100 is heated to a third target temperature T3 of 900° C. or more for 2 seconds to 5 seconds. Therefore, since it is heated from the second target temperature T2 to the third target temperature T3 for 2 seconds to 5 seconds, the third heating rate V3 is 26° C./s to 110° C./s.
Meanwhile, the third heating step S30 of the present invention is not limited to the third target temperature T3, and may raise the temperature to a temperature higher than the third target temperature T3 if necessary. It is also possible to further add a process of machining the steel sheet 100 after the third heating step S30.
The graph of
In addition, in the second heating step S20, the heating is performed by using the coil 210b that has a wider width and a larger interval between coils than the coil 210a used in the first heating step S10. Therefore, the deviation of the electromagnetic force F applied to the steel sheet 100 is reduced, thereby preventing the coating layer 120 from agglomerating and flowing down.
While specific embodiments of the present invention have been illustrated and described, it will be understood by those skilled in the art that changes may be made to those embodiments without departing from the spirit and scope of the invention that is defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2016-0056435 | May 2016 | KR | national |
10-2016-0126380 | Sep 2016 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2017/004758 | 5/8/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/196039 | 11/16/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5808281 | Matsen | Sep 1998 | A |
5922234 | Grow | Jul 1999 | A |
6455825 | Bentley | Sep 2002 | B1 |
20100072192 | Hirota | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
2003027203 | Jan 2003 | JP |
Entry |
---|
“Yukio Ueda et al, Welding Deformation and Residual Stress Prevention, 2012, Elsevier, p. 64 Table 3.1” (Year: 2012). |
“J. Dossett and G.E. Totten, Induction Heat Treating Systems, 2014, ASM Handbook, vol. 4B, 208-219” (Year: 2014). |
International Search Report of PCT/KR2017/004758, dated Jul. 27, 2017, English Translation. |
Number | Date | Country | |
---|---|---|---|
20190022727 A1 | Jan 2019 | US |