1. Field of the Invention
The invention relates to power connection boxes induction machines, such as medium voltage AC motors, and more particularly to terminal boxes or other auxiliary boxes capable of providing power for auxiliary devices that have operational electric power requirements differing from the motor. The terminal box has access to the induction machine incoming power and includes a power supply capable of converting the incoming power to power necessary for operation of one or more auxiliary devices, such as external electric cooling fans for medium voltage AC motors.
2. Description of the Prior Art
Induction machines, such as medium voltage AC powered electric motors, are often operated in conjunction with auxiliary devices, such as monitoring equipment, motor controls and external electric powered cooling fans that have different power requirements than the medium voltage motor. Some monitoring equipment may require 24 volt DC power. An external cooling fan may require of voltage AC power in the 110 to 220 volt range. In the past auxiliary devices required separate, parallel power sources than the medium voltage power source used to power the motor, or alternatively they could be mechanically driven by the motor shaft.
As a further example, commonly owned U.S. patent application Ser. No. 13/018,874, filed Feb. 1, 2011 is directed to an auxiliary cooling fan that is driven for by the AC motor's shaft, the entire contents of which is incorporated herein by reference. In other auxiliary cooling applications it may be preferable to drive the auxiliary fan in a manner that is not dependent upon the cooled motor's shaft speed, such as by an independently powered AC fan motor, as is shown in commonly owned U.S. Patent Publication No. 2008/0179973, the entire contents of which is also incorporated herein by reference. The independently powered AC fan motor will need its or power source, necessitating the routing of an auxiliary power line in addition to the medium voltage power lines used to power the larger motor.
Routing of one or more auxiliary power lines additional to the medium voltage power lines increases site installation complexity, as well as installation and future operational maintenance costs. For example, separate auxiliary and induction machine power lines often require separate junction boxes for connecting power to the devices powered by each line, increasing the quantity of electrical equipment that must be installed during initial system construction.
After construction, separate junction boxes for line and auxiliary power necessitate maintenance of multiple electrical connection access points for service personnel. Electrical maintenance practices often dictate that each connection access point be de-energized (“locked out”) prior to servicing equipment. Minimizing the number of electrical connection access points is desirable for reducing maintenance complexity and time.
Minimizing electrical access points is also helpful for reducing equipment reconfiguration cost and effort. In the future if auxiliary device needs change, it is possible that more auxiliary power lines or other sources will have to be routed to the site, or existing lines may need to be modified to meet the new needs. It is desirable to have electrical distribution equipment that is easily reconfigurable to meet changing operational needs.
Thus, a need exists in the art for auxiliary device power sources proximal induction machines that do not necessitate routing of additional auxiliary power lines.
A need also exists in the art for auxiliary device power sources proximal induction machines that can be modified or otherwise reconfigured to meet changing future power needs without necessity to modify or supplement existing auxiliary power lines.
An additional need exists in the art for auxiliary device power sources proximal induction machines that are pre-configured to provide designated power outputs, for example 110 or 220 volt AC power or DC power (e.g., 12 or 24 VDC), as may be needed for various auxiliary devices.
Accordingly, an object of the invention is to provide auxiliary device power sources proximal induction machines that do not necessitate routing of power lines other than those powering the induction machine.
Another object of the invention is to provide auxiliary device power sources proximal induction machines that do not necessitate routing of power lines other than those powering the induction machine and that also can be modified or otherwise reconfigured to provide different power output levels as may be needed to meet changing future auxiliary device power.
An additional object of the invention, is to provide auxiliary device power sources proximal induction machines that are pre-configured to provide designated power outputs.
These and other objects are achieved in accordance with the present invention by an auxiliary electrical connection box that is coupled to an alternating current (AC) induction machine, such as a medium voltage induction motor power source. The auxiliary connection box may be incorporated in the induction machine's terminal box that receives the machine's power source or it may be a separate auxiliary electrical connection box that is otherwise coupled to the machine's incoming power source, such ganged with an existing terminal box. The auxiliary connection box includes one or more power conversion transformers or bridges that respectively convert the incoming AC power to other AC voltages and/or direct current (DC) useful for operating auxiliary devices proximal the machine. The auxiliary connection box thus avoids need to run power lines to induction machines necessary for operating auxiliary devices separate from the machine's main power source lines. Exemplary auxiliary devices include external auxiliary AC powered cooling fans for medium voltage AC motors. The auxiliary connection box may reconfigurable in the field and/or be pre-configured to provide one or more common auxiliary device output power sources. Common exemplary auxiliary device output power sources include one or more of 110 volt AC, 220 volt. AC, 12 volt. DC and 24 volt. DC power.
The present invention features an induction machine power connection system, for coupling the machine, such as an AC induction motor, to an external electrical distribution power line having a first voltage. The induction machine has a winding. A connection box is coupled to the induction machine, and has therein a first connector coupled to the induction machine winding. The first connector is adapted for coupling to an external electrical distribution power line. A power conversion device is coupled to the first connector, and is adapted for converting power line first voltage to auxiliary power at lower second voltage. An auxiliary connector is coupled to the power conversion device, and is adapted for supplying auxiliary power to auxiliary devices, such as external electric cooling fans.
The present invention also features an induction machine power connection system, for coupling the machine, such as an AC motor, to an alternating current external electrical distribution power line having a first voltage exceeding 1000 volts. The alternating current electric motor has a winding. A connection box is attached to the motor, and includes therein a first connector coupled to the motor winding and the external electrical distribution power line. A power conversion device is coupled to the first connector, adapted for converting the power line first voltage to auxiliary power at a second voltage below 1000 volts. An auxiliary connector is coupled to the power conversion device, and is adapted for supplying auxiliary power to auxiliary devices. An auxiliary device, such as an external electric fan is coupled to the auxiliary connector.
The present invention additionally features an induction machine power connection system, for coupling the machine to an alternating current external electrical distribution power line having a first voltage, exceeding 1000 volts. The machine is an alternating current electric motor having a winding. The system includes a connection box attached to the motor, having therein a first connector coupled to the motor winding and the external electrical distribution power line, a power conversion device coupled to the first connector, adapted for converting the power line first voltage to auxiliary power at a second voltage below 1000 volts, and an auxiliary connector coupled to the power conversion device, adapted for supplying auxiliary power to auxiliary devices. The system also has an auxiliary device coupled to the auxiliary connector. The auxiliary device may be an electric powered cooling fan for cooling the motor.
The objects and features of the present invention may be applied jointly or severally in any combination or sub-combination by those skilled in the art.
The teachings of the present invention can be readily understood by considering the following detailed description, in conjunction with the accompanying drawings, in which:
To facilitate understanding, identical reference numerals have been used, per possible, to designate identical elements that are common to the figures.
After considering the following description, those skilled in the art will clearly realize that the teachings of my invention can be readily utilized in induction machine power connection systems that have to potential to provide multiple types of auxiliary power at a single source point from the line power feeding an induction machine, such as an AC medium voltage electric motor.
General System Overview
The power connection system 10 includes a connection box 40 structure that is coupled directly to or proximal to the motor 30. The connection box 40 includes a housing 42 that houses a known connector 50 that is in turn electrically coupled to a motor winding 32. While a single housing 42 is shown, it should be understood by those skilled in the art that a plurality of interconnected separate sub housings collectively may incorporate all or part of the power connection system 10. In some applications it may be desirable to segregate different components into separate sub housings. The connector 50 is adapted for coupling to a corresponding phase of the external electrical distribution power line 20, so that there is power continuity to energize the motor. Each separate phase of motor winding is coupled to its respective power line phase by a similar separate connector. The connector 50 structure couples the motor 30 to the power line 20 and provides a single power source point for auxiliary equipment, such as cooling fan 34, whether or not all of the power connector system 10 is incorporated in connector box structure 40 that has a single housing 42, as shown in
In order to satisfy differing power requirements of auxiliary devices, the system 10 includes a known power conversion device 60, that draws power from the connector structure 50 at line power 20 voltage and is adapted for converting the incoming power to auxiliary power at a lower second voltage. Power conversion device 60 may include a known power transformer for converting medium voltage AC power to lower voltage AC power (e.g., 110 V AC, 120 V AC or 220 V AC). Alternatively or concurrently the power conversion device may include a known diode bridge for converting AC line power to DC auxiliary power (e.g., 24 V DC or 12 V DC) suitable for instrumentation, control and communication equipment. Desirably for some applications the power conversion device 60 may be coupled to or include directly known power conditioning devices 62 for filtering or otherwise “cleaning” auxiliary power.
A known auxiliary connector structure 70, such as one or more power lugs or terminal connectors, is coupled to the power conversion device 60, and is adapted for supplying auxiliary power to auxiliary devices, such as external electric cooling fan 34. The power conversion device 60 may be pre-configured to provide a plurality of types of auxiliary output power through different auxiliary power lugs 70, or may be more narrowly configured to meet only the specific auxiliary power needs for a specific application. For example in
Exemplary Auxiliary Cooling Fan Application
Exemplary Connection Box Configuration
Referring to
As shown in
Although various embodiments which incorporate the teachings of the present invention have been shown and described in detail herein, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings.
Number | Name | Date | Kind |
---|---|---|---|
2125110 | Harty | Jul 1938 | A |
2125628 | Fredrickson | Aug 1938 | A |
2148136 | Samer | Feb 1939 | A |
2196138 | Bullard | Apr 1940 | A |
2295805 | Palmer | Sep 1942 | A |
2295916 | Schiff | Sep 1942 | A |
2546736 | Fry et al. | Mar 1951 | A |
2638555 | Marks | May 1953 | A |
2752529 | Croco et al. | Jun 1956 | A |
2756368 | Gross et al. | Jul 1956 | A |
2874317 | Couse | Feb 1959 | A |
2957118 | Steinert et al. | Oct 1960 | A |
3060336 | Liimatainen et al. | Oct 1962 | A |
3142013 | McGrath et al. | Jul 1964 | A |
3247437 | Meadows et al. | Apr 1966 | A |
3273020 | Murphey | Sep 1966 | A |
3496420 | Leonard et al. | Feb 1970 | A |
3568016 | Barber | Mar 1971 | A |
3621339 | Hodgson | Nov 1971 | A |
4027205 | Frederick | May 1977 | A |
4443187 | Shaftner et al. | Apr 1984 | A |
4589050 | Cutler et al. | May 1986 | A |
4754179 | Capuano | Jun 1988 | A |
4780659 | Bansal et al. | Oct 1988 | A |
5633792 | Massey | May 1997 | A |
5822164 | Graf | Oct 1998 | A |
6081423 | Griffin | Jun 2000 | A |
6577031 | Morooka et al. | Jun 2003 | B2 |
6900562 | Derksen | May 2005 | B2 |
7365294 | Park | Apr 2008 | B2 |
7471002 | Konishi | Dec 2008 | B2 |
7560831 | Whitted et al. | Jul 2009 | B2 |
7576630 | Darr | Aug 2009 | B2 |
7855630 | Darr | Dec 2010 | B2 |
7855873 | Darr et al. | Dec 2010 | B2 |
7886173 | Krieger et al. | Feb 2011 | B2 |
8089335 | Darr et al. | Jan 2012 | B2 |
8120929 | Becherer et al. | Feb 2012 | B2 |
8134828 | Creighton et al. | Mar 2012 | B2 |
8310333 | Ventura et al. | Nov 2012 | B2 |
20040061992 | Roman et al. | Apr 2004 | A1 |
20060126277 | Tomkowiak | Jun 2006 | A1 |
20060163945 | Bornhorst et al. | Jul 2006 | A1 |
20070252670 | Darr | Nov 2007 | A1 |
20070278860 | Krieger et al. | Dec 2007 | A1 |
20080179973 | Kreitzer | Jul 2008 | A1 |
20090021078 | Corhodzic et al. | Jan 2009 | A1 |
20100014273 | Darr | Jan 2010 | A1 |
20110116212 | Rosemore et al. | May 2011 | A1 |
20110292563 | Head | Dec 2011 | A1 |
20120062211 | Neal et al. | Mar 2012 | A1 |
Entry |
---|
T.A. Short, Electric Power Distribution Handbook, 2003, CRC Press, Ch. 1 (“Fundamentals of Distribution Systems”). |
P. Horowitz & W. Hill, The Art of Electronics, 1989, Cambridge University Press, 2d ed., § 1.17, pp. 28-29. |
PCT International Search Report mailed Jul. 10, 2013 corresponding to PCT International Application No. PCT/US2012/036307 filed May 3, 2012 (12 pages). |
Number | Date | Country | |
---|---|---|---|
20120286600 A1 | Nov 2012 | US |