The present disclosure concerns the use of pharmacological agents and/or other moieties in order to induce an immunological response to viral infection.
Chronic infection with hepatitis B virus (HBV) is characterized by a lack of robust T cell responsiveness to viral antigens (1, 2). Indeed, an inadequate CD8+ T cell response is thought to be key to the establishment of chronicity. Typically, virus-specific CD8+ cytotoxic T lymphocytes (CTLs) are elicited by infected cells presenting virus-derived peptides by major histocompatibility complex (MHC) class I. However, poor CTL responses in chronic HBV infection are likely a consequence of multiple factors (1, 2), including viral interference with efficient processing and presentation of HBV epitopes (3). Thus, methods that can cause enhanced recognition or presentation of viral epitopes by MHC class I might be useful as therapeutic interventions and as research tools.
Viral glycoproteins represent important targets for any antiviral immune response. HBV is an enveloped virus with three glycoproteins: LHBs, MHBs and SHBs (4). In tissue culture, the HBV envelope proteins are very stable, and are degraded by proteasomes less efficiently than host proteins (5). Resistance to proteasomal degradation might contribute to HBV's refractoriness to presentation by MHC class I and even to establishment of chronicity (6). However, compared to most cellular N-glycoproteins, and even the SHBs, the MHBs protein is unusually dependent upon calnexin mediated protein folding (7, 8). Calnexin is a cellular lectin chaperone that recognizes N-glycans on nascent proteins that have been trimmed to a mono-glucose residue (9, 10). This trimming is mediated by glucosidases in the endoplasmic reticulum (ER). Inhibition of glucosidases resulted in significant and selective degradation of MHBs under conditions where most cellular glycoproteins are spared (7, 11). The sensitivity of MHBs to glucosidase inhibition was correlated with antiviral activity in animals (11).
There remains a therapeutic and investigational need for techniques that can provoke enhanced recognition or presentation of viral epitopes by the major histocompatability complex.
Provided are methods for treating a subject having a viral infection comprising administering to the subject a composition comprising a viral glycoprotein or a fragment thereof, or, a DNA construct encoding for the viral glycoprotein or fragment thereof, wherein the glycoprotein or fragment comprises a glycosylation sequon that includes a non-templated aspartic acid residue.
Also provided are viral glycoproteins or a fragments thereof, or, DNA constructs encoding for such viral glycoproteins or fragments thereof, wherein the glycoprotein or fragment comprises a glycosylation sequon that includes a non-templated aspartic acid residue. The present disclosure also relates to compositions comprising such viral glycoproteins or a fragments thereof, or, DNA constructs encoding for such viral glycoproteins or fragments thereof, and a pharmaceutically acceptable carrier.
The present invention may be understood more readily by reference to the following detailed description taken in connection with the accompanying figures and examples, which form a part of this disclosure. It is to be understood that this invention is not limited to the specific products, methods, conditions or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be limiting of the claimed invention.
In the present disclosure the singular forms “a,” “an,” and “the” include the plural reference, and reference to a particular numerical value includes at least that particular value, unless the context clearly indicates otherwise. Thus, for example, a reference to “a glycoprotein” is a reference to one or more of such materials and equivalents thereof known to those skilled in the art, and so forth. When values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. As used herein, “about X” (where X is a numerical value) preferably refers to ±10% of the recited value, inclusive. For example, the phrase “about 8” preferably refers to a value of 7.2 to 8.8, inclusive; as another example, the phrase “about 8%” preferably refers to a value of 7.2% to 8.8%, inclusive. Where present, all ranges are inclusive and combinable. For example, when a range of “1 to 5” is recited, the recited range should be construed as including ranges “1 to 4”, “1 to 3”, “1-2”, “1-2 & 4-5”, “1-3 & 5”, and the like. In addition, when a list of alternatives is positively provided, such listing can be interpreted to mean that any of the alternatives may be excluded, e.g., by a negative limitation in the claims. For example, when a range of “1 to 5” is recited, the recited range may be construed as including situations whereby any of 1, 2, 3, 4, or 5 are negatively excluded; thus, a recitation of “1 to 5” may be construed as “1 and 3-5, but not 2”, or simply “wherein 2 is not included.”
The disclosures of each patent, patent application, and publication cited or described in this document are hereby incorporated herein by reference, in their entirety. Numbers in parenthesis correspond to the numbered list of references that is provided in the final portion of this disclosure.
Unless otherwise specified, any component, element, attribute, or step that is disclosed with respect to one aspect of the present invention (for example, the methods, peptides, proteins, DNA sequences, compositions, respectively) may apply to any other aspect of the present invention (any other of the methods, peptides, proteins, DNA sequences, compositions, respectively) that is disclosed herein.
The present disclosure demonstrates, inter alia, the pharmacological alteration of viral epitopes, including, for example, the hepatitis B virus (HBV) epitopes, presented by major histocompatibility complex (MHC) class I on infected cells. The HBV middle envelope glycoprotein MHBs maturation appears to require calnexin mediated folding. This interaction is dependent upon glucosidases in the endoplasmic reticulum. Prevention of HBV envelope protein maturation in cultured cells with glucosidase inhibitors, such as 6-O-butanoyl castanospermine and N-nonyl deoxynorjirmycin, resulted in MHBs degradation by proteasomes. The de-N-glycosylation associated with polypeptide degradation was predicted to result in conversion of asparagine residues into aspartic acid residues. This prediction was confirmed by showing that proteins, peptides, or corresponding DNA sequences that include the N-glycosylation sequons of MHBs, but with aspartic acid replacing asparagine, (a) can prime human CTLs that recognize HBV producing cells and (b) that the presentation of these envelope motifs by MHC class I is enhanced by incubation with glucosidase inhibitors. Moreover, although peripheral blood mononuclear cells isolated from woodchucks chronically infected with woodchuck hepatitis virus (WHV) and vaccinated with WHV surface antigen could be induced to recognize the natural MHBs asparagine-containing peptides, only cells isolated from glucosidase inhibitor treated animals recognized the aspartic containing peptides. These data demonstrate that pharmacological intervention with peptides or proteins with asparagine containing glycosylation sequons, with or without glucosidase inhibitors and/or antiviral agents (such as nucleoside analogs) can alter the MHBs epitopes presented. This editing of the amino acid sequence of the polypeptide therefore results in a new epitope, or “editope” of medical significance.
Degradation of MHBs in the presence of glucosidase inhibitors was mediated by cellular proteasomes (5, 12). Proteasomal degradation products are substrates for MHC class I-mediated presentation to T cells. It was presently hypothesized that glucosidase inhibitors could selectively enhance presentation of MHBs epitopes. This prediction was confirmed in cell culture; glucosidase inhibitor treatment of target cells resulted in increased killing by peptide-specific CTLs (13). Degradation of MHBs following glucosidase inhibition might also be accompanied by de-N-glycosylation. Hydrolysis of N-linked glycan from asparagines of glycoproteins is thought to occur in the cytoplasm by the enzyme peptide:N-glycanase (PNGase) (14), resulting in conversion to aspartic acid (15, 16). Thus, de-N-glycosylation of MHBs in glucosidase-inhibited cells should be accompanied by altered polypeptide amino acid composition. It was postulated by the present inventors that such edited epitopes, or “editopes”, could be created by pharmacological intervention with glucosidase inhibitors, and that such editopes could be used to provoke an immune response. Although presentation of peptides containing aspartic acid in place of asparagines has been reported (17-19), the pharmacological induction of this modification would be unprecedented and have profound implications for therapy and how neo-antigens might be created. The present disclosure includes the results of such an intervention in tissue culture and in woodchucks chronically infected with woodchuck hepatitis virus (WHV), which mimics many of the immunologic features of chronic HBV infection in humans (20).
The present disclosure provides are methods for treating a subject having a viral infection (such as a chronic viral infection) comprising administering to the subject a composition comprising a viral glycoprotein or a fragment thereof, or, a DNA construct encoding for the viral glycoprotein or fragment thereof, wherein the glycoprotein or fragment comprises a glycosylation sequon that includes a non-templated aspartic acid residue.
Also provided are viral glycoproteins or a fragments thereof, or, DNA constructs encoding for such viral glycoproteins or fragments thereof, wherein the glycoprotein or fragment comprises a glycosylation sequon that includes a non-templated aspartic acid residue. The present disclosure also relates to compositions comprising such viral glycoproteins or a fragments thereof, or, DNA constructs encoding for such viral glycoproteins or fragments thereof, and a pharmaceutically acceptable carrier.
As used herein, the term “non-templated aspartic acid” residue refers to an aspartic acid residue that occurs due to de-amidation of a templated asparagine residue. Preferably, the viral glycoprotein or fragment corresponds to the naturally occurring counterparts from the virus with which the subject is infected. The virus with which the subject is infected (and to which the viral glycoprotein or fragment thereof corresponds) may be any virus having one or more envelope proteins that are sensitive to glucosidase inhibitors. Sensitivity to glucosidase inhibitors refers to a measurable prevention of de-glycosylation of the one or more viral envelope proteins. For example, the virus may be any enveloped virus, such as hepatitis B virus or hepatitis C virus. Numerous other enveloped viruses are well known among those of ordinary skill in the art, and all enveloped viruses are contemplated.
The viral glycoprotein may be an envelope protein. For example, the glycoprotein may be a hepatitis B virus (HBV) small envelope glycoprotein, an HBV middle envelope glycoprotein, or an HBV large envelope glycoprotein.
The present methods may further comprise administering to the subject a glucosidase inhibitor, an antiviral agent, or both. The glucosidase inhibitor and/or antiviral agent may be administered separately or simultaneously (for example, in a unitary composition) with the administration of the viral glycoprotein, fragment, or DNA construct. The antiviral agent may be a nucleoside analog. For example, the antiviral agent is 1-(2-fluoro-5-methyl-beta-L-arabinofuranosyl)-uracil (L-FMAU), 2-Amino-9-[(1S,3R,4S)-4-hydroxy-3-(hydroxymethyl)-2-methylidenecyclopentyl]-6,9-dihydro-3H-purin-6-one (Entecavir), or a combination thereof. The glucosidase inhibitor may be, for example, 6-O-butanoyl castanospermine (BuCas), a deoxynorjirmycin (e.g., N-nonyl deoxynorjirmycin), or a combination thereof.
Heparinized blood from healthy HLA-A2 donors was purchased from Research Blood Components, LLC, (Brighton, Mass.). Peripheral blood mononuclear cells were purified and cultured as described (13, 21). After initial stimulation with synthetic peptide, T cells were re-stimulated with CD4/CD8 T cell depleted autologous monocytes pulsed with synthetic peptide at 10 μg/ml for 5 days. IL-2 treatment and in vitro re-stimulation were repeated thrice prior to use of in vitro expanded T cells in ELISpot assays. The present inventors' previous work has demonstrated that T cells expanded in this manner secrete granzyme B and have surface CD8, hallmarks of the cytolytic potential of CD8+ T cells, so these cells are referred to as CTLs_(21).
In vitro expanded CTLs were used as effectors in ELISpot assays to assess antigen stimulated interferon-γ release according to the manufacturer's instructions (BD-Pharmingen, San Jose, Calif.). Target cells were HepG2 human hepatoma cells (HBV negative; American Type Culture Collection) or HBV-containing HepG2.2.15 cells (22). Cells were treated with glucosidase inhibitor BuCas (1 mg/ml) twice at an interval of 3 days prior to use as targets in ELISpot assays, and washed before incubation with T cells. Typically, 1×105 effectors (T cells) and 5×103 targets were used (20:1). Results are presented as number of interferon-γ producing cells per 106 CD8+ T cells.
All experimental procedures involving woodchucks were performed under protocols approved by the Cornell University Institutional Animal Care and Use Committee. Woodchucks were born to WHV-negative females in environmentally controlled laboratory animal facilities and inoculated at 3 days of age with 5 million infectious doses of a standardized WHV inoculum (23). Woodchucks were selected as chronic WHV carriers based on persistent detection of WHV surface antigen (WHsAg) and WHV DNA in serum prior to treatments. All animals were free of HCC at the beginning of the study as determined by hepatic ultrasound examination and normal serum activity of γ-glutamyl-transferase (GGT).
Twenty adult chronically infected woodchucks were stratified by age, sex, body weight, serum viral load, and serum GGT activity into four treatment groups of five animals each. Drug was administered orally at 100 mg/kg (in sterile water), chosen after an initial dose finding trial. Following a single oral dose of 100 mg/kg, the average observed Cmax was 7.7 μg/ml (range 5.0-12.1). The subunit vaccine consisted of 22-nm WHsAg particles, purified by zonal ultracentrifugation from serum of WHV7P1-infected WHV carriers (24), inactivated with formalin, and adsorbed onto alum. Prior to alum adsorption, vaccine was tested in naïve, WHV-susceptible animals and no residual virus was detected. Purified WHsAg was not pretreated with enzymes that remove preS sequences.
Blood samples were obtained for WHV DNA analysis and serological testing while animals were under general anesthesia (ketamine 50 mg/kg and xylazine 5 mg/kg intramuscularly). Samples were taken prior to drug administration on the first day of treatment and at the indicated time points. Animals were weighed at bi-weekly intervals, and observed daily; no evidence of drug-related toxicity was seen.
Serum WHV DNA was measured quantitatively by dot blot hybridization (assay sensitivity, ≧1.0×107 WHV genome equivalents per ml [WHVge/ml]) (25). Serum WHsAg, antibodies to WHV core antigen (anti-WHc), and WHV surface antigen (anti-WHs) were determined with WHV-specific enzyme immunoassays (26). Serum biochemical measurements included serum GGT, alkaline phosphatase (ALP), and marker of hepatocellular injury alanine aminotransferase (ALT), aspartate aminotransferase (AST), and sorbitol dehydrogenase (SDH) (25).
Sample preparation for glycan analysis was performed essentially as described (27). HPLC separation was performed using the Waters Alliance HPLC system with a Waters fluorescence detector, and quantified using the Millenium Chromatography Manager (Waters Corporation, Milford, Mass.). Tri-glucosylated structures were identified by comparison to known standards (27, 28).
T cell responses against WHV were determined using in vitro stimulators at concentrations optimal for cultures of woodchuck PBMCs (29, 30). Stimulators consisted of native 22-nm WHsAg (2 μg/ml), recombinant WHcAg (2 μg/ml), or synthetic peptides (10 μg/ml) corresponding to either native viral sequences or predicted N-de-glycosylated sequences (Table 1, below).
The in vitro proliferation assay using woodchuck PBMCs labeled dividing cells with [2−3H]adenine (Amersham Pharmacia Biotech, Inc., Arlington Heights, Ill.). Woodchuck PBMCs were isolated from whole blood and stimulated as described (30, 31). Counts per minute of triplicate PBMC cultures were averaged and expressed as a stimulation index (SI) by dividing the average sample counts per minute in the presence of the stimulator by that observed in the absence of stimulator (six replicates). A SI value of 3.1 was considered to represent a positive, specific T-cell response.
The ER chaperone calnexin (CNX) binds to nascent glycoproteins that are mono-glucosylated due to trimming of terminal glucoses by glucosidases (
It was hypothesized that inhibition of glucosidases would prevent HBV MHBs interaction with CNX and cause accumulation of misfolded MHBs. Misfolded protein might be retrotranslocated from the ER to the cytoplasm, and degraded by proteasomes. Accumulation of unglycosylated MHBs when cells were treated simultaneously with proteasome inhibitors and glucosidase inhibitor suggested that de-N-glycosylation occurred (5). Cellular PNGase cleaves the N-glycosidic linkage between the core N-acetylglucosamine and asparagine (N), with deamidation to aspartic acid (D). Thus, formerly N-glycosylated peptides that emerge from the proteasome will differ from peptides that were never glycosylated. Since the newly characterized “D” containing epitopes are not specified by the viral genome and presumably result from posttranslational editing, they are herein referred to as “editopes”.
Peptides presented on the surface of a cell in the context of the MHC class I complex should be recognized with high sensitivity upon incubation with cognate peptide-primed CTLs, with specific killing of the target cells. Previously, preparation of CTLs by stimulation with a known HLA-A2 restricted antigenic peptide, 183-FLLTRILTI was reported (13). This peptide represents amino acids 183-191 of LHBs_(32). Such CTLs recognized HepG2.2.15 target cells expressing viral antigens. HepG2.2.15, and the parental, HBV-negative, hepatoblastoma cell line HepG2, express HLA-A2 class 1 molecules, but not HLA class II (33). The present inventors tested whether a de-N-glycosylated HBs peptide could elicit CTLs from human peripheral blood mononuclear cells (PBMCs) that recognize peptides presented by HepG2.2.15 cells. PBMCs from healthy HLA-A2 positive donors were isolated and stimulated in vitro with either amino acids 304-312 KPSDGNCTC (N-peptide,
Both the natural N-peptide and the non-templated D-peptide were effective elicitors of specific CTLs that recognize HLA-A2 expressing T2 target cells, with significant cross-reactivity (
As shown in
Presentation of the D-peptide epitope by target cells was increased significantly by 6-O-butanoyl-castanospermine (BuCas) treatment, presumably because de-N-glycosylated epitope production was enhanced by glucosidase inhibition. Presentation of the N-peptide epitope was reduced in cells treated with the BuCas, consistent with increased protein turnover. Similar results were obtained in an independent experiment with another donor (data not shown). BuCas-induced changes were specific for the viral envelope glycoprotein, and not seen with CTLs primed with an epitope from HBV core antigen (13). These results show that (1) D-peptides are stimulatory and (2) glucosidase inhibition increases the degree to which HepG2.2.15 cells are recognized by CTLs primed with D-peptide but not N-peptide.
Treatment of Chronic WHV Carrier Woodchucks with Antiviral and Immunostimulatory Agents
Next, the present inventors investigated whether D-peptide-specific responses could be observed in vivo following glucosidase inhibition. Woodchuck hepatitis virus (WHV) shares DNA sequence homology and pathobiological features with human HBV. WHV establishes chronic infection in outbred woodchucks and is considered to be a model for the human virus (20). It was previously demonstrated by the present inventors that WHV MHBs is sensitive to glucosidase inhibition in vivo (11). Antigen-specific proliferative cell responses of PMBCs were examined from woodchucks chronically infected with WHV as a function of treatment with BuCas.
Woodchucks chronically infected with WHV experienced significant immunological responses to envelope proteins following immunization with WHsAg-containing vaccines, especially in the context of low viral and antigen loads following treatment with an effective antiviral agent, 1-(2-fluoro-5-methyl-beta-L-arabinofuranosyl)-uracil (L-FMAU) (29, 35). Since BuCas treatment might be expected to reduce the amount of MHBs in the circulation and/or alter its immunological profile, the response to BuCas administration along with WHsAg vaccine was investigated. Twenty-five woodchucks chronically infected with WHV were divided into five treatment groups: Placebo, Vaccine alone (V), BuCas alone (B), vaccine plus BuCas (V+B) and V+B plus L-FMAU (V+B+L). Four uninfected animals served as controls. Vaccine interventions were as shown in
Viremia and antigenemia remained relatively stable in all placebo animals (Table 2, below, and data not shown). These parameters were not altered significantly by treatment with either BuCas alone or the combination of BuCas and vaccine, at all times tested; representative data are shown from week 0 (baseline) and week 10 (4 weeks after the first vaccination).
#ALT is indicated in Units/L
Markers of liver injury such as ALT, AST and GGT were also fairly stable (Table 2), excepting an animal in group V+B that succumbed to hepatocellular carcinoma at about week 20. The triple combination V+B+L resulted in marked reduction of viremia, consistent with a previous trial (29, 35). Thus, BuCas treatment was not incompatible with reduction in viral load.
In vivo, levels of circulating glycoproteins with N-glycans bearing three terminal glucose residues reflect the extent of glucosidase inhibition (11). Animals treated with BuCas were determined to have microgram per milliliter levels of the drug (Materials and Methods), which impaired glycan processing, seen as tri-glucosylated glycans in the sera of BuCas-treated animals (Table 2). Note that BuCas-treated animals that were negative for tri-glucosylated glycans at the 10-week time point were positive at one or more other time points (data not shown). No tri-glucosylated glycans were detected in any drug-naïve animals (Table 2).
Immunoblotting analysis of sera revealed visible drops in circulating MHBs in all of the animals in V+B+L group, consistent with reductions in total surface antigen (Table 2). However, treatment with either vaccine or BuCas, alone or in combination, did not decrease MHBs levels at any time points (data not shown).
Proliferation of PBMCs from Woodchucks Chronically Infected with WHV in Response to Viral Antigens and Pharmacologically Induced Neo-Antigens
Although reagents to dissect the immune response of woodchucks are limited, assays to measure lymphocyte recognition of specific epitopes have been implemented. PMBCs are isolated from the animals and incubated with antigen in vitro; proliferation is assumed to be evidence of antigen recognition and stimulation. PMBCs were isolated from animals at the indicated times (
Some vaccinated animals (Group V) produced PMBCs that recognized WHV epitopes (
From the data in
In untreated animals, none of the peptides elicited a response. For group V, responses was restricted to N-peptides. Since the D-peptides are not specified by WHV, the lack of response is not entirely surprising. In contrast, animals in groups B and B+V responded more strongly to D-peptides versus N-peptides. In some cases, both peptides were recognized (
Lack of reactivity to D-peptides might be due to some animals being incapable of responding to these epitopes. To test this possibility, all animals in groups V, B, and B+V were inoculated with D-peptides in alum at week 28 (
Cellular responses to D-peptides were evident in all three groups at week 32 (3/5 animals positive), indicating that most animals were capable of responding to these epitopes. These data strongly suggest that D-peptides were produced and presented in animals treated with BuCas, and that these epitopes, which are herein referred to as “editopes” are not abundantly produced in the absence of pharmacological intervention.
Normally, wild-type MHBs is very stable in cultured cells (5). However, pharmacologic inhibition of ER glucosidases that trim N-glycans on nascent proteins results destabilization of MHBs. Such treatment leads to proteasome-mediated degradation, which in turn results in increased presentation of proteasome-derived peptides by MHC class I (13). Based on the findings disclosed herein, de-N-glycosylation is expected to produce peptides in which asparagines are converted to aspartic acids (
It was unexpectedly found that there was no detectable antiviral response in the drug treated woodchucks (Table 2), despite apparent efficacy in cell culture (13). Indeed, antiviral activity had previously been observed in woodchucks with a different iminocyclitol, N-nonyl deoxynojirimycin (11). There are several possible reasons for this discrepancy. First, the dose obtained with BuCas may have been insufficient to produce an antiviral effect, despite biochemical efficacy (tri-glucosylated proteins in the circulation, Table 2). Second, the two compounds do not act identically. Formation of the mono-glucosylated substrate for CNX requires sequential action of glucosidases I and II (10). Castanospermine and its derivative BuCas are more potent inhibitors of glucosidase I than deoxynojirimycin, but the latter may have more activity against glucosidase II (36-38). Thus, more tri-glucosylated MHBs should accumulate with BuCas. All three glucosylated species should be substrates for endomannosidase and escape from the ER (39). Finally, deoxynojirimycin prevents oligosaccharide addition some fraction of the time, but castanospermine does not (36). Secretion of MHBs is highly dependent upon the presence of N-glycan within the pre-S2 region (7).
A desirable therapeutic vaccine against chronic HBV would stimulate antiviral CTLs, which, combined with a reduction in viremia achieved by other treatments, should eliminate infected cells. Unfortunately, the response of chronically infected patients to such a vaccine was weak (40). Despite the absence of antiviral activity in the WHV infected animals, BuCas stimulated cellular immunity to viral antigen; only infected woodchucks treated with BuCas possessed PMBCs that could recognize and be primed by the D-peptides derived from MHBs. Based on the results presented herein, it is concluded that (a) D-peptide versions of the MHBs peptides can be presented by MHC class I and can activate CD8+ T cells_and (b) the de-N-glycosylation can occur in vitro and in vivo following pharmacological intervention. The relatively weak response in the BuCas-treated animals to the natural N-peptides implies that there is little, if any, spontaneous generation of N-specific and that there may be limited cross recognition between cells that recognize the N- and D-epitopes.
The actual in vivo situation mechanism by which BuCas is stimulating cellular immunity is likely to be more complicated than the simplified model in
It also should be noted that the proliferative response in the woodchucks likely involves other immune cells as well as CD8+ T cells. The proliferating PBMCs include CD3+ T cells, although their CD8 status can not be determined due to lack of specific antibody. Drug treatment might affect components of the antigen processing and presentation apparatus; unoccupied MHC class 1 molecules are destabilized by glucosidase inhibition (42). The WHV MHBs protein itself has been reported to suppress MHC class I presentation levels (43). Although BuCas treatment does not detectably reduce circulating MHBs, it is possible that intracellular levels are decreased, influencing formation of MHC class I complexes.
Although the human genome is estimated to contain 25,000 or fewer protein-coding genes, post-translational modifications expand protein diversity. Posttranslational editing refers to the alteration of a polypeptide sequence such that it differs from the gene from which it was specified. The enzymatic hydrolysis of N-linked glycan from the asparagines of glycoproteins by the action of the mammalian PNGase results in the conversion of the asparagines to aspartic acids. It is herein suggested that this is a form of posttranslational editing, and where it results in new epitopes, not specified by the genome, which may be referred to as “editoping”.
26. Cote P J, Roneker C, Cass K, Schodel F, Peterson D, Tennant B C, De Noronha F, et al. New enzyme immunoassays for the serologic detection of woodchuck hepatitis virus infection. Viral Immunol 1993; 6:161-169.
The present application claims priority to U.S. Provisional App. No. 61/358,777, filed Jun. 25, 2010, the entire contents of which are incorporated herein by reference.
Research leading to the disclosed invention was funded, in part, by the U.S. National Institutes of Health, Grant Nos. U01 A1053884 to Timothy M. Block and U01AI054763 to Anand Mehta. Accordingly, the United States Government has certain rights in the invention described herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US11/41829 | 6/24/2011 | WO | 00 | 2/5/2013 |
Number | Date | Country | |
---|---|---|---|
61358777 | Jun 2010 | US |