The subject invention relates to vehicles, and more particularly relates to systems for inductively powering panels in vehicles.
Vehicles are increasingly becoming more complicated as more and more technology is included into vehicles. Each electronic device in the vehicle has to be coupled to a power source. The electronic devices are often coupled to a power source by a direct mechanical connection, such as a wire. However, when the electronic devices are in a panel which is moveable, such as a door or trunk, or removable, such as a removable roof top, the direct wired connections can complicate the installation process.
In one exemplary embodiment of the invention a vehicle includes: a movable panel having an electronic device; a power source; a data source; and a connector configured to selectively couple the movable panel to the vehicle. The connector is configured to be electrically coupled to the power source and the data source, and is further configured to inductively couple the electronic device of the movable panel to the power source and the data source.
In another exemplary embodiment of the invention, a connector is adapted to selectively couple a moveable panel having an electronic device to a vehicle having a power source and a data source. The connector includes a first connecting element adapted to be coupled to the vehicle, the first connecting element having a first coil adapted to inductively couple the electronic device to the power source and the data source, and a first modulator-demodulator disposed in signal communication with the first coil and adapted to receive power from the power source and data from the data source. The connector further includes a second connecting element adapted to be coupled to the moveable panel, the second connecting element having a second coil adapted to inductively couple the electronic device to the power source and the data source, and a second modulator-demodulator disposed in signal communication with the second coil and adapted to provide power and data to the electronic device.
Other features, advantages and details appear, by way of example only, in the following detailed description of embodiments, the detailed description referring to the drawings in which:
The following description is merely exemplary in nature and is not intended to limit the present disclosure, its application or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
Modern vehicles have a variety of movable and removable parts such as doors, tailgates, trunks, hoods and roofs. Many of the movable and removable parts house electronic devices, such as lights, back-up cameras, proximity sensors or displays, or electronic systems such as switches or motors for windows or locks. As discussed in further detail below, a system for inductively powering and communicating with the electronic devices and systems is introduced. The inductive power/communication system simplifies the assembly and maintenance of the vehicle and simplifies a process for removing and reattaching removable panels, such as a removable roof panel or tailgate, which have an electronic device.
The moveable panel 110 includes at least one electronic device 120. The electronic device 120 may be any device which requires electricity. In one embodiment, for example, if the moveable panel 110 is a removable roof panel or a convertible top, the electronic device 120 may be a dome light. In other embodiments, for example, if the moveable panel 110 is a door, the electronic device 120 may be a motor and control system for controlling the movement of a window in the door or an electronic door locking system. The electronic device 120 could also be a brake light, an electro-polymer sunshade, an electrochromic device, a suspended particle device or liquid crystal display (LCD). In yet other embodiments, for example, the electronic device 120 may be a defrosting system. In yet another embodiment, for example, the electronic device 120 may be a back-up camera or a proximity sensor, or a combination of a back-up camera and a plurality of proximity sensors, which is discussed in more detail below in connection with
The moveable panel 110 is coupled to the vehicle 100 by at least one connector 130. Each connector 130 has two connecting elements, one connected to the vehicle 100 and one connected to the moveable panel 110. The connectors 130 are used to couple the movable panel 110 to the vehicle 100 and to provide power, and in some embodiments data communication (discussed further below), for the electronic device 120. Each connector 130 is coupled to a power source 140 on the vehicle 100. The power source 140, for example, could be a battery-powered inverter, or the power could be supplied by a motor on the vehicle 100, or a combination thereof. One of the connectors 130 is coupled to a first side of the power source 140 and the other connector is coupled to a second side of the power source 140. Accordingly, when the moveable panel 110 is coupled to the vehicle 100, a complete circuit is formed, allowing the transfer of current, as discussed in further detail below. Many different styles of connectors 130 could be used. In one embodiment, for example, a hinge may be used as the connector. The hinge, for example, may connect a door, a tailgate, or a trunk (individually herein also referred to as a movable or removable panel 110) to the vehicle 100.
The connecting element 200 includes a receptacle 230. While the receptacle 230 illustrated in
The connecting element 210 includes an interface 250. The interface 250 is configured to couple with the receptacle 230. Accordingly, the shape of the interface 250 corresponds to a shape of the receptacle 230. In one embodiment, for example, an end 255 of the interface 250 may be tapered to ease the coupling between the connecting elements 200 and 210. In other embodiments, for example, the end 255 may include a hook, or other mechanism for securing the connecting element 210 to the connecting element 200. The interface 250 may be made from any ferrous material, including, but not limited to, iron, steel or any other alloy which includes iron.
The connecting element 210 also has a coil 260 wrapped around a portion of the interface 250. The coil 260 is coupled to one or more electronic devices 120. When power is applied to the coil 240 from a power source 140, the coil 240 and coil 260 inductively couple via the ferrous interface 250. In other words, a current flowing through the coil 240 induces a current in the coil 260, which can be used to power the electronic devices 120. Because the power for the electronic devices 120 is passed to the movable panel 110 inductively rather than via wires, the assembly of the panel 110 to the vehicle 100 is greatly simplified. Further, because the power for electronic devices 120 is passed inductively, the moveable panels 110 can be removed from the vehicle 100 and later reinstalled on the vehicle 100 without having to worry about a wire harness. Furthermore, unlike certain mechanical connections which need to be precise and which are subject to corrosion, the position of the coils 240 and 260 with respect to one another does not have to be precise to function.
While
The connector 430 functions as both a guide pin and for inductively transferring power. When the removable roof panel 410 is connected to the vehicle 400, the connector 430 ensures that the removable roof panel 410 is aligned properly, ensuring that the removable roof panel 410 is properly seated on the roof of the vehicle 400 and that the locking mechanism 420 is aligned with corresponding area or areas on the vehicle 400.
Similar to connector 130, connector 730 has a first connecting element 750 coupled to the vehicle 700, a first coil 752 wrapped around the first connecting element 750, a second connecting element 760 coupled to the moveable panel 710, and a second coil 762 wrapped around the second connecting element 760. In an embodiment the second coil 762 is wrapped around a ferrous portion of the second connecting element 760, similar to that discussed above in connection with ferrous interface 250 of connecting element 210, for inducing a current flow in the second coil 762. In addition, for data communications, connector 730 has a first modulator-demodulator 754 disposed in signal communication with the first coil 752, and disposed to receive power from the power source 740 and data from the data source 742 via power line 756 and data line 758, respectively, and a second modulator-demodulator 764 disposed in signal communication with the second coil 762, and disposed to provide power and data to the electronic device 720 via power line 767 and data line 768, respectively. In an embodiment, power line 767 and data line 768 may be combined into a single power/data line 766.
To amplify a data signal sent to the first coil 752, a first amplifier 755 is disposed in signal communication with the first modulator-demodulator 754 and the first coil 752, and to amplify a data signal received by the second coil 762 and sent to the electronic device 720, a second amplifier 765 is disposed in signal communication with the second modulator-demodulator 764 and the second coil 762.
With reference now to
While embodiments of the invention have been described and illustrated herein having an inductive connector 730 disposed at a hinge 800 of a removable panel 710, it will be appreciated that the scope of the invention is not so limited, as the connector 730 may be disposed at any location suitable for a purpose disclosed herein, such as at a latch or locking mechanism that holds the movable/removable panel to the vehicle, or at a location other than a hinge or latch.
While certain embodiments have been described and depicted having a particular electronic device 120, 440, 720, for example, it will be appreciated that the scope of the invention is not so limited and encompasses any type of electronic device that falls within the scope of the appended claims, such as but not limited to Lidar, Radar, Ultrasonic, Laser, Smart sensor, Smart actuator, Night Vision Camera, or WiFi hotspot, for example.
In view of the foregoing, some embodiments disclosed herein may have the advantage of providing inductive power, on the order of 10-150 Watts for example, and inductive high speed data communication, on the order of RS232/485 230 kbps and Ethernet 80 Mbps for example, to an electronic device disposed in a removable panel pivotally attached to a vehicle, thereby enabling ease of removal and replacement of the panel without the need to couple and uncouple electrical wires from a wiring harness.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the application.
This application is a continuation-in-part application of U.S. application Ser. No. 13/686,764 filed Nov. 27, 2012, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2944145 | Legge | Jul 1960 | A |
2976495 | Unger | Mar 1961 | A |
4063517 | Nardozzi, Jr. | Dec 1977 | A |
4630043 | Haubner et al. | Dec 1986 | A |
6222443 | Beeson | Apr 2001 | B1 |
7543842 | Fiorini | Jun 2009 | B1 |
7769346 | Van Order | Aug 2010 | B1 |
7901215 | Galgoci | Mar 2011 | B1 |
20020056233 | Gohara | May 2002 | A1 |
20020117368 | Ogasawara | Aug 2002 | A1 |
20020117897 | Takahashi | Aug 2002 | A1 |
20020182898 | Takahashi et al. | Dec 2002 | A1 |
20040005809 | Suzuki | Jan 2004 | A1 |
20040134128 | Berry et al. | Jul 2004 | A1 |
20040262938 | Bruford | Dec 2004 | A1 |
20050115151 | Gevay | Jun 2005 | A1 |
20050280274 | Devitt | Dec 2005 | A1 |
20070102999 | Darraba | May 2007 | A1 |
20070210614 | Chandler | Sep 2007 | A1 |
20080272649 | Order | Nov 2008 | A1 |
20100320808 | Marx et al. | Dec 2010 | A1 |
20110140479 | Okada et al. | Jun 2011 | A1 |
20120032632 | Soar | Feb 2012 | A1 |
20130107045 | Soderlind | May 2013 | A1 |
20130278053 | Bauer | Oct 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20150298629 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13686764 | Nov 2012 | US |
Child | 14789225 | US |