The present invention relates to the field of wireless communications, and, more particularly, to inductors and related methods.
Inductors are a fundamental electromagnetic component used in to a wide variety of devices, such as actuators, relays, motors, DC-to-DC converters and radio frequency (RF) circuits. Inductors having large inductances typically include wires wrapped around a bulk dielectric or ferrimagnetic core, and are used in power converters and relays. Radio frequency inductors having small inductances typically are helical coils having an air or ferrite core, and are used in RF circuits and communications equipment.
Inductors for the microwave region can become too small to fabricate and suffer low efficiency and Q values. Conventional RF inductor techniques are often abandoned as a result. For instance, the ferrite core, or tunable coil slug, is unusable above VHF due to eddy current losses in the ferrite. Even printed spiral inductors have limited usefulness at microwave frequencies, as magnetic field circulation through silicon substrates results in eddy-current loss, and a higher than normal parasitic capacitance.
Radio frequency (RF) magnetic materials must be nonconductive or nearly so, for the magnetic fields to penetrate. For instance, inductance drops if a solid core of pure iron or steel is placed inside a RF inductor. Yet, if the same material is finely divided into insulated particles then the inductance increases. This is the basis of pentacarbonyl iron or “powdered iron” inductor cores, in which the powder grains may have insulative coatings, and grains size not much larger than the conductor RF skin depth. Nonconductive, highly magnetic atoms are unknown at room temperature and atmospheric pressure.
RF magnetic materials may occur naturally only as lodestone or magnetite. Magnetic permeability is a phenomenon that happens inside atoms, by atomic spin while dielectric permittivity happens between atoms as the dipole moment of polar molecules. With about 100 types of atoms, the options for new magnetic materials are more limited than for dielectrics, as new types of molecules may be created more readily than new types of atoms. Magnetic effects occur inside atoms as spin physics while dielectric effects occur between atoms as dipole moment. Ferrimagnetic materials are ferrites and garnets, materials having high bulk resistivities (107 Ωm) and are usable at RF and microwave frequencies. Ferromagnetic materials are generally metallic, conductive, and unsuitable for RF applications.
The first synthetic RF ferrites have been attributed to J. L. Snoek of the Phillips Research Laboratories in the Netherlands. Magnetic materials were strategic in World War II, with German developments including isoimpedance magnetodielectrics ((μ=∈)>>1)) (“Schornsteinteger” (Chimney Sweep), H. A. Schade, U.S. Naval Technical Mission To Europe, Tech Rep. 90-45 AD-47746, May 1945).
Nickel zinc ferrite cores typically offer high efficiency for a relatively small inductor. However, nickel zinc ferrite is not a perfect insulator. Eddy currents may form due to partial conductivity and resistance losses are exhibited as heat.
U.S. Pat. No. 5,450,052 to Goldberg, et al. is entitled “Magnetically variable inductor for high power audio and radio frequency applications”. The patent discloses a magnetically variable inductor for high power, high frequency applications which includes a solenoid with a magnetic core therein, disposed coaxially around a conductor for carrying the high power, high frequency signal, and a variable current source coupled with the solenoid so that a manipulation of the current through the solenoid results in a variable inductance for the conductor.
There exists a need for an inductor with lower losses, higher Q and efficiency. With radio communications moving to higher and higher frequencies, the need is becoming ever more acute. A typical RF communication device, such as a cellular telephone may use more than 20 inductors.
In view of the foregoing background, it is therefore an object of the present invention to provide an RF inductor with an increased Q and efficiency.
This and other objects, features, and advantages in accordance with the present invention are provided by a radio frequency (RF) inductor including a core being electrically non-conductive and ferrimagnetic, and having a toroidal shape defining an interior, and a wire coil surrounding at least a portion of the core. At least one permanent magnet body is at a fixed position within the interior of the core, and an electrically conductive RF shielding layer is on the at least one permanent magnet body.
The core may be ferrite or nickel zinc ferrite. The electrically conductive RF shielding layer may be an electrically conductive plating layer surrounding the permanent magnet body or a metal foil surrounding the permanent magnet body, for example. The permanent magnet may define a magnetic axis intersecting the core at first and second opposing locations thereof. The permanent magnet may comprise a cylindrical permanent magnet or a plurality of button-style magnets arranged in stacked relation, for example.
A method aspect is directed to making a radio frequency (RF) inductor including providing a core being electrically non-conductive and ferrimagnetic, and having a toroidal shape defining an interior, and positioning a wire coil surrounding at least a portion of the core. The method includes positioning at least one permanent magnet body at a fixed position within the interior of the core, and providing an electrically conductive RF shielding layer on the at least one permanent magnet body.
Thus, a magnetic field from a permanent magnet is applied to the inductor core, e.g. a ferrite core, to reduce losses, and the permanent magnet is enclosed with a conductive shield to keep RF fields out. The relatively small inductor has increased Q and efficiency and may be applicable to RF communication circuits, for example, as an antenna coupler.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout, and prime notation is used to indicate similar elements in alternative embodiments.
Referring initially to
Although permanent magnet body 18 may be retained by magnetic attraction to core 12, other ways of fixing the position of the permanent magnet body within the interior core area also contemplated as would be appreciated by this in the art. For instance, the core 12 and the permanent magnet body 18 may be secured to a substrate, such as a printed circuit board (PCB) by adhesives or a plastic clip.
The electrically conductive RF shielding layer 20, as illustratively shown in cross-section in
Thus the present invention includes separate magnetic circuits or paths for magnetic fields: one for “DC” (steady state) H fields and another for RF H fields. RF skin effect is used to provide a low pass magnetic circuit in the permanent magnet body 18, as RF magnetic fields will not significantly penetrate conductive materials while DC fields will. Thus, permanent magnet 18 does not act as a shunt to the RF magnetic fields present around the toroidal magnetic circuit provided by core 12. Conversely, core 12 readily conveys the steady DC magnetic fields of permanent magnet body 18, and the DC field splits into to separate paths around core 12; one clockwise and the other counterclockwise.
The enhancement of performance afforded by the present invention will of course vary depending on the specific ferrimagnetic inductor design to which the permanent magnet body 18 is applied. The exemplar used a relatively large core with a small number of turns prior to the introduction of the magnet, the larger core being preferential for power handling. In both cases the capacitor was of the silvered mica type, with negligible losses, so that the filter Q was approximately that of the inductor Q.
Core permeability μ may be calculated from a common relation between the number of inductor turns N to permeability μ as follows:
L=kμN2[js1]
Where k is an inductance index for a given core, often determined empirically. Such that for constant inductance,
μ=kL/N2
A theory of operation for the present invention will now be described. In ferrimagnetic core radio frequency (RF) inductors, total losses are dominated by core losses rather than copper conductor losses in the windings. This is especially the case at higher RF frequencies such as HF and VHF, to which the present invention is most directed Because of this, an improvement in Q and efficiency can be obtained by reducing core permeability and adding additional turns as needed to maintain the specified inductance. In the present invention core permeability is reduced by introducing a quiescent magnetic field from a permanent magnet, which captures and constrains the magnetic spins in the core material. Thus, overall losses are reduced by reducing core permeability and increasing turns which the permanent magnet allows. Inductor core losses are themselves due to eddy currents and hysteresis, which the permanent magnet bias does not increase, as core losses are due to alternating flux density rather than quiescent flux density.
The introduction of strong, permanent magnets into the ferrite toroidal core inductors tested typically reduced the inductors inductance by a factor of about 5 to 10. To compensate and obtain the same inductance with the magnet introduced the numbers of turns N on the inductor core are increased, as will be familiar to those in the art. The resulting permanent magnetic field biased inductors then had the same inductance as the unbiased inductor but lower losses and higher Q value.
Communications channel linearity (freedom from intermodulation products or spurious signals) is a design consideration inherent in circuits using ferrite core inductors. In the present invention, efficiency and linearity may trade in a complex relationship: for small permanent magnetic bias linearity may actually be improved, especially for flux density remote from saturation. Conversely, linearity may be reduced near saturation. As background, linearity relates to magnetic domain grouping or Barkhausen Effect, caused by rapid changes in size of magnetic domains (similarly magnetically oriented atoms in ferrimagnetic materials). In general, the inductor core materials include powdered, pentacarbonyl iron type cores which offer greater linearity but are less DC biasable, and ferrites which may be less linear but more easily DC biased for efficiency enhancement. Powdered iron cores generally saturate less easily then do ferrites.
A method aspect is directed to making a radio frequency (RF) inductor 10, 10′ including providing a core 12, 12′ being electrically non-conductive and ferrimagnetic, and having a toroidal shape defining an interior 14, 14′, and positioning a wire coil 16, 16′ surrounding at least a portion of the core. The method includes positioning at least one permanent magnet body 18, 18′ at a fixed position within the interior 14, 14′ of the core 12, 12′, and providing an electrically conductive RF shielding layer 20, 20′ on the at least one permanent magnet body.
Accordingly, in the inductive device 10, 10′ a quiescent (DC) magnetic field from a permanent magnet 18, 18′ is applied to the core, e.g. a ferrite core, to reduce losses, and the permanent magnet is enclosed with a conductive shield 20, 20′, e.g. plated or wrapped in metal foil, to keep RF magnetic fields out. The permanent magnet location is inside the ferrite toroid inductor core, e.g. as a Greek φ configuration. The relatively small inductor 10, 10′ has increased Q and efficiency and may be applicable to RF communication circuits, for example, as an antenna coupler. Higher efficiency ferrite or powdered iron core RF inductors may be accomplished at higher frequencies through the present invention.
Many modifications and other embodiments of the invention will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is understood that the invention is not to be limited to the specific embodiments disclosed, and that modifications and embodiments are intended to be included within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2915637 | McAdam | Dec 1959 | A |
3178946 | Talbot | Apr 1965 | A |
3946340 | Simon | Mar 1976 | A |
4627292 | Dekrone | Dec 1986 | A |
4723188 | McMurray | Feb 1988 | A |
6114940 | Kakinuma et al. | Sep 2000 | A |
20060163971 | Gunderson | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
63260114 | Oct 1988 | JP |
9308150 | Nov 1997 | JP |
2005210783 | Aug 2005 | JP |
2007531818 | Oct 2005 | JP |
2005317623 | Nov 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20090146772 A1 | Jun 2009 | US |