This invention generally relates to a fuel injector for a combustion engine. More particularly, this invention relates to a fuel injector that heats fuel to aid the combustion process.
Combustion engine suppliers continually strive to improve emission and combustion performance. One method of improving both emission and combustion performance includes heating or vaporizing fuel before injection into the combustion chamber. Heating the fuel replicates operation of a hot engine, and therefore improves combustion performance. Further, alternate fuels such as ethanol perform poorly in cold conditions, and therefore also benefit from pre-heating of fuel.
Various methods of heating fuel at a fuel injector have been attempted. Such methods include the use of a ceramic heater, or a resistively heated capillary tube within which the fuel passes. These methods require electric power and therefore leads that extend through pressure barriers and walls. Seals required between the wires and pressure barriers are a potential source of fuel leakage and are therefore undesirable. Further, such heat generating devices must be insulated from other fuel injector components and therefore are difficult to implement and support within a fuel injector.
One consideration for all automotive components is the number of connections to any electronic or electromechanical device. The more terminals and wired connections the more support connections to electronic control units and other control devices. Each additional terminal adds cost in materials and assembly time.
Accordingly, it is desirable to design and develop a method of heating fuel without creating additional fuel leak paths, or insulating structures while minimizing the number of electrical connections and still providing for the heating and vaporization of fuel.
An example fuel injector assembly includes a first coil driven by a DC current driver and a second coil driven by an AC driver where both the first coil and the second coil share a common connection to reduce the number of external terminal connections.
The example fuel injector includes the first coil that receives the first signal from the DC driver to generate a first magnetic field that moves an armature between the open and closed positions. The second coil generates a second magnetic field that is utilized to heat a component in thermal contact with the fuel flow that in turn heats fuel before exiting the fuel injector. The heated fuel is raised to a temperature that substantially vaporizes the liquid fuel to achieve a high level of atomization that in turn improves combustion performance.
The example fuel injector assembly includes three terminals, one to the DC driver, one to the AC driver, and one to a common voltage buss. Therefore voltage is always supplied to the first coil and the second coil and switching is performed by controlling the connection to ground. A high pass filter is disposed within the fuel injector assembly to prevent the AC signal from interfering with the DC signal within the first coil.
Accordingly, the example fuel injector assembly requires only three terminals or external connections for operation.
These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
Referring to
The component in thermal contact with the fuel flow 18 in this example is an armature tube 22 of the armature 26. The armature tube 22 is disposed within the fuel flow 18. The armature tube 22 is fabricated from a magnetically active material that responds to a magnetic field. The second coil 16 generates a second magnetic field surrounding and interacting with the armature tube 22. The second magnetic field is generated by an alternating current provided by an alternating (AC) driver 15. The alternating current from the AC driver 15 produces a time varying second magnetic field in the second coil 16.
The frequency of the alternating current that generates the second magnetic field is such that movement of the armature 26 is not induced. No movement of the armature 26 is induced because the frequency of the alternating current results in a time varying and reversing second magnetic field. Heat inside the armature tube 22 is generated by hysteretic and eddy-current loses that are induced by the time varying second magnetic field. The amount of heat generated is responsive to the specific resistivity of the material of the armature tube 22 and the characteristics of the alternating current signal. The time varying second magnetic field produces a flux flow in the surface of the material that alternates direction to generate heat. The higher the resistivity of the material the better the generation of heat responsive to the second magnetic field.
The connector 40 includes connections to DC driver 12, the AC driver 15 and to a positive voltage buss 48. It is desirable in many applications to reduce the number of terminals to an electronic device in order to reduce overall system complexity and cost. In the example fuel injector assembly 10, the connector 40 includes three terminals, one to the DC driver 12, one to the AC driver, and one to the common voltage bus 48. The high side connection 46 is common between the first coil 14 and the second coil 16. A high pass filter 28 is disposed within the fuel injector assembly 10 to prevent the alternating current signal from interfering with the direct current signal within the first coil 14.
Referring to
Because the first and second coils 14, 16 are connected to the common voltage bus 48, a signal separator is provided to prevent the alternating current 32 from interfering with operation of the first coil 14 and operation of the armature 26. The example single separator comprises a high pass filter 28 that prevents alternating current from entering the first coil 14. The example single separator comprises a capacitor 28. As appreciated, other devices and circuit configurations that perform the function of preventing interference of the first coil could also be used and are within the contemplation of this invention.
Referring to
Accordingly, the example fuel injector assembly requires only three terminals or external connections for operation. The separate AC driver 15 and DC driver 12 share either a common ground 34, or a common connection to a voltage buss 48 to eliminate separate connections to each of the driven coils.
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
The application claims priority to U.S. Provisional Application No. 60/784,697 which was filed on Mar. 22, 2006.
Number | Name | Date | Kind |
---|---|---|---|
3601110 | Kamazuka | Aug 1971 | A |
3839906 | Hanson | Oct 1974 | A |
4870943 | Bradley | Oct 1989 | A |
4934907 | Kroner | Jun 1990 | A |
5040497 | Dingle | Aug 1991 | A |
5159915 | Saito et al. | Nov 1992 | A |
5201341 | Saito et al. | Apr 1993 | A |
5487114 | Dinh | Jan 1996 | A |
5666929 | Knowlton et al. | Sep 1997 | A |
5758826 | Nines | Jun 1998 | A |
5787857 | Simons | Aug 1998 | A |
5915626 | Awarzamani et al. | Jun 1999 | A |
6109543 | Bright et al. | Aug 2000 | A |
6315217 | Park | Nov 2001 | B1 |
6422481 | Ren et al. | Jul 2002 | B2 |
6550458 | Yamakado et al. | Apr 2003 | B2 |
6561168 | Hokao et al. | May 2003 | B2 |
6578775 | Hokao | Jun 2003 | B2 |
6651602 | Hiraku et al. | Nov 2003 | B2 |
6721158 | Heinke | Apr 2004 | B2 |
6728602 | Husted et al. | Apr 2004 | B2 |
7481376 | Hornby et al. | Jan 2009 | B2 |
20020139872 | Hokao | Oct 2002 | A1 |
20030178009 | Pellizzari et al. | Sep 2003 | A1 |
20050258266 | Elia et al. | Nov 2005 | A1 |
20050279867 | Ismailov | Dec 2005 | A1 |
20070200006 | Czimmek | Aug 2007 | A1 |
20070221748 | Hornby et al. | Sep 2007 | A1 |
20070221874 | Hornby et al. | Sep 2007 | A1 |
20070235086 | Hornby et al. | Oct 2007 | A1 |
20070235557 | Hornby et al. | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
4431189 | Mar 1996 | DE |
4431189 | Mar 1996 | DE |
10057630 | May 2002 | DE |
2307513 | May 1997 | GB |
2307513 | May 1997 | GB |
05288131 | Nov 1993 | JP |
09264224 | Oct 1997 | JP |
10238424 | Sep 1998 | JP |
10238424 | Sep 1998 | JP |
2002180919 | Jun 2002 | JP |
0166933 | Sep 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20070221761 A1 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
60784697 | Mar 2006 | US |