The present disclosure relates to inductive heating, and more particularly, an inductive heater humidifier.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Induction heating such as eddy current heating refers to the process of heating an electrically conductive material such as a metal, metal compound, or metal alloy by inducing circulating currents therein from a proximate alternating magnetic field. Hysteretic heating is another form of induction heating that results from alternating the magnetic domains in a strong magnetically susceptible material such as iron, nickel, cobalt, and alloys thereof, as well as compounds containing their oxides also by proximity to an alternating magnetic field. When the magnetic susceptibility of an electrically conductive material is small, heating is primarily generated by eddy currents, and the magnetic flux path is usually not significantly altered by the conductive material. When the magnetic susceptibility of an electrically resistive compound is large, heating is primarily hysteretic, and stray magnetic fields may be reduced by a low reluctance path that can channel a significant portion of the magnetic flux through the magnetic material. For ferromagnetic materials that exhibit both high electrical conductivity and strong magnetic susceptibility, both eddy current and hysteretic heating occur together.
When done properly, a hysteretic heating solution should have less stray magnetic field than a solely eddy-current solution because the magnetic flux flowing through a ferromagnetic material with high magnetic permeability such as iron will tend to travel through the low reluctance path provided by the magnetic material as long as the flux it contains is well within the saturation limits of the material so that it remains highly permeable.
An induction heater generally consists of an electromagnet, through which a high-frequency alternating current (AC) is passed. Induction heaters may be used in numerous applications such as forming, annealing, and welding metals. Induction heating systems have also been employed for heating water to produce steam for humidification purposes. Such humidifying systems, however, generally include many intervening thermal layers that impede the transfer of heat from the heater to the body of water or large masses with relatively small surface area. Consequently, these systems may operate with drawbacks to conventional heaters in that they take longer to heat their intended target or are unable to transfer as much heat to the target, thereby increasing heating costs and reducing the potential efficiency of the solution.
The present disclosure generally comprises an inductive heater humidifier. According to one aspect, the humidifier includes a topless ferrite base including a peripheral sidewall and a central core, wherein a cavity is disposed between the peripheral sidewall and the central. The ferrite base is formed of a ferrous oxide having a transition metal element. Magnetic coil within the coil is wound around the central core to form an induction coil for generating heat. The humidifier further includes a non-metallic cover plate disposed on top of the ferrite base. A reservoir for storing fluid is provided and includes a ferromagnetic base plate disposed on top of the cover plate. In operation, the induction coil is energized to produce and target eddy currents in the ferromagnetic base that generate heat, wherein the heat is convectively transferred to the reservoir via the base plate to heat the fluid.
According to another aspect, an inductive heater is provided that comprises a ferrite base defining a peripheral sidewall, a central core, and a cavity disposed between the peripheral sidewall and the central core. The ferrite base includes a ferrous oxide having a transition metal element. Magnetic wire is disposed within the cavity and wound around the central core to form an induction coil. The heater further comprises a non-metallic cover plate that rests on top of the ferrite base. In operation, the induction coil is energized to produce and target eddy currents and alternating magnetic polarizations in the ferromagnetic base that generate heat, wherein the heat is convectively transferred to a target through the cover plate.
According to yet another aspect, an inductive heater is provided that comprises a ferrite base formed of a ferrous oxide having a transition metal element. The ferrite base defines a bottom portion, a peripheral sidewall extending from the bottom portion, an exposed upper portion, a central core, and a cavity disposed between the peripheral sidewall and the central core. Magnetic wire is disposed within the cavity and wound around the central core to form an induction coil. In operation, the induction coil is energized to produce eddy currents and alternating magnetic polarizations that generate heat, wherein the heat is convectively transferred to a target through the exposed upper portion.
According to still yet another aspect, a method of operating an induction heater humidifier is provided. The method includes energizing an induction coil disposed within a ferrite base, and directing heat generated from the induction coil to a reservoir base. The method further includes restricting the operating temperature of the induction heater humidifier to below a ferromagnetic curie point of the reservoir base in order to oscillate magnetic domains within the bottom plate to generate additional heat.
Further aspects of the present disclosure will be in part apparent and in part pointed out below. It should be understood that various aspects of the disclosure may be implemented individually or in combination with one another. It should also be understood that the detailed description and drawings, while indicating certain exemplary forms of the present disclosure, are intended for purposes of illustration only and should not be construed as limiting the scope of the disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
It should be understood that throughout the drawings corresponding reference numerals indicate like or corresponding parts and features.
The following description is merely exemplary in nature and is not intended to limit the present disclosure or the disclosure's applications or uses.
Referring to
The ferrite base 18 is composed of a material exhibiting hysteretic low energy losses at high frequencies. According to one aspect, the ferrite base 18 is composed of a sintered powdered ferrite. Preferably, the ferrite base 18 is composed of a material having high magnetic permeability to provide a path of least resistance for a magnetic flux. The ferrite base 18 may be composed of an electrically non-conductive material, or a material having low electrical conductivity such that eddy currents are sufficiently minimized. To illustrate, the ferrite base 18 should include a material having a magnetization that can easily reverse direction without dissipating much energy (hysteresis losses), and having a high resistivity to prevent eddy currents in the core. Furthermore, the ferrite base 18 may include a ferrous oxide having a transition metal such as, but not limited to, iron, nickel, manganese, or zinc. For instance, the ferrite base 18 may include a ferrite such as manganese-zinc (MnZn), which exhibits magnetic permeability at about 100°-150° Celsius at frequencies above about 20-100 kHz. The ferrite base 18 may also include a ferrite such as nickel-zinc (NiZn).
Referring now to
As shown in
Referring now to
Additionally, the electrical circuit 30 includes a switching circuit including at least one switching element such as transistors T1 and T2. The transistors T1 and T2 may be metal-oxide-semiconductor field-effect transistors (MOSFETs), insulated gate bipolar transistors (IGBTs), or any other suitable semiconductor switching elements known to those of skill in the art. The transistors T1 and T2 are connected in series with the induction coil 26 and the DC power supply 32, and may be driven by any suitable control circuit 38.
According to an alternative form of the present disclosure, the electrical circuit 30 further includes a power factor correction (PFC) circuit 40, as shown in
Referring now to
It is to be understood that the electrical circuit 30 and control circuit 38 described above and shown in
In operation, AC current received from the power source 32 is converted to DC using the rectifier 34. Of course, if the electrical circuit 30 includes a PFC circuit 40, then the AC current is filtered prior to being passed to through the rectifier 34. Otherwise, the DC current is filtered with at least one capacitor (e.g., C1-C4), inductor L1, and/or transformer M1, and eventually communicated to the switching circuit (T1 and T2 or RL1 and RL2) to be administered to the induction coil 26. Preferably, the current is supplied at a frequency outside the audible range of humans. Moreover, the input voltage of the power source 32 should be converted to a frequency tuned to the bottom plate 14 of the reservoir 12.
Once energized, the induction coil 26 generates eddy currents and alternating magnetic polarizations, which in turn, produce heat. More specifically, when the induction coil 26 is energized, magnetic flux circulates primarily in a path constrained by the ferrite central core 20 and the ferromagnetic bottom plate 14 above it, which is also magnetically permeable. Flux circulating through the bottom plate 14 produces heat because unlike the central core 20, the bottom plate 14 is composed of a material having high-loss properties. Since the bottom plate 14 is integral to the reservoir 12, it remains relatively cool while heat generated from eddy currents and hysteresis is efficiently transferred to the fluid within the reservoir 12 via convection. In addition, the exterior of the reservoir 12, including all surrounding structures, remain cool since they are not electrically conductive.
Although some flux may escape, the magnetic flux remains primarily in the ferromagnetic components (e.g., the ferrite base 18 and bottom plate 14) since the magnetic permeability of the ferrite base 18, the central core 20, and the ferromagnetic bottom plate 14 are much greater than any nearby materials. In addition, since the ferrite base 18 is composed of a magnetically permeable material, a path of least resistance is provided for the magnetic flux. As best shown in
As understood by those of skill in the art, efficient operation of the humidifier 10 is ensured by maximizing hysteretic and eddy current losses, while also minimizing stray magnetic fields and maintaining a cool central core 20. Furthermore, operation of the humidifier 10 should be restricted to temperatures below the ferromagnetic curie point of the bottom plate 14 of the reservoir so that magnetic domains within the bottom plate 14 are oscillated as well to produce additional heat.
According to another form of the present invention, a method of operating an induction heater humidifier 10 is provided. The method comprises energizing an induction coil 26 disposed within a ferrite base 18. As discussed above, the induction coil 26 may be energized using an electrical circuit 30 having a half-bridge rectifier 34 driven by a high frequency oscillator 38. Once energized, the induction coil 26 produces eddy currents and alternating magnetic polarizations. The method further includes directing the heat generated from the induction coil 26 to a reservoir base, such as the ferromagnetic bottom plate 14. Finally, the method includes restricting the operating temperature of the induction heater humidifier 10 to below a ferromagnetic curie point of the reservoir base in order to oscillate magnetic domains within the bottom plate 14 to generate additional heat.
As will be appreciated by those of skill in the art, the present disclosure provides an induction heater humidifier capable of rapid heating and transferring considerable power to a target to be heated without generating excessive temperature in the exciter. By converting electrical power to heat a target (as opposed to a source), less energy may be consumed and heat losses may be minimized. Moreover, since the humidifier employs high frequency induction to transfer heat directly to a water reservoir, numerous thermal barriers that normally exist between self-contained heathers and the targeted objects may be eliminated. As such, the present disclosure helps achieve greater efficiency while reducing overall costs.
While the present disclosure has been discussed above with particular attention to an induction heater humidifier, it is to be understood that the teachings disclosed herein, including its various forms, is not limited to such an application and can be employed in any application to which a target is to be heated, and thus the application to induction heater humidifiers should not be construed as limiting the scope of the present disclosure.
When describing elements or features and/or forms of the present disclosure, the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements or features. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements or features beyond those specifically described.
Those skilled in the art will recognize that various changes can be made to the exemplary forms and implementations described above without departing from the scope of the disclosure. Accordingly, all matter contained in the above description or shown in the accompanying drawings should be interpreted as illustrative and not in a limiting sense.
It is further to be understood that the processes or steps described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated. It is also to be understood that each process or step can be repeated more than once and that additional or alternative processes or steps may be employed and still be within the scope of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
4371768 | Pozna | Feb 1983 | A |
4792652 | Seguy et al. | Dec 1988 | A |
5053593 | Iguchi | Oct 1991 | A |
5222185 | McCord, Jr. | Jun 1993 | A |
5286942 | McFadden et al. | Feb 1994 | A |
5450305 | Boys et al. | Sep 1995 | A |
5525782 | Yoneno et al. | Jun 1996 | A |
5801359 | Mano et al. | Sep 1998 | A |
6008482 | Takahashi et al. | Dec 1999 | A |
6040564 | Ueda et al. | Mar 2000 | A |
6084225 | Schmitt | Jul 2000 | A |
6320169 | Clothier | Nov 2001 | B1 |
6335517 | Chauviaux | Jan 2002 | B1 |
6668151 | Uehara et al. | Dec 2003 | B2 |
6681998 | Sharpe et al. | Jan 2004 | B2 |
6770857 | Hiruta et al. | Aug 2004 | B2 |
6844533 | Chuang | Jan 2005 | B1 |
20030020586 | Uehara et al. | Jan 2003 | A1 |
20030230567 | Centanni et al. | Dec 2003 | A1 |
20040037597 | Haseba et al. | Feb 2004 | A1 |
20070108201 | Vinegar et al. | May 2007 | A1 |
20080217321 | Vinegar et al. | Sep 2008 | A1 |
20100147299 | Row et al. | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
1055884 | May 2000 | EP |
1978786 | Oct 2008 | EP |
7318119 | Dec 1995 | JP |
2000-346409 | Dec 2000 | JP |
2001161564 | Jun 2001 | JP |
2001174009 | Jun 2001 | JP |
2009079887 | Apr 2009 | JP |
9613138 | May 1996 | WO |
2007101298 | Sep 2007 | WO |
2008054070 | May 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20110297668 A1 | Dec 2011 | US |