In accordance with one embodiment of the invention, an inductive cartridge heater is provided within a bore of a solid article. The heater assembly includes a coil inductively coupled to a portion of the article adjacent the bore, whereby the article is inductively heated. This internal inductive heating assembly can be used where there is an air gap between the apparatus and the bore of the article in a range of 1/1000 to 30/1000 inches, in other words without the required close tolerance and intimate contact required in the prior art systems.
The assembly 10 has a generally elongated cylindrical profile adapted to be disposed within the bore 12. The assembly includes coaxial power leads 28, 30, protruding from one end of the assembly, which supply a signal to coil 16 for generating the magnetic flux.
As previously discussed, an air gap may be provided between the outside surface of the induction heating assembly and the internal surface of the article bore. Preferably, the gap is sized to provide thermal communication between the outer assembly surface and the internal bore surface in order to transfer parasitic heat generated in the coil to the article. Parasitic heat is heat generated in the coil, which reduces the inductive power delivery. Generally, in an inductive heating apparatus it is desirable that at least 85% of the power be utilized inductively with only a 15% parasitic power loss, and more preferably, when a flux concentrator is used, it is desirable that the parasitic power loss be no greater than 5%. The 5% power loss is based on the power supplied to the coil.
The maximum allowable air gap, preferably in the range of 1/1,000 to 30/1,000 inches, and more preferably 2/1,000 to 20/1,000 inches, is dependent upon the power density and operating temperature, as well as the coil material. For example, with a high power density of 300 W/cm2, a high coil temperature of 600° C., and with relatively good coupling (e.g., ratio of parasitic power: total power=10%) and a nickel coil, the gap is preferably on the low end of the 1/1,000- 30/1,000 range, e.g., 5/1,000 or less. On the contrary, if the application is for a low power density such as 30 W/cm2, at a mid-level temperature of 300° C., with good coupling and a copper coil, the allowable gap may be from 2/1,000 to 20/1,000 inches. Each of these gap ranges may provide sufficient thermal communication from the coil to the article to maintain the coil temperature below its maximum rated temperature, in a given application.
In one embodiment, the method may include providing an electrically non-conductive flowable material (e.g., a polymer melt) between the heating assembly and the bore. This flowable material does not substantially interfere with the coupling of the coil and outer element, and the flowable material may be heated by transmission of heat from the outer element and/or the coil. The flowable material may be considered an extension of the dielectric layer, in terms of its effect on thermal conductivity.
In another embodiment, a stationary film material is provided in the gap between the heating assembly and the bore, again a thermally conductive and non-electrically conductive material. Suitable materials include aluminum nitride and magnesium oxide powder.
The high permeability flux concentrator 50 enhances the magnetic field by forming a closed magnetic loop with the adjacent article portion 56, thus increasing the magnetic coupling between the coil 46 and article portion 56. The flux concentrator preferably has an open current loop (e.g., slotted as shown) to reduce the eddy currents (and thus heat) generated in the flux concentrator.
The heater assembly according to the present invention is not limited to specific materials, shapes or configurations of the components thereof. A particular application or environment will determine which materials, shapes and configurations are suitable.
For example, the inductor coil may be one or more of nickel, silver, copper and nickel/copper alloys. A nickel (or high percentage nickel alloy) coil is suitable for higher temperature applications (e.g., 500 to 1,000° C.). A copper (or high percentage copper alloy) coil may be sufficient for lower temperature applications (e.g., <500° C.). The coil may be stainless steel or Inconel (a nickel alloy). In the various embodiments described herein, water cooling of the coil is not required or desirable.
The power leads supplying the inductor coil may comprise an outer cylindrical supply lead and an inner return lead concentric with the outer cylindrical supply lead. The leads may be copper, nickel, Litz wire or other suitable materials.
The dielectric insulation surrounding the inductor coil may be a ceramic such as one or more of magnesium oxide, alumina, and mica. The dielectric may be provided as a powder, sheet or a cast body surrounding the coil.
The coil may be cast on a ceramic dielectric core, and a cast and/or packed ceramic provided as a dielectric layer over the coil.
The solid article to be heated may be made from a ferromagnetic metal, such as a 400 series steel or a tool steel.
The flux concentrator may be provided as a tubular element disposed between the coil and the return lead. The flux concentrator may be a solid, laminated and/or slotted element. For low temperature applications, it may be made of a non-electrically conductive ferromagnetic material, such as ferrite. For higher temperature applications it may comprise a soft magnetic alloy (e.g., cobalt).
The coil geometry may take any of various configurations, such as serpentine or helical. The coil cross-section may be flat, round, rectangular or half round. As used herein, coil is not limited to a particular geometry or configuration; a helical wound coil of flat cross section as shown is only one example.
As used herein, heating includes adjusting, controlling and/or maintaining the temperature of a solid article.
Again, the specific materials, sizes, shapes and configurations of the various components will be selected depending upon the particular material to be heated, the cycle time, and other process parameters.
In various applications of the described inductive heating method and apparatus, it may generally be desirable that the various components have the following properties:
In one application, the bore is provided in an injection molding system, and more particularly in the gate area of an injection nozzle. The bore may be provided in a gate insert of the nozzle. The gate insert may include an active cooling line.
In various applications, it may be desirable to supply a signal to the coil comprising current pulses having a desired amount of pulse energy in high frequency harmonics for inductive heating of the sheath, as described in Kagan U.S. Pat. Nos. 7,034,263 and 7,034,264, and in Kagan U.S. Patent Application Publication No. 2006/0076338 A1, published Apr. 13, 2006 (U.S. Ser. No. 11/264,780, entitled Method and Apparatus for Providing Harmonic Inductive Power). The current pulses are generally characterized as discrete narrow width pulses, separated by relatively long delays, wherein the pulses contain one or more steeply varying portions (large first derivatives) which provide harmonics of a fundamental (or root) frequency of the current in the coil. Preferably, each pulse comprises as least one steeply varying portion for delivering at least 50% of the pulse energy in the load circuit in high frequency harmonics. For example, the at least one steeply varying portion may have a maximum rate of change of at least five times greater than the maximum rate of change of a sinusoidal signal of the same fundamental frequency and RMS current amplitude. More preferably, each current pulse contains at least two complete oscillation cycles before damping to a level below 10% of an amplitude of a maximum peak in the current pulse. A power supply control apparatus is described in the referenced patents/application which includes a switching device that controls a charging circuit to deliver current pulses in the load circuit so that at least 50% (and more preferably at least 90%) of the energy stored in the charging circuit is delivered to the load circuit. Such current pulses can be used to enhance the rate, intensity and/or power of inductive heating delivered by a heating element and/or enhance the lifetime or reduce the cost in complexity of an inductive heating system. They are particularly useful in driving a relatively highly damped load, e.g., having a damping ratio in the range of 0.01 to 0.2, and more specifically in the range of 0.05 to 0.1, where the damping ratio, denoted by the Greek letter zeta, can be determined by measuring the amplitude of two consecutive current peaks α1, α2 in the following equation:
This damping ratio, which alternatively can be determined by measuring the amplitudes of two consecutive voltage peaks, can be used to select a desired current signal function for a particular load. The subject matter of the referenced Kagan patents/application are hereby incorporated by reference in their entirety.
These and other modifications will be readily apparent to the skilled person as included within the scope of the following claims.