Claims
- 1. An inductive ignition circuit, comprising:a transformer having a primary winding, a feedback winding, and a secondary winding, with said secondary winding having a high voltage output; a drive circuit for said transformer primary winding, said drive circuit having an output coupled to said primary winding and having at least one control input for selectively enabling or disabling operation of said drive circuit, said drive circuit being switchable between a first state in which current flows through said primary winding, and a second state in which substantially no current flows through said primary winding, wherein said drive circuit is operable in said first state in the absence of a disable signal on said control input and is switched into said second state in response to receiving a disable signal on said control input; and a control circuit coupled between said feedback winding and said control input of said drive circuit, said control circuit being operable to temporarily provide a disable signal on said control input following operation of said drive circuit in said first state; wherein said feedback winding has first and second leads with said first lead being connected to said drive circuit to provide positive feedback to said drive circuit and said second lead being connected to said control circuit.
- 2. An inductive ignition circuit, comprising:a transformer having a primary winding, a feedback winding, and a secondary winding, with said secondary winding having a high voltage output; a drive circuit for said transformer primary winding, said drive circuit having an output coupled to said primary winding and having at least one control input for selectively enabling or disabling operation of said drive circuit, said drive circuit being switchable between a first state in which current flows through said primary winding, and a second state in which substantially no current flows through said primary winding, wherein said drive circuit is operable in said first state in the absence of a disable signal on said control input and is switched into said second state in response to receiving a disable signal on said control input; and a control circuit coupled between said feedback winding and said control input of said drive circuit, said control circuit being operable to temporarily provide a disable signal on said control input following operation of said drive circuit in said first state; wherein said control circuit comprises: a first feedback circuit coupled to said control input of said drive circuit, said first feedback circuit being operable to generate a disable signal on said control input during operation of said drive circuit in said first state, whereby said drive circuit switches to said second state following operation of said drive circuit in said first state; and a second feedback circuit coupled between said feedback winding and said control input of said drive circuit, said second feedback circuit being operable in response to flyback energy supplied by said feedback winding to temporarily hold said drive circuit in said second state.
- 3. An ignition circuit as defined in claim 2, wherein said first feedback circuit further comprises a comparator that is connected in circuit to receive as inputs a reference voltage and a voltage indicative of the amount of current flowing through said primary, said first feedback circuit being operable to generate its disable signal in response to the current flowing through said primary winding increasing above a selected amount.
- 4. An ignition circuit as defined in claim 2, wherein said second feedback circuit further comprises a comparator that is connected in circuit to receive as inputs a reference voltage and a feedback signal from said feedback winding, said second feedback circuit being operable to generate its disable signal in response to the flyback energy supplied by said feedback winding.
- 5. An ignition circuit as defined in claim 4, wherein said second feedback circuit includes a timing circuit having a resistor and a capacitor, wherein said second feedback circuit generates its disable signal for a period of time that is dependent upon the values of said resistor and said capacitor.
- 6. An inductive ignition circuit, comprising:a transformer having a primary winding, a feedback winding, and a secondary winding, with said secondary winding having a high voltage output; a drive circuit for said transformer primary winding, said drive circuit having an output coupled to said primary winding and having at least one control input for selectively enabling or disabling operation of said drive circuit, said drive circuit being switchable between a first state in which current flows through said primary winding, and a second state in which substantially no current flows through said primary winding, wherein said drive circuit is operable in said first state in the absence of a disable signal on said control input and is switched into said second state in response to receiving a disable signal on said control input; and a control circuit coupled between said feedback winding and said control input of said drive circuit, said control circuit being operable to temporarily provide a disable signal on said control input following operation of said drive circuit in said first state; wherein said drive circuit is operable to provide spark energy to said secondary winding by flyback of said transformer resulting from switching of said drive circuit from said first state to said second state.
- 7. An ignition circuit as defined in claim 6, wherein said feedback winding has a first end coupled to said drive circuit to provide current to said control circuit during switching of said drive circuit from said second state to said first state, and wherein said feedback winding further includes a second end coupled to said control circuit to provide current to said control circuit during flyback of said transformer.
- 8. An ignition circuit as defined in claim 6, wherein said feedback winding provides flyback energy to said control circuit during flyback of said transformer.
- 9. An ignition circuit as defined in claim 8, wherein said control circuit is operable to store at least some of the flyback energy and to use the stored flyback energy to hold said drive circuit in said second state for a period of time after flyback of said transformer.
- 10. An inductive ignition circuit, comprising:a transformer having a primary winding, a feedback winding, and a secondary winding, with said secondary winding having a high voltage output; a drive circuit for said transformer primary winding, said drive circuit having an output coupled to said primary winding and having at least one control input for selectively enabling or disabling operation of said drive circuit, said drive circuit being switchable between a first state in which current flows through said primary winding, and a second state in which substantially no current flows through said primary winding, wherein said drive circuit is operable in said first state in the absence of a disable signal on said control input and is switched into said second state in response to receiving a disable signal on said control input; and a control circuit coupled between said feedback winding and said control input of said drive circuit, said control circuit being operable to temporarily provide a disable signal on said control input following operation of said drive circuit in said first state; wherein said control circuit includes a component coupled to receive a feedback signal from said feedback winding, said component having a value that determines a spark rate for said ignition circuit using said feedback signal, whereby said control circuit provides closed-loop control of the spark rate.
- 11. A turbine engine, comprising:a micro-turbine engine having an igniter, and an inductive ignition circuit coupled to said igniter to provide spark energy to said igniter for use in igniting fuel within said micro-turbine engine, said inductive ignition circuit comprising: a transformer having a primary winding, a feedback winding, and a secondary winding, with said secondary winding having a high voltage output; a drive circuit for said transformer primary winding, said drive circuit having an output coupled to said primary winding and having at least one control input for selectively enabling or disabling operation of said drive circuit, said drive circuit being switchable between a first state in which current flows through said primary winding, and a second state in which substantially no current flows through said primary winding, wherein said drive circuit is operable in said first state in the absence of a disable signal on said control input and is switched into said second state in response to receiving a disable signal on said control input; and a control circuit coupled between said feedback winding and said control input of said drive circuit, said control circuit being operable to temporarily provide a disable signal on said control input following operation of said drive circuit in said first state; wherein said feedback winding has first and second leads with said first lead being connected to said drive circuit to provide positive feedback to said drive circuit and said second lead being connected to said control circuit.
- 12. A turbine engine, comprising:a micro-turbine engine having an igniter, and an inductive ignition circuit coupled to said igniter to provide spark energy to said igniter for use in igniting fuel within said micro-turbine engine, said inductive ignition circuit comprising: a transformer having a primary winding, a feedback winding, and a secondary winding, with said secondary winding having a high voltage output; a drive circuit for said transformer primary winding, said drive circuit having an output coupled to said primary winding and having at least one control input for selectively enabling or disabling operation of said drive circuit, said drive circuit being switchable between a first state in which current flows through said primary winding, and a second state in which substantially no current flows through said primary winding, wherein said drive circuit is operable in said first state in the absence of a disable signal on said control input and is switched into said second state in response to receiving a disable signal on said control input; and a control circuit coupled between said feedback winding and said control input of said drive circuit, said control circuit being operable to temporarily provide a disable signal on said control input following operation of said drive circuit in said first state; wherein said control circuit comprises: a first feedback circuit coupled to said control input of said drive circuit, said first feedback circuit being operable to generate a disable signal on said control input during operation of said drive circuit in said first state, whereby said drive circuit switches to said second state following operation of said drive circuit in said first state; and a second feedback circuit coupled between said feedback winding and said control input of said drive circuit, said second feedback circuit being operable in response to flyback energy supplied by said feedback winding to temporarily hold said drive circuit in said second state.
- 13. A turbine engine as defined in claim 12, wherein said first feedback circuit further comprises a comparator that is connected in circuit to receive as inputs a reference voltage and a voltage indicative of the amount of current flowing through said primary, said first feedback circuit being operable to generate its disable signal in response to the current flowing through said primary winding increasing above a selected amount.
- 14. A turbine engine as defined in claim 12, wherein said second feedback circuit further comprises a comparator that is connected in circuit to receive as inputs a reference voltage and a feedback signal from said feedback winding, said second feedback circuit being operable to generate its disable signal in response to the flyback energy supplied by said feedback winding.
- 15. A turbine engine as defined in claim 14, wherein said second feedback circuit includes a timing circuit having a resistor and a capacitor, wherein said second feedback circuit generates its disable signal for a period of time that is dependent upon the values of said resistor and said capacitor.
- 16. A turbine engine, comprising:a micro-turbine engine having an igniter, and an inductive ignition circuit coupled to said igniter to provide spark energy to said igniter for use in igniting fuel within said micro-turbine engine, said inductive ignition circuit comprising: a transformer having a primary winding, a feedback winding, and a secondary winding, with said secondary winding having a high voltage output; a drive circuit for said transformer primary winding, said drive circuit having an output coupled to said primary winding and having at least one control input for selectively enabling or disabling operation of said drive circuit, said drive circuit being switchable between a first state in which current flows through said primary winding, and a second state in which substantially no current flows through said primary winding, wherein said drive circuit is operable in said first state in the absence of a disable signal on said control input and is switched into said second state in response to receiving a disable signal on said control input; and a control circuit coupled between said feedback winding and said control input of said drive circuit, said control circuit being operable to temporarily provide a disable signal on said control input following operation of said drive circuit in said first state; wherein said drive circuit is operable to provide spark energy to said secondary winding by flyback of said transformer resulting from switching of said drive circuit from said first state to said second state.
- 17. A turbine engine as defined in claim 16, wherein said feedback winding has a first end coupled to said drive circuit to provide current to said control circuit during switching of said drive circuit from said second state to said first state, and wherein said feedback winding further includes a second end coupled to said control circuit to provide current to said control circuit during flyback of said transformer.
- 18. A turbine engine as defined in claim 16, wherein said feedback winding provides flyback energy to said control circuit during flyback of said transformer.
- 19. A turbine engine as defined in claim 18, wherein said control circuit is operable to store at least some of the flyback energy and to use the stored flyback energy to hold said drive circuit in said second state for a period of time after flyback of said transformer.
- 20. A turbine engine, comprising:a micro-turbine engine having an igniter; an inductive ignition circuit coupled to said igniter to provide spark energy to said igniter for use in igniting fuel within said micro-turbine engine, said inductive ignition circuit comprising: a transformer having a primary winding, a feedback winding, and a secondary winding, with said secondary winding having a high voltage output; a drive circuit for said transformer primary winding, said drive circuit having an output coupled to said primary winding and having at least one control input for selectively enabling or disabling operation of said drive circuit, said drive circuit being switchable between a first state in which current flows through said primary winding, and a second state in which substantially no current flows through said primary winding, wherein said drive circuit is operable in said first state in the absence of a disable signal on said control input and is switched into said second state in response to receiving a disable signal on said control input; and a control circuit coupled between said feedback winding and said control input of said drive circuit, said control circuit being operable to temporarily provide a disable signal on said control input following operation of said drive circuit in said first state; and a permanent magnet generator coupled to said micro-turbine engine to generate electricity during operation of said micro-turbine engine, whereby said turbine engine comprises a turbine generator.
Parent Case Info
This application claims the priority of U.S. Provisional Application No. 60/113,438, filed Dec. 23, 1998.
US Referenced Citations (32)
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/113438 |
Dec 1998 |
US |