Different kinds of position sensors have been developed and one of the most common position sensors use an inductive position sensor, comprising a coil structure surrounding a plunger core movable in relation to the coil. The coil conventionally comprises an electrical winding wound on a bobbin.
The coil when connected to an alternating voltage source produce a magnetic field and acts as a magnet, and the plunger core is made of soft magnetic material that change the inductance in the coil. The coil and associated parts forms one part of the position sensor, and the plunger core forms a second part that is movable versus the first part.
Normally in a system where relative position between parts need to be controlled, the first part with the coil is stationary and the second part with the plunger core is attached with a movable part, but they may also be mounted in the opposite fashion.
The position of the movable magnetic plunger core versus the coil could be determined by measuring the inductance of the winding.
The plunger core is typically made from a soft magnetic material, preferably using iron alloys, and made as a solid rod. One disadvantage is that the cost for only the soft magnetic plunger core typically amounts to over 10%, often about 15%, of the total costs of the sensor (including coil winding and housing).
Several proposals have been presented to reduce costs in this kind of inductive position sensor, and some use electrical steel in the solid plunger core instead of iron plunger cores.
Electrical steel is often manufactured in cold-rolled strips. These strips are cut to shape to make laminations which are stacked together to form the laminated solid cores of transformers, and the stator and rotor of electric motors.
The cost issue is a very important issue for these inductive position sensors as they are used in large numbers in different systems such as automotive vehicle systems, detecting position of gearbox actuators and other equipment of the automotive vehicle. Using electrical steel as parts of the sensor radically lowers the costs as electrical steel produced in strips is manufactured in huge volumes and at low cost per kg.
In U.S. Pat. No. 5,204,621, “Position sensor employing a soft magnetic core”, an inductive position sensor is disclosed using a solid movable plunger core with a specific design, but where the stationary part of the coil core is supported by a coil core made of soft iron sheet material, which is an alternative denomination for electrical steel. However, this usage of electrical steel has conventionally been used in the coil winding part.
In DE102010002505, “Induktiver Kraftfahrzeugsensor and Verwendung desselben”, an inductive position sensor is disclosed, where one embodiment discloses a solid plunger core made from electrical steel (“Transformatorblech” in German) integrated in a push rod surrounding the plunger core.
In DE102014219009, “Positionssensor”, another inductive position sensor is disclosed, where the movable plunger core is flat in an otherwise flat sensor structure
In U.S. Pat. No. 2,427,866, is a position sensor disclosed where the movable plunger core is made as a hollow core in suitable magnetic material mounted connected to a Bakelite guide stem by press fit. However, the hollow plunger core is self-supporting in the area outside of the press fit area and do not enable a foil design per se. This design also discloses a slotted sleeve as a magnetic shield but lack any shielding in the axial direction.
DE3507585 disclose another movable plunger core shaped to cylindrical design, made from magnetic strip material having a thickness of 0.5 mm, in a cylindrical form with a small inner diameter of about 2.7 mm. This is also a self-supporting plunger core not enabling a foil design.
GB2040470 also disclose_another movable plunger core shaped to a tubular structure, made from magnetic strip material which also is a self-supporting plunger core.
Above examples disclose that the cost reduction objective is very important for these position sensors and several solutions have been proposed to reduce total costs for the sensor. As a large amount of position sensors are installed in a single vehicle it becomes clear that even a small cost reduction is sought for.
The invention is related to a new design in an inductive position sensor enabling a further cost reduction of the sensor wherein preferably the magnetic shield as well as the movable magnetic plunger core are made from electrical steel, or soft iron sheet material shaped in a hollow circular form. The common inventive objective is to reduce the cost, e.g. by enabling a cost efficient and reliable design using at least partly soft magnetic material, by reducing the amount of more expensive soft magnetic material used in the inductive position sensor, reducing also waste of such soft magnetic material during manufacturing of said inductive position sensor.
The definition of electrical steel (from Wikipedia) stands for a special steel tailored to produce specific magnetic properties: small hysteresis area resulting in low power loss per cycle, low core loss, and high permeability. Electrical steel is usually manufactured in cold-rolled strips less than 2 mm thick. These strips are cut to shape to make laminations which are stacked together to form the laminated solid cores of transformers, and the stator and rotor of electric motors. Laminations may be cut to their finished shape by a punch and die or, in smaller quantities, may be cut by a laser, or by wire EDM. Soft magnetic alloys are ferromagnetic materials that are easily magnetized and de-magnetized. To provide optimal magnetic performance, these alloys possess very low levels of carbon, nitrogen, and oxygen. They rely on various additions of phosphorus, nickel, and silicon to optimize magnetic induction, permeability, and coercive force. The magnetic properties of all of these alloys benefit from high temperature sintering above 1200 C. in hydrogen. Density and grain size increases, while residual levels of carbon, oxygen, and nitrogen are reduced. Typical applications include relays, cores, sensor probes, armatures, solenoid components, and pole pieces.
The inventive induction position sensor may use electrical steel as the outer shielding screen enclosing the coil winding.
Hence, in the preferred embodiment of the inductive position sensor a thin walled soft magnetic tubular shield surrounds the cylindrical coil winding, wherein said thin walled soft magnetic shield has a first tubular part shaped to circular cross-section form having an inner diameter and with an longitudinal abutting seam running in parallel to the longitudinal direction of the cylindrical coil winding, and shaped to the circular cross-section form from a flat cold-rolled strip cut to a rectangle, and wherein the thin walled soft magnetic shield has a cylindrical cross section. The shield is closed in at least one gable end by an additional shield hole washer element having an outer diameter and located inside of the first tubular part, and wherein both the soft magnetic tubular shield and the shield hole washer element are made from flat strips of electrical steel. By this 2-part form may the shielded housing be manufactured at low cost with minimum waste of expensive soft magnetic material with the shield hole washer element clamped inside of the rolled first tubular part.
The inventors have also surprisingly realized that the inventive design of the inductive position sensor use the skin-effect of the movable magnetic plunger core, and the prior art design with solid movable plunger cores is not necessary to change the inductance of the coil winding to a sufficient extent. The plunger core may preferably be made very thin material, e.g. less than 0.5 mm thickness and preferably as a foil mounted on a supporting plunger core, e.g. made in any low cost polymer, metal or Bakelite.
Skin-effect is the tendency of an alternating electric current (AC) to become distributed within a conductor such that the current density is largest near the surface of the conductor, and decreases with greater depths in the conductor. As of magnetic fields the strength of the magnetic field is strongest at the surface of the plunger core, and decreases with greater depths in the plunger core. i.e. the magnetic field is concentrated at the very outer surface of the plunger core.
Hence, the movable magnetic plunger core, changing the inductance of the winding, needs not to be solid. Instead, for the greatest impact per kg of plunger core material, the outer surface of the plunger core should be maximized while minimizing the amount of material used. This outer surface of the plunger core is in this context referred to as the active part of the soft magnetic plunger core, as it interacts with the magnetic field and changes the inductance of the coil winding. The remaining part of the movable plunger core is referred to as the inactive part of the soft magnetic plunger core.
The inventive inductive position sensor besides the outer shield housing preferably also comprises;
a soft magnetic plunger core shaped to a hollow cross-section form, wherein the thickness of the wall of the soft magnetic plunger core is between 0.02-5% of the total outer diameter of the soft magnetic plunger core. Preferably is the thickness of the wall of the soft magnetic plunger core between 0.01-0.4 mm.
The hollow cross-section of the soft magnetic plunger core may preferably by a circular cross section, but may also be oval, triangular, square, pentagonal or have more than 5 sides.
With this basic design, the cost for the plunger core can be reduced to less than 10% of the cost for a solid iron plunger core conventionally used. In a typical position sensor, could a solid Ni—Fe iron plunger core cost about 0:60 Euro, and the cost for a hollow plunger core in electrical steel could cost only about 0:04 Euro.
In yet a preferred embodiment the wall of the soft magnetic plunger core may even be mounted as a foil on top of a central inactive core element made of nonmagnetic material. The foil may alternatively be applied as a surface coating with soft magnetic properties by using sputtering or dip-painting techniques.
The invention also relates to the plunger and the magnetic shield as such, both used for the above described inductive position sensor. This may provide for a producer to reduce number of materials used in the sensor and allows purchasing larger bulk volumes of the inexpensive electrical steel strips used for multiple parts in the sensor.
The above listed objectives mainly focus upon cost reduction producing inductive position sensors, while the design does not result in less accuracy in detecting the position.
The invention will be described using following figures, where
In
The coil winding housing comprises an electrical winding 14 wound on an elongated electrical winding support 13 which may be equipped with winding chambers as seen in
The winding is encapsulated in some insulation material 12, which may be oil or resin that may be injected through a filler injection hole 12h (in
A magnetic shield is surrounding the coil winding. The magnetic shield is preferably made from soft magnetic material, such as electrical steel. In the figure is the magnetic shield made in a cup formed piece 11, with an outer thin walled plate part formed as a tube and with one gable end closed by a bottom part. The outer thin walled soft magnetic shield 11 with its bottom part may be shaped to a cup form by pressing to the cup shape form from a flat cold-rolled strip cut to a rectangle. One gable end, from which end the plunger core is extending, is closed by the bottom part. The magnetic field will thus be enclosed by the cup shaped shield. The shield is then preferably totally encapsulated by a sturdy polymeric material that forms the outer skin of the coil winding housing. The outer skin also covers the inner surface of the cylindrical hole 15, and therefore is a polymeric material with low friction preferably used. As shown in
The plunger core 20 is shown in a perspective view in
As illustrated in
Preferably is the thickness of the wall WT of the plunger core 20 between 0.02-5% of the total outer diameter ODC of the plunger core 20. The actual thickness of the wall of the soft magnetic plunger core may preferably lie between 0.01-0.3 mm.
An alternative embodiment of the plunger core is shown in an end view in
In
In
In
The invention may be modified in several ways beside the embodiment shown. This applies to the type of electrical coil winding and structure of the coil bobbin.
The essential features are that the coil shield surrounding the coil is made from a rolled soft magnetic plate material, that is a standard product made in large volumes and hence obtainable at low cost, and preferably that the gable end of the shield is made from a hole washer made from similar soft magnetic material.
This inventive design of the shielded housing may preferably also be combined with a plunger core made in similar fashion from soft magnetic plate material, i.e. the plunger core that changes the inductance in the electrical coil winding use a hollow rod made from electrical steel that use a large outer surface of the plunger core as inductance changing member, and in a preferred embodiment use the same type of design of the shield also made in electrical steel. It is foreseen that the plunger core design may be the subject of protection on its own, i.e. without any limitation regarding the shield, e.g. by means of a divisional application.
Even if the active part of the plunger core and the thin walled soft magnetic shield is shaped to circular cross-section form with a longitudinal abutting seam running in parallel to the longitudinal direction of the cylindrical coil winding, could the seam also be running obliquely versus the longitudinal direction of the cylindrical coil winding. This especially if the seam is fused together.
Number | Date | Country | Kind |
---|---|---|---|
1750210-5 | Feb 2017 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/053889 | 2/16/2018 | WO | 00 |