The invention relates to an inductive proximity switch with an at least partially metal, preferably high-grade steel, especially preferably VA steel housing, especially with a housing which consists at least partially of a nonmagnetic steel, with at least one transmitting coil, with two receiving coils which are connected in series in opposite directions and which are located symmetrically to the transmitting coil, and with an evaluation circuit which is connected to the receiving coils.
Inductive proximity switches, therefore electronic switching devices, are made without contacts and have been used for almost forty years largely in place of electrical, mechanically activated switching devices which are made with contacts, especially in electrical and electronic switching, measurement, and control circuits.
With inductive proximity switches it is indicated whether an electrically conductive, generally a metallic influence element, hereinafter always called a target, has approached the proximity switch far enough. If the target has approached the proximity switch far enough, an electronic switch which belongs to the inductive proximity switch is reversed; When the proximity switch is made as a make contact, the previously nonconductive electronic switch now becomes conductive, while in a proximity switch made as a break contact, the previously conductive electronic switch now blocks.
There are currently inductive proximity switches of varied type.
In the first type of inductive proximity switches, they include an oscillator. Then it applies that part of the oscillator is a receiving coil or the oscillator with its “input” is connected to a receiving coil and that the oscillator is part of the evaluation circuit or the evaluation circuit is connected to the output of the oscillator. In inductive proximity switches of the first type which include an oscillator, it applies to the oscillator, as long as the target has not yet reached a given distance to the inductive proximity switch, K×V=1 with K=feedback factor and V=magnification factor of the oscillator; i.e. the oscillator oscillates. When the target reaches a given distance, this generally leads to a reduction of the feedback factor K and magnification factor V so that K×V<1; i.e. the oscillations of the oscillator decay or the oscillator ceases to oscillate. Regardless of the state of the oscillator or the amplitude of the output voltage of the oscillator, an electronic circuit belonging to the evaluation circuit is controlled.
For the described inductive proximity switches of the first type, to detect the approach of a target the so-called eddy current process is used in which the eddy current losses are evaluated which form when a target is moved into an alternating electromagnetic field which proceeds from the inductive proximity switch.
The eddy current process has the major disadvantage that the operating distance of the inductive proximity switch is dependent on the material of the target; if reference is made to the operating distance of an inductive proximity switch for a ferromagnetic target, the operating distance of the same inductive proximity switch for a non-ferromagnetic target is for example only roughly 50%. Relative to the operating distance which a certain inductive proximity switch has for a ferromagnetic target, therefore a so-called correction factor must be used for a non-ferromagnetic target.
To have to use a correction factor in inductive proximity switches depending on the material of the target has been recognized to be a disadvantage for many years. Consequently the technical field has already extensively addressed the problem of making an inductive proximity switch such that it has a correction factor of 1, i.e. therefore that a correction is not necessary (compare German patent disclosure documents and patents 32 25 193, 37 14 433, 38 14 131, 38 40 532, 39 12 946, 39 16 916, 40 21 164, 40 31 252, 43 30 140 and 197 40 774).
In the second type of inductive proximity switches an oscillator is not absolutely essential. In these inductive proximity switches the influencing of a receiving coil which can be achieved by the target is evaluated differently by the evaluation circuit connected to the receiving coil. In this case an alternating current is fed into the transmitting coil. Part of the resulting alternating electromagnetic field penetrates the receiving coil and induces in it a voltage which is dependent on the influence distance of the target. In the simplest case a threshold switch is connected to the receiving coil as the input-side part of the evaluation circuit and responds to whether the voltage on the receiving coil is above or below a given threshold value; the voltage on the receiving coil is called the indicator voltage because the receiving coil is the actual indicator for whether the inductive proximity switch is significantly influenced by the target or not. Instead of a simple threshold switch, the evaluation circuit on the input side can also have an amplifier, a demodulator, a threshold switch and an additional switching amplifier.
In inductive proximity switches of the latter described type, to detect the approach of a target therefore the above described eddy current process is not used, rather the described, so-called transformer process is used in which the target influences the magnetic coupling between the transmitting coil and the receiving coil and thus the magnitude of the voltage induced in the receiving coil.
In the inductive proximity switch which was initially described specifically and which among others is known from German patent disclosure documents 198 34 071 and 100 12 830, which therefore in addition to the transmitting coil has two receiving coils which are connected in series in opposite directions and which are located symmetrically to the transmitting coil, the transformer method in a special configuration is used, hereinafter called the transformer difference method. In this connection, in the two receiving coils voltages are induced which have opposite polarity. The series connection of the two receiving coils then leads to the resulting voltage on the series connection of the two receiving coils being zero when the voltages induced in the two receiving coils are exactly the same in terms of amount and are exactly in opposing phase.
Inductive proximity switches of the type which underlie the invention and which are to be made and developed as claimed in the invention are now built such that in the uninfluenced state the resulting voltage on the series connection of the two receiving coils is not zero, but is very small, for example 5 mV. For the uninfluenced state of the inductive proximity switch under consideration, a resulting voltage which differs from zero on the series connection of the two receiving coils is chosen because the deviation of the resulting voltage which occurs when the inductive proximity switch is influenced can be better detected and processed by the evaluation circuit when the initial value for the uninfluenced proximity switch is not equal to zero.
When a target approaches an inductive proximity switch of the above described type, in this way the magnetic coupling between the transmitting coil on the one hand and the receiving coils on the other hand is asymmetrically influenced. This results in the fact that in the two receiving coils voltages are induced which are no longer oppositely equal, so that as a result on the series connection of the two receiving coils a voltage forms which deviates from the voltage which forms when the proximity switch is not influenced. If this voltage exceeds a given threshold value, the signal is evaluated as a “proximity switch influenced” signal.
In addition to the described problem of the necessity of a correction factor, for inductive proximity switches there are other criteria which can be important:
It was stated initially that the invention relates to an inductive proximity switch with an at least partially metal housing. This means that the subject matter of the invention is both those inductive proximity switches with a housing which consists of metal only on the influence side, which therefore have a metallic cover or metallic cap, while the housing otherwise consists of plastic, but that the subject matter of the invention is also those inductive proximity switches with a housing consisting entirely of metal which are conventionally called all- metal switches.
Proceeding from the prior art described individually above, the object of the invention is to embody and develop the initially described proximity switch such that the aforementioned criteria “correction factor 1 or almost 1”, “relatively large switch distance at a given overall size”, and “stability of the operating point, especially extensive independence of the operating point from temperature” are implemented.
The inductive proximity switch as claimed in the invention is first of all essentially characterized in that on the back of the receiving coils which is opposite the influence side there is a predamping element and the predamping properties of the predamping element at least approximately correspond to the predamping properties of the housing on the influence side. This first measure as claimed in the invention leads to the fact that the inductive proximity switch as claimed in the invention in the uninfluenced state can be built relatively symmetrically, not only with respect to the magnetic coupling between the transmitting coil on the one hand and the receiving coils on the other, that rather also the eddy current loss behavior can be realized identically or almost identically both on the influence side and also on the back of the receiving coils which is opposite the influence side.
In particular there are various possibilities for further embodying and developing the inductive proximity switch as claimed in the invention.
First of all, it is recommended that the same metal be used for the predamping element which is to be provided on the back of the receiving coils which is opposite the influence side as for the metallic part of the housing or for the housing itself, preferably therefore high-grade steel, especially preferably VA steel. It is conventional to use VA steel 1.4404 overall for the metallic part of the housing, therefore the metallic cover or the metallic cap, or for the housing, which then can also be used for the predamping element. But there is also the possibility of implementing the predamping element—in one layer or several layers—from a Hasberg foil.
As stated, the predamping properties of the predamping element at least roughly correspond to the predamping properties of the housing on the influence side. This stipulation also influences the thickness of the predamping element. The predamping element can accordingly have a thickness from roughly 0.01 mm to 1.0 mm, preferably from roughly 0.03 mm to 0.7 mm, preferably from roughly 0.1 mm to 0.3 mm, for example.
One embodiment which is especially preferred with respect to implementation of the predamping element which is provided on the back of the receiving coils which is opposite the influence side is characterized in that the predamping element consists partially of the same material as the metallic part of the housing or the same material as the housing and partially of a Hasberg foil. Thus a temperature influence on the predamping element which results otherwise from the operation-induced heating of the inductive proximity switch is largely eliminated. Surprisingly it has been shown that for high-grade steel the relative permeability factor and for Hasberg foil the specific resistance change, depending on temperature, such that with corresponding dimensioning of the two parts of the predamping element the changing temperature is without effect as a result.
The inductive proximity switch as claimed in the invention includes only one transmitting coil as necessary for operation. One preferred embodiment is however characterized in that there are two transmitting coils which are connected in series in the same direction. In this way differences in the structure of the transmitting coil due to winding asymmetries can be reduced.
With reference to the three-dimensional and construction implementation of the transmitting coil or the transmitting coils and/or the receiving coils there are preferred embodiments of the inductive proximity switch as claimed in the invention which will now be detailed.
First of all, it is recommended that the transmitting coil or transmitting coils be arranged concentrically to the receiving coils. The receiving coils are preferably arranged coaxially in succession in the direction of influence. But there is also the possibility of arranging the receiving coils concentrically to one another.
But basically the transmitting coil or transmitting coils and/or the receiving coils can be made as so-called air-core reactors in the inductive proximity switch as claimed in the invention. To approach the target, at a given overall size to be able to implement a relatively great operating distance, it is however recommended that the transmitting coil or transmitting coils and/or the receiving coils be located in a ferromagnetic pot-type core or in ferromagnetic pot-type cores. When the receiving coils are located in the ferromagnetic pot-type cores, of course the pot-type cores must be located back to back, because they are “magnetically tight” on their backs.
In the inductive proximity switch as claimed in the invention arranging the transmitting coils and/or the receiving coils in a ferromagnetic pot-type core has the advantage that thus the three-dimensional tolerances are less than in the implementation with individual ferromagnetic pot-type cores. Consequently one especially preferred embodiment of the inductive proximity switch as claimed in the invention is further characterized in that the transmitting coil or transmitting coils and the receiving coils are located on a single common pot-type core.
Another preferred embodiment of the inductive proximity switch as claimed in the invention is characterized in that the transmitting coil or the transmitting coils without a coil body is or are wound directly on the pot-type core or the pot-type cores and their length corresponds exactly to the length of the pot-type core or sum of the lengths of pot-type cores. In particular, in this embodiment, but also otherwise, it is recommended when there are two ferromagnetic cores that the pot-type cores be provided with their backs lying next to one another without spacing, preferably cemented to one another on their backs.
It is stated above that in the transformer difference method used in the inductive proximity switch as claimed in the invention provision must be made for the resulting voltage of the series connection of the two receiving coils to be theoretically zero in the uninfluenced state, in practice being however not equal to zero, but being small, for example 5 mV. This is achieved in practice in that in the uninfluenced state of the proximity switch the resulting coupling factor between the transmitting coil and the transmitting coils and the two receiving coils connected in series is roughly 0.001 to 0.02. The symmetry or quasisymmetry of the magnetic coupling between the transmitting coil and the transmitting coils and the receiving coils which is necessary for this purpose can also be implemented in certain limits in that when there are two transmitting coils the numbers of turns of the two transmitting coils per unit length differ slightly from one another and/or the numbers of turns of the two receiving coils per unit length differ slightly from one another.
Inductive proximity switches of the type under consideration and the inductive proximity switches as claimed in the invention are operated with transmitting frequencies which are conventionally between 10 kHz and 200 kHz. Surprisingly it has been found that for different overall sizes different transmitting frequencies are optimum. Preferably the transmitting frequencies at size M 12 are between 100 kHz and 150 kHz, especially roughly 120 kHz, at size M 18 between 60 kHz and 100 kHz, especially roughly 80 kHz, and at size M 30 between 20 kHz and 30 kHz, especially roughly 25 kHz.
It has already been repeatedly stated that in the transformer difference method used in the inductive proximity switch as claimed in the invention provision must be made for the resulting voltage of the series connection of the two receiving coils to be theoretically zero in the uninfluenced state, in practice to have to be small, for example 5 mV. If the symmetry of the magnetic coupling between the transmitting coil or transmitting coils on the one hand and the receiving coils on the other which is necessary for this purpose cannot be implemented with sufficient precision, for compensation of the asymmetry of magnetic coupling between the transmitting coil or transmitting coils and the receiving coils a trimming resistor can be assigned to the receiving coils.
In the inductive proximity switches as claimed in the invention, the evaluation of the indicator voltage which forms on the series connection of the two receiving coils can take place as is conventional, specifically by a threshold switch which represents the input of the evaluation circuit and which is located on the series connection of the two receiving coils; but on the input side the evaluation circuit can also be, as known in the prior art, an amplifier, then a demodulator, a threshold switch and an additional switching amplifier.
The teaching of the invention however also includes special measures with reference to feed of the transmitting coil or transmitting coils and with reference to the evaluation of the indicator voltage which forms on the series connection of the receiving coils.
With reference to feed of the transmitting coil or transmitting coils one preferred embodiment of the inductive proximity switch as claimed in the invention is characterized in that the transmitting coil or transmitting coils is or are part of a current balancing oscillator with preferably four oscillator transistors. This is a current balancing oscillator which is also used in inductive proximity switches which work according to the so-called eddy current method. This type of feed of the transmitting coil or transmitting coils results in that the change of the voltage on the receiving coils as a result of the influence by a target is accompanied by a change of the voltage on the transmitting coil or on the transmitting coils.
Other embodiments of the inductive proximity switch as claimed in the invention are characterized with respect to feed of the transmitting coil or the transmitting coils in that the transmitting coil or transmitting coils is or are fed either with a constant alternating current or with a constant AC voltage.
The various possibilities of feed of the transmitting coil or the transmitting coils are options for influencing and optimizing the operating distance for influencing with targets of varied material such as iron, lead, copper, brass, high-grade steel, etc. Normally it is the object to obtain a roughly identical operating distance for targets of different materials. In this connection this operating distance should be largely independent of whether the target is a thin sheet or a foil or has a considerable thickness of for example 3 mm. A reduction in the size of the target should result in a loss of operating distance as small as possible.
With respect to the evaluation circuit of the inductive proximity switch as claimed in the invention, there is another teaching of the invention that the evaluation circuit on the input side contains a multiplier, on the one hand the transmission voltage, therefore the voltage on the transmitting coil or on the transmitting coils, and on the other the indicator voltage, therefore the voltage on the series connection of the receiving coils, is supplied to the multiplier and the product of the transmission voltage and the indicator voltage formed by the multiplier is evaluated in the evaluation circuit in amount and phase.
In particular, there are now various possibilities for embodying and developing the inductive proximity switch as claimed in the invention. These embodiments and developments will become apparent from the claims subordinate to claim 1 and from the following description of one preferred embodiment of an inductive proximity switch as claimed in the invention in conjunction with the drawings.
The inductive proximity switch as claimed in the invention which is shown in part only schematically in the figures consists first of all of a housing 1 which consists of a nonmagnetic steel, preferably of high-grade steel, specifically a VA steel, especially VA steel 1.4404, a transmitting coil 2, two receiving coils 3, 4 which are connected in series in opposite directions and which are located symmetrically to the transmitting coil 1, and with an evaluation circuit 5 connected to the receiving coils 3, 4.
As can be taken from
Only one transmitting coil 2 is necessary for operation for the proximity switch as claimed in the invention; but there can also be two transmitting coils which can then be connected in series in the same direction instead of only one transmitting coil 2.
As shown by
Otherwise
It applies to the embodiments of the inductive proximity switches as claimed in the invention which are shown in
On the influence side 6 the inductive proximity switches as claimed in the invention which are shown in
In the embodiment of an inductive proximity switch as claimed in the invention which is shown in
One especially preferred embodiment of the inductive proximity switch as claimed in the invention is shown in
Otherwise
It is not shown that in the inductive proximity switch as claimed in the invention, when there are two transmitting coils, the two numbers of turns per unit length of the two transmitting coils can differ slightly from one another and the numbers of turns per unit length of the two receiving coils can differ slightly from one another. This measure within certain limits can implement the required symmetry of magnetic coupling between the transmitting coil or the transmitting coils on the one hand and the receiving coils on the other.
For the case in which, for the inductive proximity switch as claimed in the invention, the symmetry of magnetic coupling between the transmitting coil 2 and the receiving coils 3, 4 which is necessary for use of the transformer difference method cannot be implemented with sufficient precision, for compensation of the asymmetry of magnetic coupling between the transmitting coil 2 and the receiving coils 3, 4 a trimming resistor 17 can be assigned to the receiving coils 3, 4; possible implementations of this measure are shown in
The figures, especially
With reference to the feed of the transmitting coil 2 the embodiment of an inductive proximity switch as claimed in the invention which is shown in
The embodiments of the inductive proximity switch as claimed in the invention which are shown in
With respect to the evaluation circuit 5 of the inductive proximity switch as claimed in the invention,
In the embodiment as shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2005 041 456.7 | Aug 2005 | DE | national |