This application claims priority from and benefit of the pending European Application No. 14198958.2 filed on Dec. 18, 2014, the disclosure of which is incorporated herein by reference.
1. Field of the Invention
The invention relates to an inductive power coupling device for coupling electrical power between two units that are rotatable against each other, and, specifically for power couplers used in computed tomography scanners. Such power couplers are also known as rotary joints.
2. Description of Relevant Art
In computed tomography (CT) scanners and other related machines high-power in the range from 10 kW up to more than 100 kW is transferred from a stationary side to a rotating side. There, a high voltage in the range of above hundred kilovolts is generated to produce x-ray radiation.
In U.S. Pat. No. 7,054,411 a multiple channel inductive rotary joint is disclosed. It has inductive channels for transferring power from the stationary side to the rotating side. There is an auxiliary power and a main power circuit. Furthermore a capacitive feedback link for power control is provided. There may be some failure states such as a short circuit of a rotating power channel to protective earth, which may cause dangerous high voltages at the rotating part and which may cause the rotating part of the feedback link to be inoperative and, therefore, may interfere with the communication to a primary power controller.
The embodiments of the invention are directed to increasing the safety of devices that utilize inductive power couplers between rotating parts. Such devices may be CT scanners. Specifically, a short circuit of a rotating power channel to protective earth should no more cause excessive voltages at the rotating part. Furthermore, means and methods should be provided to detect such a short circuit from the stationary side without requiring communication from the rotating side.
Inductive rotary joints usually are built like power transformers, where one side is rotating against another side. For example, in CT scanners, power has to be transferred from the stationary to the rotating side. Therefore, the power coupler is a transformer having a stationary primary winding and a secondary rotating winding. For simplicity, the following explanations and embodiments refer to a CT scanner rotary joint. The same concepts can be applied to any rotary joint in general and furthermore to a rotary joint configured to transfer power from a rotating side to a stationary side.
As a transformer can only transfer AC (alternating current), it is either fed by an AC line voltage or by an inverter, generating an AC voltage of a higher frequency which can better be transferred via a rotating transformer. At the output side, in most cases this AC voltage is converted to a DC voltage to provide a DC output. This may be done by a bridge rectifier, followed by a filtering capacitor to generate a smooth DC voltage. Although the secondary winding of the rotating transformer and the DC voltage generated thereof are floating, there is a significant capacitance between the secondary DC circuit and the mechanical base holding the components of the rotating part. This is specifically the case with a CT scanner, with a large number of electronic components mounted to a rotating disk forming the mechanical base of the rotating part. The mechanical base is further also referred as secondary or rotating ground. Furthermore, there may be capacitors for suppressing noise, which are connected between the DC voltage supply and the mechanical base, which may further be connected by a galvanic slip ring to stationary protective earth. This connection to protective earth further prevents high voltage at the rotating part in the case of certain failures against ground, and therefore prevents electrical shock of persons operating the device when touching the device in such failure state.
Basically, the secondary winding is isolated against the mechanical parts, and therefore against the protective earth. Under certain circumstances, the isolation may fail. The applicable circumstances may include, for example, a mechanical failure due to mechanical damaging of the isolation, which may occur at ends of the isolation or at locations where the isolated wire of the secondary winding is connected to the external device, such as a rectifier. There may be other failure modes, such as thermal failures that may be caused by overheating, or electrical failures that be caused by longtime degradation of the isolation, or by sparking or arcing, or even a combination of some of these failure modes.
When such a failure of a short circuit occurs, the ground capacitor (the previously mentioned capacitance between the secondary output and the rotating ground) is connected parallel to at least one of the bridge rectifier diodes. The bridge rectifier now acts as a voltage doubler. As a consequence, the DC output voltage may become twice the normal DC output voltage. With a high probability, this will result in a failure of many of the electrical or electronic components attached to the DC output voltage.
In a first embodiment, there is a low impedance galvanic connection between a DC output line, which may either be the positive DC output or the negative DC output, and the mechanical base.
It is preferred if a galvanic connection is provided between the stationary and rotating sides which is also connected to said DC voltage output. The galvanic connection preferably is a slip ring having a brush sliding on a sliding track. In another embodiment, the galvanic connection may be made by a bearing, which for example may be a ball bearing between the rotating and the stationary parts. Most preferably, this bearing is further complemented by a parallel galvanic low current slip ring. Under normal operating conditions, there is no current flowing through the galvanic ground connection. Therefore, this galvanic ground connection has an extremely long lifetime, as there is not wear of the brushes and the sliding tracks due to arcing which usually occurs under high currents. There is also no wear or corrosion, if a bearing is used.
In a further embodiment, a control unit is provided at the primary side of the rotating transformer, which side preferably is the stationary side. This control unit preferably is measuring the current through the galvanic ground connection. In the failure case of a short circuit of the secondary winding towards the secondary ground, there will be significant ripple current flowing through this line, which can easily be detected by the control unit. This control unit may further issue an emergency switch-off signal to disable the power supply from the device. Such a signal may control a primary inverter supplying an AC voltage to the primary winding of the capacitive rotating transformer. In another embodiment, the control unit may be connected to a voltage and/or current sensor at the primary winding and/or at the primary input, detecting abnormal voltages/currents to detect said short circuit.
During standstill a ball bearing holding the rotating part may provide a sufficient grounding or protective earth. Grounding may further be increased by a grounding jumper which may be inserted manually for maintenance and service.
In a further embodiment, there may be a switch for generating a short circuit as described above, for example by shorting a diode. This switch may be used to trigger a power off at the primary side from the secondary side. It could be used as an emergency shutoff if there is any fault at the secondary side.
These embodiments provide a significant improvement in reliability and safety over the prior art.
In the following, the invention will be described by way of example, without limitation of the general inventive concept, on examples of embodiment and with reference to the drawings.
Specific embodiments of the invention are shown by way of example in the drawings and will herein be described in detail, and are subject to modifications and alternative forms each of which is within the scope of the invention. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
In
It is further preferred to have a slip ring 280 comprising at least one sliding track 281 and a at least one brush 282 for electrically connecting said secondary ground 253 to a protective earth 134 (which may be a primary ground), which may further be connected via a protective earth connector 133 to a main power system, or a specific ground pad.
It is further preferred to have a control unit 150 for controlling the inverter 120 or any other control means at the primary side. The controller 150 may be connected to a ground current sensor 151 for measuring a current between the secondary ground 253 and the protective earth 134. It may also measure a current through the primary winding 110, preferably by use of a second current sensor 153. Based on the measurement results, a trigger signal 152 may be generated.
In an inductive rotating coupler, certain faults may occur. One of these faults may be a short circuit of the secondary winding to the secondary ground 253. In this embodiment, a short circuit of the second secondary winding contact 255 is marked as a dashed line 270 indicating the short circuit. A similar scenario takes place, if the first secondary winding contact 254 has a short circuit to the secondary ground 253. There may also be a short circuit of any other part of the secondary winding 210 to secondary ground 253. By the short circuit, depending on the kind of short circuit, one of the rectifier diodes 221, 223 is shorted. The function is explained exemplarily by the kind of short circuit as indicated by dashed line 270. In this case, the rectifier diode 223 is shorted. As the rotating transformer is operated with an AC signal, it delivers positive and negative half waves at its output. When the secondary winding 210 delivers a positive output, where the voltage at the first secondary winding contact 254 is higher than the voltage at the second secondary winding contact 255, the circuit works as usual, as the rectifier diode 222 lets the current flow into the filtering capacitor 230 and the load 240. When a negative half wave is delivered, the voltage at the first secondary winding contact 254 is lower than the voltage at the second secondary winding contact 255, then the diode 224 provides a short circuit of the secondary winding. This short circuit leads to an asymmetrical current flow through the rotating transformer, which may easily be detected at the primary side, for example by second current sensor 153, but it would also generate a signal which may be detected by the ground current sensor 151 at the primary side.
Due to the asymmetrical short circuit of the secondary winding 210 by one of the rectifier diodes, it is impossible that the circuit works as a voltage doubler, as the prior art, as shown in
In
A negative current flow into the opposite direction, as indicated by
In
In
In
In
In
Modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
14198958 | Dec 2014 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
5770936 | Hirai | Jun 1998 | A |
5914999 | Beyerlein | Jun 1999 | A |
5923721 | Duschka | Jul 1999 | A |
5923723 | Herbst | Jul 1999 | A |
6072856 | Van Der Broeck | Jun 2000 | A |
6298116 | Methley | Oct 2001 | B1 |
6563717 | Lunding | May 2003 | B2 |
6674836 | Harada | Jan 2004 | B2 |
6738275 | Beland | May 2004 | B1 |
6917531 | Scheel | Jul 2005 | B2 |
6975698 | Katcha | Dec 2005 | B2 |
7050539 | Loef | May 2006 | B2 |
7054411 | Katcha | May 2006 | B2 |
7305065 | Takahashi | Dec 2007 | B2 |
7327827 | Sakamoto | Feb 2008 | B2 |
7397896 | Beyerlein | Jul 2008 | B2 |
7400708 | Takahashi | Jul 2008 | B2 |
7717619 | Katcha | May 2010 | B2 |
7826586 | Nakayama | Nov 2010 | B2 |
7830685 | Wagner | Nov 2010 | B2 |
8155271 | Beyerlein | Apr 2012 | B2 |
8242639 | Krumme | Aug 2012 | B2 |
8249217 | Iijima | Aug 2012 | B2 |
8385504 | Hattrup | Feb 2013 | B2 |
8576987 | Fukuwara | Nov 2013 | B2 |
8774364 | Aoki | Jul 2014 | B2 |
8861681 | Caiafa | Oct 2014 | B2 |
9084335 | Mekonnen | Jul 2015 | B2 |
9119592 | Katcha | Sep 2015 | B2 |
9186120 | Zimpfer | Nov 2015 | B2 |
9362047 | Krumme | Jun 2016 | B2 |
20090185658 | Katcha et al. | Jul 2009 | A1 |
20110075796 | Loef | Mar 2011 | A1 |
20130214614 | Krumme | Aug 2013 | A1 |
20130340165 | Dong | Dec 2013 | A1 |
20150055750 | Takahashi | Feb 2015 | A1 |
20160181791 | Herrmann | Jun 2016 | A1 |
20160181825 | Herrmann | Jun 2016 | A1 |
20160181871 | Krumme | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
14198958.2 | Dec 2014 | EP |
62088300 | Apr 1987 | JP |
Number | Date | Country | |
---|---|---|---|
20160181791 A1 | Jun 2016 | US |