This disclosure relates to the field of wireless telecommunications and more particularly to a sleeve enclosure for receiving a wireless communicating device and for boosting the signal of the device. Cellular telephones are notorious for dropping calls, for poor or intermittent transmission and reception of signal and for lack of consistent signal strength. Solutions to this problem include providing more and more-closely spaced base stations, the use of add-on antennas and the use of complimentary antennas. For instance, publication WO 2020/098540 discloses a double molding process wherein in a first molding step, an antenna is embedded within a resin jacket and in a second molding step the resin jacket is embedded within a device case by an insertion molding processes. Likewise, publication JP2006/148751 discloses the coupling of antennas built into a cover which when placed over the case of a portable terminal are positioned in close proximity to internal antennas of the terminal and are thereby able to be inductively coupled for strengthening transmitted signals. However, the prior art fails to describe a high efficiency proximity probe which is embedded within and located in a phone sleeve in a position for coupling with the phone's internal antenna and which is electrically connected with an external antenna via conductive paths also embedded within the phone sleeve. The presently described apparatus overcomes the drawbacks and failings of the prior art.
The present disclosure describes an apparatus; a sleeve capable of receiving a cell phone or other portable wireless communication device and of boosting the device's RF signal reception and transmission. The term “cell phone” is used herein as an example of the type of device that might be used with the sleeve apparatus, however, it should be understood that beside a cell phone, other portable RF signaling communication devices may be used with the described sleeve. An RF probe embedded in the sleeve is positioned to lie over an internal antenna of the communication device for efficient RF coupling therebetween and has a size that provides for minimum interference and detuning of the cell phone's internal antenna. The probe is dielectrically loaded allowing for parallel operation of the cell phone's antenna and the sleeve's antenna for reception of RF signals, and has such small size as to allow the device's transmissions to be unaffected by the presence of the probe. The sleeve may be configured for mounting on the back of a cell phone or other communication device. A transmission line also embedded in the sleeve enables signal conduction from the probe to an antenna mounted on one side of the sleeve. The external antenna provides enhanced signal reception and transmission. Furthermore the sleeve is adapted to receive a cable from a remote antenna, for instance, one of the type magnetically secured to the top of a vehicle, for further increasing the range of a cell phone. These and other construction/operating features provide the following benefits of the presently described apparatus.
The sleeve is adapted to be securely nested with an existing cell phone.
The sleeve provides relatively little additional size and weight to the nested cell phone.
The sleeve increases the range of the cell phone.
The sleeve has an integrated construction so that it is relatively inexpensive to manufacture and durable in use.
The sleeve is able to combine the reception and transmission capacities of a nested cell phone's built-in antenna with an external antenna mounted on the sleeve, or a remote antenna, for greatly improved RF reception and transmission.
The sleeve is ergonomically designed to provide for hand position convenience when being held while avoiding electrostatic interference with its external antenna.
The details of one or more embodiments of these concepts are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of these concepts will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawing figures indicate like elements.
A planar multi-layer radio frequency (RF) coupling probe 40 is embedded within the enclosure 30 by insertion injection molding in a location that is in close proximity to, and may lay directly under, an internal antenna 50 of the cell phone 20 when it is nested. In this manner, the probe 40 is in a position for electromagnetic coupling with antenna 50 and therefore is able to provide for boosting of the cell phone's signals. Inductive, capacitive or other types of electromagnetic coupling may be used.
As shown in
An external antenna 60, as shown in
Enclosure 30 may have a remote antenna port 70, a connector, molded into side wall 34 as shown in
An signal boosting amplifier 90 may be embedded in bottom panel 32 and interconnected with transmission line 42. Amplifier 90 may be single or bi-directional and may be enabled with diplexers, duplexers and automatic gain control (AGC) and other features for improved performance as would be known by those of skill in the art. Amplifier 90, preferably a planar device, may be powered by a replaceable battery 92 mounted in side wall 34, and in electrical interconnection therewith by a further embedded conductor (not shown). Alternately, the cell phone's battery 95 may be interconnected with amplifier 90 via an interconnecting wire as shown in
As described above, the sleeve 10 taken by itself defines one embodiment of the present apparatus. The sleeve 10 as nested with cell phone 20 defines a second embodiment.
The enclosure 30 may be fabricated by injection molding techniques. In a preferred approach, a first molding step fabricates a first layer 32A of the bottom panel 32 and an outside portion of the side wall 34 on at least one side as shown in
Now referring to
Embodiments of the subject apparatus and method have been described herein. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and understanding of this disclosure. Accordingly, other embodiments and approaches are within the scope of the following claims.
This application describes the same apparatus and combination as described in co-pending provisional application 61/385,386, filed on Sep. 22, 2010, and claims international date priority thereof. The subject matter of application 61/385,386 is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5170494 | Levanto | Dec 1992 | A |
5532703 | Stephens et al. | Jul 1996 | A |
5673053 | Marthinsson | Sep 1997 | A |
5854970 | Kivela | Dec 1998 | A |
6061028 | Sakata | May 2000 | A |
6111545 | Saari | Aug 2000 | A |
6112106 | Crowley et al. | Aug 2000 | A |
6281854 | Ohoka et al. | Aug 2001 | B1 |
6317089 | Wilson et al. | Nov 2001 | B1 |
6380623 | Demore | Apr 2002 | B1 |
6459915 | Nakamura et al. | Oct 2002 | B2 |
6492952 | Hu | Dec 2002 | B1 |
6538620 | Lin | Mar 2003 | B2 |
6924769 | Ito et al. | Aug 2005 | B2 |
7081857 | Kinnunen et al. | Jul 2006 | B2 |
7084819 | De La Torre Barreiro et al. | Aug 2006 | B2 |
7218280 | Annamaa et al. | May 2007 | B2 |
7231236 | Cho | Jun 2007 | B2 |
7405698 | de Rochemont | Jul 2008 | B2 |
7427961 | Song et al. | Sep 2008 | B2 |
7719083 | Chang | May 2010 | B2 |
7881693 | Kurokawa | Feb 2011 | B2 |
Number | Date | Country |
---|---|---|
201233951 | May 2009 | CN |
2006148751 | Jun 2006 | JP |
2010098540 | Feb 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20120071214 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
61385386 | Sep 2010 | US |