The present invention relates to gas discharge lamps, and more particularly to circuits for starting and powering gas discharge lamps.
Gas discharge lamps are used in a wide variety of applications. A conventional gas discharge lamp includes a pair of electrodes spaced apart from one another within a lamp sleeve. Gas discharge lamps are typically filled with an inert gas. In many applications, a metal vapor is added to the gas to enhance or otherwise affect light output. During operation, electricity is caused to flow between the electrodes through the gas. This causes the gas to discharge light. The wavelength (e.g. color) of the light can be varied by using different gases and different additives within the gas. In some applications, for example, conventional fluorescent lamps, the gas emits ultraviolet light that is converted to visible light by a fluorescent coating on the interior of the lamp sleeve.
Although the principles of operation of a conventional gas discharge lamp are relatively straightforward, conventional gas discharge lamps typically require a special starting process. For example, the conventional process for starting a conventional gas discharge lamp is to pre-heat the electrode to produce an abundance of electron around the electrodes (the “pre-heat” stage) and then to apply a spike of electrical current to the electrodes with sufficient magnitude for the electricity to arc across the electrodes through the gas (the “strike” stage). Once an arc has been established through the gas, the power is reduced as significantly less power is required to maintain operation of the lamp.
In many applications, the electrodes are pre-heated by connecting the electrodes in series and passing current through the electrodes as though they were filaments in an incandescent lamp. As current flows through the electrodes, the inherent resistance of the electrodes results in the excitation of electrons. Once the electrodes are sufficiently pre-heated, the direct electrical connection between the electrodes is opened, thereby leaving a path through the gas as the only route for electricity to follow between the electrodes. At roughly the same time, the power applied to the electrodes is increased to provide sufficient potential difference for electrons to strike an arc across the electrodes.
Starter circuits come in a wide variety of constructions and operate in accordance with a wide variety of methods. In one application, the power supply circuit includes a pair of transformers configured to apply pre-heating current across the two electrodes only when power is supplied over a specific range. By varying the frequency of the power, the pre-heating operation can be selectively controlled. Although functional, this power supply circuit requires the use of two additional transformers, which dramatically increase the cost and size of the power supply circuit. Further, this circuit includes a direct electrical connection between the power supply and the lamp. Direct electrical connections have a number of drawbacks. For example, direct electrical connections require the user to make electrical connections (and often mechanical connections) when installing or removing the lamp. Further, direct electrical connections provide a relatively high risk of electrical problems bridging between the power supply and the lamp.
In some applications, the gas discharge lamp is provided with power through an inductive coupling. This eliminates the need for direct electrical connection, for example, wire connections and also provides a degree of isolation between the power supply and the gas discharge lamp. Although an inductive coupling provides a variety of benefits over direct electrical connections, the use of an inductive coupling complicates the starting process. One method for controlling operation of the starter circuit in an inductive system is to provide a magnetically controlled reed switch that can be used to provide a selective direct electrical connection between the electrodes. Although reliable, this starter configuration requires close proximity between the electromagnet and the reed switch. It also requires a specific orientation between to the two components. Collectively, these requirements can place meaningful limitations on the design and configuration of the power supply circuit and the overall lamp circuit.
The present invention provides an inductive power supply circuit for a gas discharge lamp that is selectively operable in pre-heat and operating modes through variations in the frequency of power applied to the secondary circuit. In one embodiment, the power supply circuit generally includes a primary circuit with a frequency controller for varying the frequency of the power applied to the primary coil and a secondary circuit with a secondary coil for inductively receiving power from the primary coil, a gas discharge lamp and a pre-heat capacitor. The pre-heat capacitor is selected to pre-heat the lamp when the primary coil is operating within the pre-heat frequency range and to allow normal lamp operation when the primary coil is operating within the operating frequency range. In one embodiment, the pre-heat capacitor is connected in series between the lamp electrodes.
In one embodiment, the pre-heat capacitor, pre-heat frequency and operating frequency are selected so that the impedance of the electrical path through the lamp is greater than the impedance of the electrical path through the electrodes at the pre-heat frequency, and so that the impedance of the electrical path through the lamp is lesser than the impedance of the electrical path through the electrodes at the operating frequency.
In one embodiment, the secondary circuit further includes an operating capacitor disposed in series between the secondary coil and the lamp. The capacitance of the operating capacitor may be selected to substantially balance the inductance of the secondary coil. In this embodiment, the pre-heat capacitor may have a capacitance that is approximately equal to the capacitance of the operating capacitor.
In one embodiment, the primary circuit is adaptive to permit the primary to operate at resonance at the pre-heat frequency and at the operating frequency. In one embodiment, the primary circuit includes a tank circuit with variable capacitance and a controller capable of selectively varying the capacitance of the tank circuit. The primary circuit may include alternative circuitry for varying the resonant frequency of the tank circuit, such as a variable inductor.
In one embodiment, the variable resonance tank circuit includes a plurality of capacitors that may be made selectively operational by actuation of one or more switches. The switch(es) may be actuatable between a first position in which the effective capacitance of the tank circuit is set to provide resonance of the primary at approximately the pre-heat frequency and a second position in which the effective capacitance of the tank circuit is set to provide resonance of the primary at approximately the operating frequency.
In one embodiment, the tank circuit may include a tank operating capacitor that is connected between the primary coil and ground and a tank pre-heat capacitor that is connected between the primary and ground along a switched line in parallel to the pre-heat capacitor. In operation, the switch may be actuated to selectively enable or disable the pre-heat capacitor, thereby switching the resonant frequency of the primary between the pre-heat frequency and the operating frequency.
In another aspect, the present invention provides a method for starting and operating a gas discharge lamp. In one embodiment of this aspect, the method may include the steps of pre-heating the lamp by applying power to the secondary circuit at a pre-heat frequency at which the impedance of the electrical path through the lamp is greater than the impedance of the electrical path through the pre-heat capacitor for a period of time sufficient to pre-heat the lamp, and operating the lamp by applying power to the secondary circuit at an operating frequency at which the impedance of the electrical path through the lamp is lesser than the impedance of the electrical path through the pre-heat capacitor.
In one embodiment, the pre-heat frequency corresponds approximately to the resonant frequency of the secondary circuit taking into consideration the combined capacitance of the pre-heat capacitor and the operating capacitor, and the operating frequency corresponds approximately to the resonant frequency of the secondary circuit taking into consideration only the capacitance of the operating capacitor.
In one embodiment, the method further includes the step of varying the resonance frequency of the primary to match the pre-heat frequency during the pre-heating step and to match the operating frequency during the operating step. In one embodiment, this step is further defined as varying the effective capacitance of the tank circuit between the pre-heating step and the operating step. In another embodiment, this step is further defined as varying the effective inductance of the tank circuit between the pre-heating step and the operating step.
The present invention provides a simple and effective circuit and method for pre-heating, starting and powering a gas discharge lamp. The present invention utilizes a minimum number of components to achieve complex functionality. This reduces the overall cost and size of the circuitry. The present invention also provides the potential for improved reliability because it includes a small number of components, the components are passive in nature and there is less complexity in the manner of operation. In typical applications, the system automatically starts (or strikes) the lamp when the primary circuit switches from the pre-heat frequency to the operating frequency. The initial switch causes sufficient voltage to build across the electrodes to permit electricity to arc across the electrodes through the gas. Once the lamp has been started, the impedance through the lamp drops even farther creating a greater difference between the impedance of the electrical path through the lamp and the electrical path through the pre-heat capacitor. This further reduces the amount of current that will flow through the pre-heat capacitor during normal operation. In applications in which the resonant frequency of the primary circuit is selectively adjustable, the primary circuit can be adapted to provide efficient resonant operation during both pre-heat and operation. Further, the components of the secondary circuit can be readily incorporated into a lamp base, thereby facilitating practical implementation.
These and other objects, advantages, and features of the invention will be readily understood and appreciated by reference to the detailed description of the current embodiment and the drawings.
A gas discharge lamp system 10 in accordance with one embodiment of the present invention is shown in
As noted above, a schematic diagram of one embodiment of the present invention is shown in
As noted above, the secondary circuit 14 includes a secondary coil 22 for inductively receiving power from the primary coil 18, a gas discharge lamp 16, an operating capacitor 30 and a pre-heat capacitor 32. Referring now to
Operation of the system 10 is described with reference to
Although the formulas provided for determining pre-heat frequency and operating frequency yield specific frequencies, the terms “pre-heat frequency” and “operating frequency” should each be understood in both the specification and claims to encompass a frequency range encompassing the computed “pre-heat frequency” and “operating frequency.” Generally speaking, the efficiency of the system may suffer as the actual frequency gets farther from the computed frequency. In typical applications, it is desirable for the actual pre-heat frequency and the actual operating frequency to be within a certain percentage of the computed frequencies. There is not a strict limitation, however, and greater variations are permitted provided that the circuit continues to function with acceptable efficiency. For many applications, the preheat frequency is approximately twice the operating frequency. The primary circuit 12 may continue to apply power to the secondary circuit 14 until 106 continued operation of gas discharge lamp 16 is no longer desired.
If desired, the primary circuit 12′ may be configured to have selectively adjustable resonance so that the primary circuit 12′ operates at resonance at both the pre-heat frequency and the operating frequency. In one embodiment incorporating this functionality, the primary circuit 12′ may include a variable capacitance tank circuit 48′ (See
Operation of this alternative is generally described with reference to
Variable capacitance may be implemented through the use of alternative parallel and series capacitance subcircuits. For example,
Although described in connection with a variable capacitance tank circuit 48′, the present invention extends to other methods for varying the resonant frequency of the tank circuit 48′ or the primary circuit 12′ between pre-heat and operating modes. For example, the primary circuit may include variable inductance. In this alternative (not shown), the tank circuit may include a variable inductor and a controller for selectively controlling the inductance of the variable inductor. As another example (not shown), the tank circuit may include a plurality of inductors that can be switched into and out of the circuit by a controller in much the same way as described above in connection with the variable capacitance tank circuit.
The above description is that of the current embodiment of the invention. Various alterations and changes can be made without departing from the spirit and broader aspects of the invention as defined in the appended claims, which are to be interpreted in accordance with the principles of patent law including the doctrine of equivalents. Any reference to claim elements in the singular, for example, using the articles “a,” “an,” “the” or “said,” is not to be construed as limiting the element to the singular.
Number | Name | Date | Kind |
---|---|---|---|
3710177 | Ward | Jan 1973 | A |
4523131 | Zansky | Jun 1985 | A |
4525648 | De Bijl et al. | Jun 1985 | A |
4525649 | Knoll et al. | Jun 1985 | A |
5218272 | Jones | Jun 1993 | A |
5345149 | Ham | Sep 1994 | A |
5404082 | Hernandez et al. | Apr 1995 | A |
5493182 | Sowa et al. | Feb 1996 | A |
5550436 | Houk | Aug 1996 | A |
5589740 | Rudolph et al. | Dec 1996 | A |
5608292 | Konopka et al. | Mar 1997 | A |
5612597 | Wood | Mar 1997 | A |
5761056 | Noh | Jun 1998 | A |
5825136 | Rudolph | Oct 1998 | A |
5828187 | Fischer | Oct 1998 | A |
5831396 | Rudolph | Nov 1998 | A |
5925984 | Fischer et al. | Jul 1999 | A |
6051936 | Qian | Apr 2000 | A |
6100642 | Kim | Aug 2000 | A |
6140779 | Kanazawa et al. | Oct 2000 | A |
6285138 | Kataoka et al. | Sep 2001 | B1 |
6555970 | Schemmel et al. | Apr 2003 | B2 |
6731071 | Baarman | May 2004 | B2 |
6744219 | Neidlinger | Jun 2004 | B2 |
6788001 | Lechner | Sep 2004 | B2 |
6806649 | Mollema et al. | Oct 2004 | B2 |
6806657 | Rudolph et al. | Oct 2004 | B2 |
6812645 | Baarman | Nov 2004 | B2 |
6825620 | Kuennen et al. | Nov 2004 | B2 |
6831417 | Baarman | Dec 2004 | B2 |
6917163 | Baarman | Jul 2005 | B2 |
7119494 | Hui et al. | Oct 2006 | B2 |
7153178 | Baarman | Dec 2006 | B2 |
7474058 | Baarman | Jan 2009 | B2 |
7521873 | Hui et al. | Apr 2009 | B2 |
7592753 | Baarman et al. | Sep 2009 | B2 |
20020050796 | Huber | May 2002 | A1 |
20020113556 | Tao et al. | Aug 2002 | A1 |
20030011328 | Schemmel et al. | Jan 2003 | A1 |
20030076055 | Hooijer et al. | Apr 2003 | A1 |
20040174122 | Ribarich | Sep 2004 | A1 |
20050093475 | Kuennen et al. | May 2005 | A1 |
20050110429 | Poon et al. | May 2005 | A1 |
20050156534 | Oh | Jul 2005 | A1 |
20050174069 | Van Den Berg | Aug 2005 | A1 |
20050237008 | Moisin | Oct 2005 | A1 |
20060033450 | Feldtkeller et al. | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
0930808 | Jul 1999 | EP |
0948243 | Oct 1999 | EP |
0774199 | Mar 2003 | EP |
2002203695 | Jul 2002 | JP |
9716054 | May 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20080164817 A1 | Jul 2008 | US |